首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geology of the lunar farside crater Necho   总被引:1,自引:0,他引:1  
The lunar farside crater Necho (30 km diameter) displays intricate morphological and structural characteristics. The highland setting provides a complex impact site when compared with the relatively uniform setting of mare craters. Therefore, the effects of pre-impact topography and structure play a dominant role in Necho's formation and modification. Necho's bright ejecta, extensive rays, fresh morphology, and lack of superposed craters indicate that it is extremely young. The asymmetric distribution of ejecta materials may be due to substrate effects, topographic shalowing, or oblique impact.Necho's interior is divided into five physiographic units based on morphologic differences: three floor units (Necho does not display a true flat floor), one hilly central unit, and the wall unit which includes terraces and smooth walls. The interior of the crater also exhibits an unusual asymmetry in the prevalence of terraced units on the western wall. Interior morphology and terrace orientations are probably the result of pre-impact effects. Structural and topographic orientations associated with three large pre-existing degraded craters dominate the impact site.  相似文献   

2.
Available lunar orbital data were studied in detail to determine the nature and origin of geochemical variation in a portion of the farside highlands east of the Smythii basin. Such data exist for the elements Al, Mg, Fe, Ti, and Th (Clark and Hawke, 1981; Davis, 1980; Metzger et al., 1977). As in our previous studies (Clarke and Hawke, 1981, 1987), averages and ranges of concentrations for these elements are calculated and correlated for photogeologically defined units associated with features such as Babcock, King, Al-Khwarezmi, Langemak, Pasteur, and Sklodowska and with the region as a whole. In addition, comparisons are made between this and other highland regions which have been investigated by other workers in a similar manner (Andre et al., 1977; Haines et al., 1978; Maxwell and Andre, 1981). The region is shown to be distinctively enriched in the anorthositic end-members of the ANT-suite. Anomalies which have been reported for this region (Hawke et al., 1985) are confirmed by this study. An area south of Pasteur shows enrichment in some mafic components, giving evidence for the presence of buried mare basalt, and lending support to the hypothesis that volcanic activity may be fairly widespread even in the farside highlands. The units just southeast of Mare Smythii appear to be geochemically related to the area partly surrounding the Smythii on the west (Clark and Hawke, 1987). Considerable geochemical heterogeneity exists in this area, as in areas of the nearside highlands (Clark and Hawke, 1981, 1982, 1987; Hawke et al., 1985).  相似文献   

3.
Geology and stratigraphy of King crater, lunar farside   总被引:1,自引:0,他引:1  
Clementine and photographic data sets have been used to investigate the crustal stratigraphy and geology of King crater on the lunar farside (120°E, 5.5°N). Pre-existing topographic regimes or stress fields dominate many structures in the crater, which has excavated materials from depths of up to 14 km. The upper crust in the area is noritic anorthosite, grading to a more anorthositic signature with depth. A possible batholithic intrusion is also present in a 15-km-wide band, extending from the southern crater floor to at least 50 km north of King, and from near-surface levels down to at least the excavation depth of the crater. It is generally feldspathic, but is cut by mafic dykes now visible in the north wall. King also shows evidence for the presence of a cryptomare, exposed in regions of the peaks and in dark halo craters within the ejecta blanket. Localized olivine-bearing mineralogies are observed on the central peaks, suggesting isolated pockets of troctolitic mineralogies to have been present at 8- to 14-km depths. Copious volumes of crystalline melt produced from the impact event cover King’s floor to a maximum thickness of 30-60 m, and have pooled in a number of natural depressions outside of the main crater. The main pool in the pre-existing A1-Tusi crater has a minimum depth of 150 m. Domes on the crater floor are verified as nonvolcanic in origin, and did not act as a source for any of the lava-like materials in King.  相似文献   

4.
In VLBI observations of Vstar, a subsatellite of the Japanese lunar mission SELENE, there were opportunities for lunar grazing occultation when Vstar was very close to the limb of the Moon. This kind of chance made it possible to probe the thin plasma layer above the Moon's surface as a meaningful by-product of VLBI,by using the radio occultation method with coherent radio waves from the S/X bands.The dual-frequency measurements were carried out at Earth-based VLBI stations. In the line-of-sight direction between the satellite and the ground-based tracking station where VLBI measurements were made, the effects of the terrestrial ionosphere, interplanetary plasma and the thin lunar ionosphere mixed together in the combined observables of dual-frequency Doppler shift and phase shift. To separate the variation of the ionospheric total electron content(TEC) near the surface of the Moon from the mixed signal, the influences of the terrestrial ionosphere and interplanetary plasma have been removed by using an extrapolation method based on a short-term trend. The lunar TEC is estimated from the dual-frequency observation for Vstar from UT 22:18to UT 22:20 on 2008 June 28 at several tracking stations. The TEC results obtained from VLBI sites are identical, however, they are not as remarkable as the result obtained at the Usuda deep space tracking station.  相似文献   

5.
After the touchdown of the two Viking landers on Mars, radio tracking measurements have been performed between them and Earth-based stations. With use of the first 9 months of data, we have improved the rotation rate and the mean orientation of the spin axis of Mars, referred to its mean orbit. For the first time, some nutations terms have also been estimated. Nevertheless the precise determination of the spin axis motion will require additional data collected during the extended mission. Our solution includes also the lander locations and the relativistic parameter .Paper presented at the European Workshop on Planetary Sciences, Organised by the Laboratorio di Astrofisica Spaziale di Frascati, and held between April 23–27, 1979, at the Accademia Nazionale del Lincei in Rome, Italy.  相似文献   

6.
Based on the ongoing Chinese lunar exploration mission, i.e. the “Chang'e 1” project, precise orbit determination of lunar orbiters is analyzed for the actual geographical distribution and observational accuracy of the Chinese united S-band (USB) observation and control network as well as the very long baseline interferometry (VLBI) tracking network. The observed data are first simulated, then solutions are found after including the effects of various error sources and finally compared. We use the space data analysis software package, GEODYN, developed at Goddard Space Flight Center, NASA, USA. The primary error source of the flight orbiting the moon is the lunar gravity field. Therefore, the (formal) error of JGL165P1, i.e. the model of the lunar gravity field with the highest accuracy at present, is first discussed. After simulating the data of ranging and velocity measurement as well as the VLBI data of the time delay and time delay rate, precise orbit determination is carried out when the error of the lunar gravity field is added in. When the orbit is determined, the method of reduced dynamics is adopted with the selection of appropriate empirical acceleration parameters to absorb the effect of errors in the lunar gravity field on the orbit determination. The results show that for lunar missions like the “Chang'e 1” project, that do not take the lunar gravity field as their main scientific objective, the method of reduced dynamics is a simple and effective means of improving the accuracy of the orbit determination of the lunar orbiters.  相似文献   

7.
The motion of a lunar satellite   总被引:2,自引:0,他引:2  
Presented in this theory is a semianalytical solution for the problem of the motion of a satellite in orbit around the moon. The principal perturbations on such a body are due to the nonspherical gravity field of the moon, the attraction of the earth, and, to a lesser degree, the attraction of the sun. The major part of the problem is solved by means of the celebrated von Zeipel Method, first successfully applied to the motion of an artificial earth satellite by Brouwer in 1959. After eliminating from the Hamiltonian all terms with the period of the satellite and those with the period of the moon, it is suggested to solve the remaining problem with the aid of numerical integration of the modified equations of motion.This theory was written in 1964 and presented as a dissertation to Yale University in 1965. Since then a great deal has been learned about the gravity field of the moon. It seems that quite a number of recently determined gravity coefficients would qualify as small quantities of order two. Hence, according to the truncation criteria employed, they should be considered in the present theory. However, the author has not endeavored to update the work accordingly. The final results, therefore, are incomplete in the lunar gravitational perturbations. Nevertheless, the theory does give the largest such variations and it does present the methods by which perturbations may be derived for any gravity terms not actually developed.  相似文献   

8.
We report the result of a non-destructive elemental analysis of lunar meteorites using a negative muon beam at J-PARC. An experimental system of six Ge semiconductor detectors and a newly designed He analysis chamber (to enable quantitative analysis of Al) was used to provide a high signal-to-noise ratio for the detection of major elements from lunar rocks (Mg, Si, Fe, O, Ca, and Al). We performed a Monte Carlo simulation to determine the chemical compositions at two sides and the center of a sample (at depths of 0.33 and 0.96 mm below the sample surface, respectively) of the lunar meteorite DEW 12007. These results indicate that the three interior regions of DEW 12007 are likely to be 55.8:44.2, 51.4:48.6, and 54.4:45.6 wt% mixtures of anorthositic and basaltic clasts, respectively. This study is the first quantitative analysis of a heterogeneous meteorite interior using a negative muon beam. As elemental analysis using a muon beam is non-destructive and highly sensitive to light elements, including C, N, and O, the protocols established in this study are applicable to initial characterization of returned samples from the South Pole of the Moon.  相似文献   

9.
Global and regional satellite navigation systems are constellations orbiting the Earth and transmitting radio signals for determining position and velocity of users around the globe. The state-of-the-art navigation satellite systems are located in medium Earth orbits and geosynchronous Earth orbits and are characterized by high launching, building and maintenance costs. For applications that require only regional coverage, the continuous and global coverage that existing systems provide may be unnecessary. Thus, a nano-satellites-based regional navigation satellite system in Low Earth Orbit (LEO), with significantly reduced launching, building and maintenance costs, can be considered. Thus, this paper is aimed at developing a LEO constellation optimization and design method, using genetic algorithms and gradient-based optimization. The preliminary results of this study include 268 LEO constellations, aimed at regional navigation in an approximately 1000 km \(\times \) 1000 km area centered at the geographic coordinates [30, 30] degrees. The constellations performance is examined using simulations, and the figures of merit include total coverage time, revisit time, and geometric dilution of precision (GDOP) percentiles. The GDOP is a quantity that determines the positioning solution accuracy and solely depends on the spatial geometry of the satellites. Whereas the optimization method takes into account only the Earth’s second zonal harmonic coefficient, the simulations include the Earth’s gravitational field with zonal and tesseral harmonics up to degree 10 and order 10, Solar radiation pressure, drag, and the lunisolar gravitational perturbation.  相似文献   

10.
Understanding the formation and evolution of the soil and dust of the Moon addresses the fundamental question of the interactions of space with the surface of an airless body. The physical and chemical properties of the lunar dust, the <20 μm portion of lunar soil, are key properties necessary for studies of the toxicity and the electrostatic charging of the dust. These properties have been largely overlooked until recent years. Although chemical and physical studies of the <20 μm portion of lunar soil have been the topic of several studies, there is still need for further studies, primarily of the <1 μm particles. This paper presents a review of the studies of lunar dust that have been conducted to date. As many preparations for future exploration or science activities on the Moon require testing using lunar soil/dust simulants, we also include a brief review of past and current simulants.  相似文献   

11.
12.
Due to possible planet contamination, before Earth-departure, Mars landers and/or rovers are subject to strict requirements on the maximum number of attached spores or particles that carry viable microbes. Estimates of the release rates of these particles on Mars are made considering the three mechanisms of wind shear, collision with suspended dust, and collision with saltating sand particles. The first mechanism is found to apply only to particles of size greater than , the second mechanism has a characteristic particle adhesion half life that is so long as to be of no concern, and the third mechanism is deemed of possible importance, vitally depending on attached particle size and detailed surface characteristics of sand and spacecraft. While not investigated in detail, dust devils are shown to be possible contributors to release of microbe-containing particles.  相似文献   

13.
At present the fundamental lunar ephemeris is based on Brown's theory of the motion of the Moon with improvements based on the bypassing of Brown's Tables, the removal of the great empirical term, the substitution of the relevant constants of the IAU system of astronomical constants and the retransformation of Brown's series in rectangular coordinates to spherical coordinates. Even so this ephemeris does not represent adequately the recent range and range-rate radio observations, and it will be inadequate for use in the analysis of laser observations of corner reflectors on the Moon. Numerical integrations for these purposes have already been made at the Jet Propulsion Laboratory, but improved theoretical developments are also required; new solutions of the main problem are in hand elsewhere. Work at H.M. Nautical Almanac Office is aimed at obtaining improved values of the constants of the lunar orbit by a rediscussion of occultation observations made since 1943 and at the redevelopment of the series for the planetary perturbations using more precise theories of the motion of the Sun and planets. The techniques and preliminary results of exploratory numerical integrations were briefly described.Presented at the Conference on Celestial Mechanics, Oberwolfach, Germany, 17–23 August, 1969.  相似文献   

14.
Multiple large impact basins on the lunar nearside formed in a relatively-short interval around 3.8-3.9 Gyr ago, in what is known as the Lunar Cataclysm (LC; also known as Late Heavy Bombardment). It is widely thought that this impact bombardment has affected the whole Solar System or at least all the inner planets. But with non-lunar evidence for the cataclysm being relatively weak, a geocentric cause of the Lunar Cataclysm cannot yet be completely ruled out [Ryder, G., 1990. Eos 71, 313, 322-323]. In principle, late destabilization of an additional Earth satellite could result in its tidal disruption during a close lunar encounter (cf. [Asphaug, E., Agnor, C.B., Williams, Q., 2006. Nature 439, 155-160]). If the lost satellite had D>500 km, the resulting debris can form multiple impact basins in a relatively short time, possibly explaining the LC. Canup et al. [Canup, R.M., Levison, H.F., Stewart, G.R., 1999. Astron. J. 117, 603-620] have shown that any additional satellites of Earth formed together with (and external to) the Moon would be unable to survive the rapid initial tidally-driven expansion of lunar orbit. Here we explore the fate of objects trapped in the lunar Trojan points, and find that small lunar Trojans can survive the Moon's orbital evolution until they and the Moon reach 38 Earth radii, at which point they are destabilized by a strong solar resonance. However, the dynamics of Trojans containing enough mass to cause the LC (diameters >150 km) is more complex; we find that such objects do not survive the passage through a weaker solar resonance at 27 Earth radii. This distance was very likely reached by the Moon long before the LC, which seems to rule out the disruption of lunar Trojans as a cause of the LC.  相似文献   

15.
Lucas Reindler 《Icarus》2003,162(2):233-241
A self-gravitating, elastic, spherical thick shell model is used to derive the present state of the lateral variations of density and stress differences within the lunar lithosphere. The model is allowed to deform under the load of an initial surface topography and internal density distribution, such that the resulting deformed body gives rise to the observed surface topography and gravity specified by the spherical harmonics of degree up to 70. Two main models are considered, Model A and Model B, with elastic lithospheres of thickness 300 and 210 km, respectively. Model A displays density perturbations of generally less than ±200 kg/m3 within the crustal layers, reducing rapidly to less than ±20 kg/m3 at the base of the lithosphere. The density perturbations in Model B are similar in the crust and marginally higher at the base of the lithosphere. The major stress differences in the mantle are associated with the mascon basins and are found to reach maximums of 8-10 MPa within the lower lithosphere (150-270 km) of Model A and maximums of 12-16 MPa at 150 to 180 km depth for Model B. A moderate correlation exists between the modeled stress distributions and shallow moonquake epicenters. However, the overall results of this study imply that other remnant stresses, due to processes other than density perturbations, exist and play a critical role in the large shallow moonquakes.  相似文献   

16.
The origin of lunar crater rays   总被引:5,自引:0,他引:5  
Lunar rays are filamentous, high-albedo deposits occurring radial or subradial to impact craters. The nature and origin of lunar rays have long been the subjects of major controversies. We have determined the origin of selected lunar ray segments utilizing Earth-based spectral and radar data as well as FeO, TiO2, and optical maturity maps produced from Clementine UVVIS images. These include rays associated with Tycho, Olbers A, Lichtenberg, and the Messier crater complex. It was found that lunar rays are bright because of compositional contrast with the surrounding terrain, the presence of immature material, or some combination of the two. Mature “compositional” rays such as those exhibited by Lichtenberg crater, are due entirely to the contrast in albedo between ray material containing highlands-rich primary ejecta and the adjacent dark mare surfaces. “Immaturity” rays are bright due to the presence of fresh, high-albedo material. This fresh debris was produced by one or more of the following: (1) the emplacement of immature primary ejecta, (2) the deposition of immature local material from secondary craters, (3) the action of debris surges downrange of secondary clusters, and (4) the presence of immature interior walls of secondary impact craters. Both composition and state-of-maturity play a role in producing a third (“combination”) class of lunar rays. The working distinction between the Eratosthenian and Copernican Systems is that Copernican craters still have visible rays whereas Eratosthenian-aged craters do not. Compositional rays can persist far longer than 1.1 Ga, the currently accepted age of the Copernican-Eratosthenian boundary. Hence, the mere presence of rays is not a reliable indication of crater age. The optical maturity parameter should be used to define the Copernican-Eratosthenian boundary. The time required for an immature surface to reach the optical maturity index saturation point could be defined as the Copernican Period.  相似文献   

17.
The potential effect of the future Russian lunar laser ranging system (LLRS) on the accuracy of lunar ephemerides is discussed. In addition to the LLRS in Altai, several other observatories suitable for the LLRS installation are considered. The variation of accuracy of lunar ephemerides in the process of commissioning of new LLRS stations is estimated by mathematical modeling. It is demonstrated that the error in the determination of certain lunar ephemeris parameters may be reduced by up to 16% after seven years of operation of the Altai LLRS with a nearly optimal observational program.  相似文献   

18.
Illumination conditions of the lunar polar regions using LOLA topography   总被引:3,自引:0,他引:3  
E. Mazarico  G.A. Neumann  M.T. Zuber 《Icarus》2011,211(2):1066-1081
We use high-resolution altimetry data obtained by the Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter to characterize present illumination conditions in the polar regions of the Moon. Compared to previous studies, both the spatial and temporal extent of the simulations are increased significantly, as well as the coverage (fill ratio) of the topographic maps used, thanks to the 28 Hz firing rate of the five-beam instrument. We determine the horizon elevation in a number of directions based on 240 m-resolution polar digital elevation models reaching down to ∼75° latitude. The illumination of both polar regions extending to ∼80° can be calculated for any geometry from those horizon longitudinal profiles. We validated our modeling with recent Lunar Reconnaissance Orbiter Wide-Angle Camera images. We assessed the extent of permanently shadowed regions (PSRs, defined as areas that never receive direct solar illumination), and obtained total areas generally larger than previous studies (12,866 and 16,055 km2, in the north and south respectively). We extended our direct illumination model to account for singly-scattered light, and found that every PSR does receive some amount of scattered light during the year. We conducted simulations over long periods (several 18.6-years lunar precession cycles) with a high temporal resolution (6 h), and identified the most illuminated locations in the vicinity of both poles. Because of the importance of those sites for exploration and engineering considerations, we characterized their illumination more precisely over the near future. Every year, a location near the Shackleton crater rim in the south polar region is sunlit continuously for 240 days, and its longest continuous period in total darkness is about 1.5 days. For some locations small height gains (∼10 m) can dramatically improve their average illumination and reduce the night duration, rendering some of those particularly attractive energy-wise as possible sites for near-continuous sources of solar power.  相似文献   

19.
About 60,000 observations of lunar occultations made during 1955–1980 are analysed using recently-developed semi-analytical solution ELP2000-82 for the Moon's position in order to determine the constants in the lunar theory and to investigate the tidal term in the Moon's mean longitude and the motions of the perigee and node of the lunar orbit. The equinox correction and systematic correction to the fundamental star catalogue and the correction to the datum of the lunar-profile in Watts' charts are also investigated. It is confirmed that the occultation observations do not have inconsistent tidal term with the modern observations and the observed mean motions of the perigee and node coincide with the theoretical ones within the error of observations. Some of the values of the constants in the lunar theory and the equinox correction to the fundamental catalogue FK5 obtained in this paper are significantly different from the values obtained using the Brown's theory. The reason of the difference is almost attributed to the deficiencies in the Brown's theory. The obtained correction to the datum of the lunar-profile in Watts' charts is almost consistent with the results by earlier investigators.  相似文献   

20.
Owing to the low surface gravity of the Rosetta target comet 46P/Wirtanen, a means of anchoring the Rosetta Lander to the cometary surface will be necessary. This task can be accomplished by firing an anchor into the cometary soil immediately after touchdown to prevent a rebound of the spacecraft from the surface or subsequent ejection by other forces, and to allow for mechanical activities (drilling, etc.) at the landing site.

The rationale for anchoring is examined, based on estimates of the main forces likely to act on the spacecraft after landing. We report on the development of an anchoring device using a pyrotechnic gas generator as a power source and an instrumented anchor.

In addition to the anchoring function, which is the primary purpose of this system, the integration of acceleration and temperature sensors into the tip offers the possibility to determine some important material properties of the cometary surface layer. The accelerometer is designed to measure the deceleration history of the projectile and is thus expected to give information on how the material properties (in particular strength) change within the penetrated layer(s), while the temperature sensor will measure temperature variations at the depth at which the anchor finally comes to rest. As the mechanical properties of the material are not known, it is difficult to predict the final depth of the anchor with any great certainty, but it may well be greater than that reached by any other of the lander's instruments.

The instrumented anchor will be part of the MUPUS experiment, selected to form part of the Rosetta Lander payload. We report on results of laboratory simulations of anchor penetration performed at the Institut für Weltraumforschung, Graz, and compare these with models of projectile penetration. The value of the results expected from the penetrometry experiment in the context of an improved understanding of cometary processes is discussed.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号