首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 566 毫秒
1.
INTRODUCTIONMany environmental problems may arise during coal min-ing and utilization. Among these prob1ems, much attention hasbeen paid to S(), and NO. emission during coal combustion.But the environmental effects produced by hazardous elementsduring coal mining and utilization are also important and de-serve to be studied (Goodazi, 1995; Finkelman, 1993; Valk-ovic, l983). For example, when coal wastes are used for landreclamation, the harmful elements in them may pollute water,soil an…  相似文献   

2.
Systematic changes in mineralogy, enrichment and depletion of selected elements, and mineralogical speciation of selected elements in fly ash and bottom ash samples from the Lingan Power Plant were compared to run-of-mine and pulverized feed coal from the Sydney coalfield, Nova Scotia, eastern Canada. The analytical techniques used were an electron microprobe equipped with energy and wavelength X-ray dispersive spectrometers, X-ray diffraction, neutron activation, scanning electron microscopy with energy dispersive X-ray and incident light petrography. Three types of glasses (Fe/O-rich, Fe/Al/Si/O-rich and or Al/Si/O-rich) were identified in the combustion residues; they were formed as a result of the interaction of melted pyrite and clay minerals. Compared to the feed coal, most elements were enriched 10 to20 times in the fly ash. The concentration of the elements in both the fly ash and bottom ash are comparable to coal ash that is generated by the low temperature asher in the laboratory. Some chalcophile elements such as arsenic and lead occurred as a solid solution in pyrite in the feed coal and were concentrated in the float fraction (density: <2.81 g/cm3) of the fly ash with non-crystalline Fe-oxides. X-ray mapping of arsenic in the fly ash and bottom ash indicates that arsenic was evenly distributed as oxide within the Fe/O- and Fe/Al/Si/O-rich glass and crystalline phases in the fly ash, possibly in solid solution. Arsenic is associated with Fe/O and Fe/S crystalline phases in the bottom ash.  相似文献   

3.
华能南京电厂不同粒径粉煤灰的化学成分和矿物相组成基本相同,煤粉所含矿物质在高温燃烧过程中的挥发-凝聚作用,导致微量元素趋向细粒径粒煤灰中富集,其富集的程度则与粉煤灰的平均粒径和元素的地球化学性质密切相关,粉煤灰排放的环境效应表明,尤以细粒径灰粒的影响最大。  相似文献   

4.
淮南二叠纪煤及其燃烧产物地球化学特征   总被引:11,自引:1,他引:11  
采用仪器中子活化分析法INAA(instrumental neutron activation analysis)测试了淮南煤田二叠纪主采煤层原煤煤样的地球化学组成,用X-射线荧光光谱XRFS(X-ray fluorescence spectrometry)测试了田家庵和洛河电厂的粉煤灰地球化学组成并与煤样作了对比分析,用电子探针测试了飞灰中主要类型颗粒的化学组成,淮南煤中多数微量元素属正常水平,与克拉克值相比,元素Se,S,As,Sb,Br,U和Cl等在煤中趋于富集,其他元素均趋于分散,有机亲和性弱的亲石元素趋于在粉煤灰中聚集,与铁关系密切的金属元素在粉煤灰中有明显的富集,有机亲合性强的元素在燃烧过程中趋于以气态形式向空气中逸散,粉煤灰中因矿物与粒度的分异明显,致使其化学组成在不同的粒度级和比重级中的分布也有较大的不同,飞灰中一些不定形颗粒主要由铁的氧化物和少量其他金属氧化物组成,硅酸盐类颗粒主要由硅,铝和铁的氧化物所组成,而玻璃珠主要由硅和铝的氧化物组成,残碳中测得的砷,硫和氯的含量最高,说明其对这些元素具有较强的吸附能力,研究粉煤灰的成分特点有助于粉煤灰的综合利用和评价其对环境的 影响。  相似文献   

5.
燃煤固体产物的矿物组成研究   总被引:12,自引:1,他引:12  
孙俊民 《矿物学报》2001,21(1):14-18
利用X射线衍射、穆斯堡尔谱与扫描电子显微镜等方法研究中国典型燃煤煤种的燃烧产物的矿物学特征,揭示出不同化学成分以及不同类型产物中矿物组成的差异性。根据化学成分,可将燃煤固体产物分为硅铝质、铁质和钙质三组,硅铝质产物结晶相主要为莫来石和石英,而结渣中基本为莫来石;铁质产物中主要矿物包括α-Fe2O3、γ-Fe2O3与Fe3O4,其含量随锅炉燃烧湿度的变化而变化;钙质产物中矿物种类复杂,飞灰石检出石灰、石膏和石英,沾污中检出石膏、赤铁矿和石类,而结渣中还发现钙的硅酸盐矿物。上述矿物分布特征是由不同成分的硅酸盐熔体在不同热力学条件下的结晶行为所决定的。  相似文献   

6.
This paper presents data on the properties of coal and fly ash from two coal mines and two power plants that burn single-source coal from two mines in Indiana. One mine is in the low-sulfur (<1%) Danville Coal Member of the Dugger Formation (Pennsylvanian) and the other mines the high-sulfur (>5%) Springfield Coal Member of the Petersburg Formation (Pennsylvanian). Both seams have comparable ash contents (11%). Coals sampled at the mines (both raw and washed fractions) were analyzed for proximate/ultimate/sulfur forms/heating value, major oxides, trace elements and petrographic composition. The properties of fly ash from these coals reflect the properties of the feed coal, as well as local combustion and post-combustion conditions. Sulfur and spinel content, and As, Pb and Zn concentrations of the fly ash are the parameters that most closely reflect the properties of the source coal.  相似文献   

7.
The major element and Sr isotope systematics and geochemistry of coal fly ash and its interactions with environmental waters were investigated using laboratory flow-through column leaching experiments (sodium carbonate, acetic acid, nitric acid) and sequential batch leaching experiments (water, acetic acid, hydrochloric acid). Column leaching of Class F fly ash samples shows rapid release of most major elements early in the leaching procedure, suggesting an association of these elements with soluble and surface bound phases. Delayed release of certain elements (e.g., Al, Fe, Si) signals gradual dissolution of more resistant silicate or glass phases as leaching continues. Strontium isotope results from both column and batch leaching experiments show a marked increase in 87Sr/86Sr ratio with continued leaching, yielding a total range of values from 0.7107 to 0.7138. For comparison, the isotopic composition of fluid output from a fly ash impoundment in West Virginia falls in a narrow range around 0.7124. The experimental data suggest the presence of a more resistant, highly radiogenic silicate phase that survives the combustion process and is leached after the more soluble minerals are removed. Strontium isotopic homogenization of minerals in coal does not always occur during the combustion process, despite the high temperatures encountered in the boiler. Early-released Sr tends to be isotopically uniform; thus the Sr isotopic composition of fly ash could be distinguishable from other sources and is a useful tool for quantifying the possible contribution of fly ash leaching to the total dissolved load in natural surface and ground waters.  相似文献   

8.
In the process of combustion of coal organic and inorganic materials in it will undergo a complex variation.Part of thew will become volatiles and,together with coal smoke,enter into atmosphere,some will remain in micro-particulates such as ash and dust and find their way into atmosphere in the form of solid particles,and the rest will be retained in ash and slag.Coal ashes are the residues of organic and inorganic substances in coal left after coal combustion and the compostition of coal ashes in dependent on that of minerals and organic matter in coal.This paper deals with the chemical composition of coal ashes,the distribution of trace elements in them and their petrological characteristics,and also studies the relationship between the yield of coal ashes and the distribution of trace elements.In addition,a preliminary study in also undertaken on the factors that affect the chemical composition of coal ashes.As viewed from the analyses of coal ash samples collected from the Yanzhou mining district,it can be seen clearly that coal ashes from the region studied are composed chiefly of crystalline materials,glassy materials and uncombusted organic matter and the major chemical compositions are SiO2,Al2O3,Fe2O3,and CaO,as well as minor amounts of SO3,PWO5,Na2O,K2O and TiO2.During the combustion of coal,its trace elements will be redistributed and most of them are enriched in coal ashes.At the same time,the concentrations of the trace elements in flying ash are much higher than those of bottom ash,i.e.,with decreasing particle-size of coal ashes their concentrations will become higher and higher.So the contents of trace elements are negatively proportional to the particle-size of coal ashes.There has been found a positive correlation between the trace elements Th.V.Zn,Cu and Pb and the yield of coal ashes while a negative correlation between Cl and the yield of coal ashes.  相似文献   

9.
《Applied Geochemistry》2005,20(7):1309-1319
Petroleum coke has been used as a supplement or replacement for coal in pulverized-fuel combustion. At a 444-MW western Kentucky power station, the combustion of nearly 60% petroleum coke with moderate- to high-sulfur Illinois Basin coal produces fly ash with nearly 50% uncombusted petroleum coke and large amounts of V and Ni when compared to fly ash from strictly pulverized coal burns. Partitioning of the V and Ni, known from other studies to be concentrated in petroleum coke, was noted. However, the distribution of V and Ni does not directly correspond to the amount of uncombusted petroleum coke in the fly ash. Vanadium and Ni are preferentially associated with the finer, higher surface area fly ash fractions captured at lower flue gas temperatures. The presence of uncombusted petroleum coke in the fly ash doubles the amount of ash to be disposed, makes the fly ash unmarketable because of the high C content, and would lead to higher than typical (compared to other fly ashes in the region) concentrations of V and Ni in the fly ash even if the petroleum coke C could be beneficiated from the fly ash. Further studies of co-combustion ashes are necessary in order to understand their behavior in disposal.  相似文献   

10.
The aim of the present study is the petrographic and chemical characterization of the coal at the Figueira Power Plant, Paraná, Brazil, prior and after the beneficiation process and the chemical characterization of fly and bottom ashes generated in the combustion process.Petrographic characterization was carried out through maceral analysis and vitrinite reflectance measurements. Chemical characterization included proximate analysis, determination of calorific value and sulphur content, ultimate analysis, X-ray diffraction, X-ray fluorescence, Inductively Coupled Plasma — Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma — Atomic Emission Spectrometry (ICP-AES) analysis, and determination of Total Organic Carbon (TOC) content.Vitrinite reflectance analyses indicate a high volatile B/C bituminous coal (0.61 to 0.73% Rrandom). Maceral analyses show predominance of the vitrinite maceral group (51.6 to 70.9 vol.%, m.m.f). Except of the Run of mine (ROM) coal sample, the average calorific value of the coals is 5205 kcal/kg and ash yields range from 21.4 to 38.1 wt.%. The mineralogical composition (X-ray diffraction) of coals includes kaolinite, quartz, plagioclase and pyrite, whereas fly and bottom ashes are composed by mullite, ettringite, quartz, magnetite, and hematite. Analyses of major elements from coal, fly and bottom ashes indicate a high SiO2, Al2O3, and Fe2O3 content. Trace elements analysis of in-situ and ROM coals by ICP-MS and ICP-AES show highest concentration in Zn and As. Most of the toxic elements such as As, Cd, Cr, Mo, Ni, Pb, and Zn are significantly reduced by coal beneficiation. Considering the spatial distribution of trace elements in the beneficiated coal samples, which were collected over a period of three months, there appears to be little variation in Cd and Zn concentrations, whereas trace elements such as As, Mo, and Pb show a larger variation.In the fly and bottom ashes, the highest concentrations of trace elements were determined for Zn and As. When compared with trace element concentrations in the feed coal, fly ashes show a significant enrichment in most trace elements (As, B, Be, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sb, Tl, and Zn), suggesting a predominantly volatile nature for these elements. In contrast, Sn is distributed evenly within the different ash types, whereas U shows depleted concentration in both bottom and fly ash samples.According to the International Classification of in-seam coals the Cambuí coals are of para/ortho bituminous rank of low grade (except for the ROM sample), and are characterized by the predominance of vitrinite macerals.  相似文献   

11.
12.
《Applied Geochemistry》2002,17(2):93-103
Mimicking geochemical processes to solve environmental problems was implemented in dealing with waste acidic jarosite and alkaline coal fly ash. By placing these two chemically different materials adjacent to one another, a self-sealing layer was formed at the interface between both wastes, isolating and immobilizing chemical constituents in the process. A series of leaching experiments were performed on each material separately to study the release behavior of the principal constituents. Radiotracer experiments were conducted to explore diffusion and reaction of constituents such as Fe3+ in a combined jarosite/fly ash system. A model has been developed to simulate the coupled processes of diffusion and precipitation taking into account porosity change due to pore filling by precipitates. The formation of a self-sealing isolation layer in a hypothetical jarosite/fly ash disposal site was modelled. Leaching results indicate that the release of elements from jarosite is much larger than that from fly ash, and that the highly pH dependent release of Fe, Al, and Zn was controlled by the solubility of their hydroxides. Leaching results also suggest that precipitation reactions can be expected to occur at the interface between jarosite and alkaline coal fly ash where a large pH gradient exists. Radiotracer experiments showed that accumulation of constituents occurred at the interface. Modeled Fe3+ profiles in layered jarosite/fly ash were well validated by experiments. Modeling results also showed that with the accumulation of constituents at the interface, a new layer with low porosity was formed. Application of this model suggests that there is a potential use to form a self-sealing layer in jarosite/fly ash co-disposal sites.  相似文献   

13.
煤中As的赋存状态及其在燃烧过程中的转化   总被引:1,自引:0,他引:1  
对煤中砷的赋存状态进行了综述,总结了砷在燃煤过程中的迁移转化行为。从飞灰演化的角度探讨了飞灰对砷的富集机制,认为飞灰对砷的富集是伴随飞灰的演化过程进行的。飞灰对砷的富集主要有4种形式,即发生化学反应生成含砷稳定化合物,进入粘土矿物晶格内部,飞灰对砷及其化合物的吸附和冷凝   相似文献   

14.
煤炭与铀两种资源在空间配置和成矿上有关联性,其合理开发利用及污染控制是我国国民经济和社会持续发展的重大需求。基于大量文献调研及前期研究成果,探讨了铀在煤中赋存分布及其在洗选、燃烧、淋滤过程中的迁移特征,取得一些认识:①煤中铀的富集成矿与成煤大地构造演化相关联,西南富铀煤主要与峨眉山玄武岩及断裂构造有关;西北富铀煤一般分布在拗陷和断拗陷盆地开阔地带一侧并与上覆砂岩型铀矿有关。②煤中铀主要与煤中有机质(主要是腐殖酸)结合,富铀煤中铀可以微细粒含铀矿物形式存在,并与有机硫、硫化物紧密共生,故在选煤过程中,无论重选还是浮选,其洗选脱除率均不高(最高为68.3%),部分煤浮选时铀甚至富集到精煤中;在煤燃烧过程中,铀或多或少都会以气相形式挥发到大气中。③富铀煤一般也同时富集V、Mo、Se、Re、Cr等高价态变价元素,这与有机体深埋分解造成的强还原环境有关,对于那些不变价元素如Sc、Y、La等的沉淀富集主要与腐殖酸形成的酸化条件有关;这些共生组合元素,在富铀煤的分选及煤矸石的淋滤过程中表现出一致的迁移行为。④电厂燃煤过程中铀主要富集(呈数量级的增加)到飞灰和底灰中,粉煤灰中铀淋出浓度一般随淋滤液pH的增加呈降低趋势,其萃取率随灰化温度的升高呈现降低趋势。研究结果为铀资源利用和环境污染控制提供参考和依据。   相似文献   

15.
Coal, a fossil fuel, is the largest source of energy for the generation of electricity in India. In order to study the potential environmental hazards by coal based power plants, particulate matters were collected using Stack Monitoring Kit and gaseous pollutants by Automatic Flue Gas Analyzer. The morphological and chemical properties, mineralogical composition and particle size distributions have been determined by SEM–EDX, XRD and CILAS. The data revealed the presence of particulate matters, SO2, NOx in the range of 236–315, 162–238, 173–222 mg/Nm3 respectively. The emission of CO2 was in the range of 43,004–60,115 Nm3/h with an average of 52,830 Nm3/h. Among the elements, Fe > Mn > Al > Zn > B > Ni > Cr > Cu were present in substantially higher proportion than Pb > Mo > Cd > Se > As > Hg. It was found that most of the elements were concentrated on fly ash surface rather than coal, bottom ash and pond ash. This variation may be attributed to the fineness of fly ash particles with large surface ratio to mass. Mineralogical studies of coal and fly ash by X-ray diffraction revealed the presence of mullite, quartz, cristobalite and maghemite. Presence of mullite and quartz found in fly ash indicate the conversion of complex minerals to mullite and quartz at high temperature. Transfer Coefficient was calculated to determine the ratio of the enrichment of trace elements in fly or bottom ash with respect to coal and pond ash.  相似文献   

16.
采集康平、沈北、东梁、辽阳、阜新、浑江、舒兰、海拉尔、珲春、凉水、七台河共11处煤矿样品,设置了燃烧试验,使煤在近密闭燃烧炉中燃烧,杜绝飞灰造成的物质损失,然后测定煤及其对应灰分的238U、232Th、226Ra、40K活度.分析得出:在理论燃烧状态下,假设燃烧无飞灰产生,煤灰的238U、232Th、226Ra、40K天然放射性核素富集因子f与煤灰分比Ad的乘积为1.根据煤燃烧后核素的迁移富集规律和影响辐射水平的核素权重,提出了应用于煤的比活度、吸收剂量率、年吸收剂量、内辐射指数等放射性环境评价参考值.经11处煤矿验证,评价结果可以反映煤灰的辐射水平,辐射水平排序与实际测量结果基本一致.  相似文献   

17.
采集康平、沈北、东梁、辽阳、阜新、浑江、舒兰、海拉尔、珲春、凉水、七台河共11处煤矿样品,设置了燃烧试验,使煤在近密闭燃烧炉中燃烧,杜绝飞灰造成的物质损失,然后测定煤及其对应灰分的238U、232Th、226Ra、40K活度.分析得出:在理论燃烧状态下,假设燃烧无飞灰产生,煤灰的238U、232Th、226Ra、40K天然放射性核素富集因子f与煤灰分比Ad的乘积为1.根据煤燃烧后核素的迁移富集规律和影响辐射水平的核素权重,提出了应用于煤的比活度、吸收剂量率、年吸收剂量、内辐射指数等放射性环境评价参考值.经11处煤矿验证,评价结果可以反映煤灰的辐射水平,辐射水平排序与实际测量结果基本一致.  相似文献   

18.
Sulfur occurs in multiple mineral forms in coals, and its fate in coal combustion is still not well understood. The sulfur isotopic composition of coal from two coal mines in Indiana and fly ash from two power plants that use these coals were studied using geological and geochemical methods. The two coal beds are Middle Pennsylvanian in age; one seam is the low-sulfur (< 1%) Danville Coal Member of the Dugger Formation and the other is the high-sulfur (> 5%) Springfield Coal Member of the Petersburg Formation. Both seams have ash contents of approximately 11%. Fly-ash samples were collected at various points in the ash-collection system in the two plants. The results show notable difference in δ34S for sulfur species within and between the low-sulfur and high-sulfur coal. The δ34S values for all sulfur species are exclusively positive in the low-sulfur Danville coal, whereas the δ34S values for sulfate, pyritic, and organic sulfur are both positive and negative in the high-sulfur Springfield coal. Each coal exhibits a distinct pattern of stratigraphic variation in sulfur isotopic composition. Overall, the δ34S for sulfur species values increase up the section in the low-sulfur Danville coal, whereas they show a decrease up the vertical section in the high-sulfur Springfield coal. Based on the evolution of δ34S for sulfur species, it is suggested that there was influence of seawater on peat swamp, with two marine incursions occurring during peat accumulation of the high-sulfur Springfield coal. Therefore, bacterial sulfate reduction played a key role in converting sulfate into hydrogen sulfide, sulfide minerals, and elemental sulfur. The differences in δ34S between sulfate sulfur and pyritic sulfur is very small between individual benches of both coals, implying that some oxidation occurred during deposition or postdeposition.The δ34S values for fly ash from the high-sulfur Springfield coal (averaging 9.7‰) are greatly enriched in 34S relative to those in the parent coal (averaging 2.2‰). This indicates a fractionation of sulfur isotopes during high-sulfur coal combustion. By contrast, the δ34S values for fly-ash samples from the low-sulfur Danville coal average 10.2‰, only slightly enriched in 34S relative to those from the parent coal (average 7.5‰). The δ34S values for bulk S determined directly from the fly-ash samples show close correspondence with the δ34S values for SO4− 2 leached from the fly ash in the low-sulfur coal, suggesting that the transition from pyrite to sulfate occurred via high-temperature oxidation during coal combustion.  相似文献   

19.
煤燃烧过程中微量元素的迁移和富集   总被引:5,自引:0,他引:5  
煤中微量元素在燃烧过程中产生迁移与富集。大部分元素在煤的燃烧产物中得以富集,一些挥发性强的元素将扩散到大气中。在飞灰中,大部分环境有害元素的富集程度与其粒度成反比,即在细粒飞灰中更加富集,由此对人体健康的潜在危害也更大。在我国,大型燃煤电厂的环境问题值得重视,同时大量的民用炉灶产生的环境污染更加严重,值得进一步研究与治理。  相似文献   

20.
The mobility of inorganic pollutants is of key concern for a range of industrial and engineering applications of fly ash produced during the combustion of lignite in power generation. This paper investigates the role that the geochemical features of lignite, the ash composition and the partitioning of elements during combustion play in determining leaching properties of lignite fired by-products. The work is based on surveys on three lignite-fired power plants in Greece. Calcium-rich ashes show a high abatement potential for SO2 and other gaseous pollutants. For most elements, the concentrations in the parent lignite and the ashes follow the same trend. Relative enrichments in Cd, Co, Cr, Cu, Mo, Ni, Pb, U, V, W, Zn fingerprint the regional and local geological settings of the lignite basins. The total and leachable concentrations of highly volatile elements are strongly influenced by the interaction with ubiquitous free lime. A broad array of elements is highly insoluble in alkaline ash, while a few oxyanionic-forming elements display substantial mobility. Their mode of occurrence in the parent lignite plays a primary role in the leaching of combustion ashes. The outcomes of this study may assist in addressing the impact of co-firing high ash or high Ca alternative fuels on the leaching properties of combustion by-products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号