首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
在带有线性反馈的统计-动力气候模式的基础上,提出了一种非线性统计-动力气候模式。该模式的实质是用逐段线性化的统计-动力气候模式来描述气候系统的总体非线性变化特征。试验结果表明,该模式能更客观地预测气候变化  相似文献   

2.
郑建萌  曹杰 《高原气象》1996,15(3):326-333
在带有线性反馈的统计-动力气候模式的基础,提出了一种非线性统计-动力气候模式,该模式的实质是用逐段线性化的统计-动力气候模式来描述气候系统的总体非线性特征。试验结果表明,该模式能更客观地预测气候变化。  相似文献   

3.
混合云在GCM气候模拟中的重要性   总被引:1,自引:1,他引:1       下载免费PDF全文
文章提出了一种简单且适用于大气环流模式(GCM)的冰云辐射参数化。利用该参数化和UGAMP大气环流模式研究了混合云在GCM气候模拟中的重要性。结果表明,云的相态变化及其所产生的反馈作用对模拟的气候状态有显著的影响。在高纬地区,云的相态变化可使地气系统净辐射增加。而在热带则使净辐射减少。  相似文献   

4.
本文提出了海洋-大气-冰气候系统的综合模式,它由描述海面平均温度变化和海冰扩展边界变化的两个非线性预报方程所组成.在该模式描述的气候系统内会产生自振动状态.研究了系统对地球轨道参数扰动所造成的日射率变化的响应.已经证明,为了正确地描述气候的长周期振动,必须考虑世纪间的气候变率,根据模式,这种气候变率对气候振动谱有重大影响.本文还模拟了气候系统从非周期状态到周期状态的转变(从上新世到更新世的转变).  相似文献   

5.
一有限区域模式对1979年7月气候平均场的模拟   总被引:1,自引:6,他引:1  
陈玉春  吕世华 《高原气象》1996,15(1):105-111
使用一个有限区域数值模式,以1979年7月1日00:00为初值,用7月份每天的实况资料进行侧边界嵌套,对模式连续发31d。模拟的7月气候平均状态与实况比较表明:模拟结果与实况场较为一致,该模式可用于研究区域气候变化问题。  相似文献   

6.
文章引进了美国NCAR的区域气候模式,并对该模式进行了改造和改进,建立了能适合中国区域性气候特征,模拟中国区域性气候的模式。在此基础上运用该模式对1991年夏季长江流域强降水过程进行了模拟计算,结果表明,该模式具有模拟长江流域强降水过程的能力。  相似文献   

7.
要基于最近的实验结果,提出了一个用于数值天气─—气候模式中估计土壤表面湿度的公式。该公式具有十分简洁的形式,且在干、湿土壤状态之间展示出土壤表面比湿的平滑过渡.建议用该公式取代Philip公式。  相似文献   

8.
第七讲 气候状态变化的预测模式   总被引:4,自引:0,他引:4  
黄嘉佑 《气象》1995,21(11):54-57
第七讲 气候状态变化的预测模式黄嘉佑(北京大学地球物理系,100871)研究区域气候变化规律的目的是为了对它未来变化状态作预测或估计,本讲着重介绍如何在得到它们的变化规律性基础上.利用各种模式或模态,进一步作预测的方法。1趋势预测指长尺度的气候远景预...  相似文献   

9.
张耀存  钱永甫 《高原气象》1997,16(3):235-242
将球带范围的p-σ混合坐标系五层原始方程模式发展成为包含极区的全球大气环流模式,并用GFDL多年平均气候分析资料检验了模式对夏季气候平均状态的模拟性能,分析了p-σ混合坐标系全球大气环流模式模拟夏季气候的系统性误差。结果表明:p-σ混合坐标系全球大气环流模式能较好地模拟夏季气候平均态,各高度上的主要环流系统都可以模拟出来,与球带模式的结果相比有一定的改进,而且陆地上的模拟结果优于海洋上的。  相似文献   

10.
建立一个包含年平均下垫面温度、边界层气温的非线性的零维气候模式, 用于研究物理参数 (地球放射率、大气有效放射率、地表反照率、大气透射率等) 对气候系统状态的影响。结果表明, 气候系统的平衡态及其稳定性与反照率的反馈作用和有效放射率有关; 在现代气候条件下, 适当的非线性负反馈与二氧化碳、水汽、云共同作用时, 有利于系统状态趋于稳定。此外, 通过与该模式相应的现代气候平衡态的偏差方程, 考察了在参数α2w, I0的作用下, 系统状态的分布情况。  相似文献   

11.
The customary representation of climate using sample moments is generally biased due to the noticeably nonstationary behaviour of many climate series. In this study, we introduce a moment-free climate representation based on a statistical model fitted to a long-term daily air temperature anomaly series. This model allows us to separate the climate and weather scale variability in the series. As a result, the climate scale can be characterized using the mean annual cycle of series and local air temperature tolerance, where the latter is computed using the fitted model. The representation of weather scale variability is specified using the frequency and the range of outliers based on the tolerance. The scheme is illustrated using five long-term air temperature records observed by different European meteorological stations.  相似文献   

12.
We explore the potential to improve understanding of the climate system by directly targeting climate model analyses at specific indicators of climate change impact. Using the temperature suitability of premium winegrape cultivation as a climate impacts indicator, we quantify the inter- and intra-ensemble spread in three climate model ensembles: a physically uniform multi-member ensemble consisting of the RegCM3 high-resolution climate model nested within the NCAR CCSM3 global climate model; the multi-model NARCCAP ensemble consisting of single realizations of multiple high-resolution climate models nested within multiple global climate models; and the multi-model CMIP3 ensemble consisting of realizations of multiple global climate models. We find that the temperature suitability for premium winegrape cultivation is substantially reduced throughout the high-value growing areas of California and the Columbia Valley region (eastern Oregon and Washington) in all three ensembles in response to changes in temperature projected for the mid-twenty first century period. The reductions in temperature suitability are driven primarily by projected increases in mean growing season temperature and occurrence of growing season severe hot days. The intra-ensemble spread in the simulated climate change impact is smaller in the single-model ensemble than in the multi-model ensembles, suggesting that the uncertainty arising from internal climate system variability is smaller than the uncertainty arising from climate model formulation. In addition, the intra-ensemble spread is similar in the NARCCAP nested climate model ensemble and the CMIP3 global climate model ensemble, suggesting that the uncertainty arising from the model formulation of fine-scale climate processes is not smaller than the uncertainty arising from the formulation of large-scale climate processes. Correction of climate model biases substantially reduces both the inter- and intra-ensemble spread in projected climate change impact, particularly for the multi-model ensembles, suggesting that—at least for some systems—the projected impacts of climate change could be more robust than the projected climate change. Extension of this impacts-based analysis to a larger suite of impacts indicators will deepen our understanding of future climate change uncertainty by focusing on the climate phenomena that most directly influence natural and human systems.  相似文献   

13.
The current debate on climate change and its policy implications often hinges on the credibility of global climate models. In considering this topic, we point out the danger of circular logic if climate model inputs (specifically, climate forcings) are determined from the same temperature record against which climate model outputs are tested. We suggest specific guidelines for avoiding this danger.  相似文献   

14.
Evaluating the projection capability of climate models is an important task in climate model development and climate change studies. The projection capability of the Beijing Climate Center (BCC) Climate System Model BCC CSM1.0 is analyzed in this study. We focus on evaluating the projected annual mean air temperature and precipitation during the 21st century under three emission scenarios (Special Report on Emission Scenarios (SRES) B1, A1B, and A2) of the BCC CSM1.0 model, along with comparisons with 22 CMIP3 (Coupled Model Intercomparison Project Phase 3) climate models. Air temperature averaged both globally and within China is projected to increase continuously throughout the 21st century, while precipitation increases intermittently under each of the three emission scenarios, with some specific temporal and spatial characteristics. The changes in globally-averaged and China-averaged air temperature and precipitation simulated by the BCC CSM1.0 model are within the range of CMIP3 model results. On average, the changes of precipitation and temperature are more pronounced over China than over the globe, which is also in agreement with the CMIP3 models. The projection capability of the BCC CSM1.0 model is comparable to that of other climate system models. Furthermore, the results reveal that the climate change response to greenhouse gas emissions is stronger over China than in the global mean, which implies that China may be particularly sensitive to climate change in the 21st century.  相似文献   

15.
Evaluating the projection capability of climate models is an important task in climate model development and climate change studies. The projection capability of the Beijing Climate Center (BCC) Climate System Model BCC_CSM1.0 is analyzed in this study. We focus on evaluating the projected annual mean air temperature and precipitation during the 21st century under three emission scenarios (Special Report on Emission Scenarios (SRES) B1, A1B, and A2) of the BCC_CSM1.0 model, along with comparisons with 22 CMIP3 (Coupled Model Intercomparison Project Phase 3) climate models. Air temperature averaged both globally and within China is projected to increase continuously throughout the 21st century, while precipitation increases intermittently under each of the three emission scenarios, with some specific temporal and spatial characteristics. The changes in globally-averaged and China-averaged air temperature and precipitation simulated by the BCC_CSM1.0 model are within the range of CMIP3 model results. On average, the changes of precipitation and temperature are more pronounced over China than over the globe, which is also in agreement with the CMIP3 models. The projection capability of the BCC_CSM1.0 model is comparable to that of other climate system models. Furthermore, the results reveal that the climate change response to greenhouse gas emissions is stronger over China than in the global mean, which implies that China may be particularly sensitive to climate change in the 21st century.  相似文献   

16.
基于MaxEnt模型的薄壳山核桃气候适宜性区划   总被引:1,自引:0,他引:1       下载免费PDF全文
基于最大熵模型(MaxEnt)和GIS技术,提出一种薄壳山核桃气候适宜性区划方法。利用美国本土274个种植点,结合美国本土和中国云南省1981—2010年气候数据开展薄壳山核桃气候适宜性区划研究。结果表明:7月平均气温、年平均气温、30年极端最低气温、年降水量、3—5月降水量、年日照时数和4—5月日照时数为影响薄壳山核桃气候适宜性的主要气候因子。基于美国本土种植点构建的MaxEnt模型在该区域具有较高精度,但将模型直接外推用于中国云南省可靠性不足。因此,利用模拟区域和训练样本气候因子值域的偏离程度改进气候适宜性指数,并将云南省薄壳山核桃适宜性划分为最适宜、适宜、次适宜和不适宜4个等级。其中,最适宜区和适宜区分布于热量资源丰富、日照相对充足并具备较好冬季低温条件的亚热带地区和热带地区边缘。受云南省复杂地形和气候条件影响,区划结果呈现出破碎化分布。  相似文献   

17.
Using a regional climate model MM5 nested to an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate the relative Last Glacial Maximum (LGM) climate response to different mechanisms over China. Model simulations of the present day (PD) climate and the LGM climate change are in good agreement with the observation data and geological records, especially in the simulation of precipitation change. Under the PD and LGM climate,changes of earth orbital parameters have a small influence on the annual mean temperature over China.However, the magnitude of the effect shows a seasonal pattern, with a significant response in winter. Thus,this influence cannot be neglected. During the LGM, CO2 concentration reached its lowest point to 200 ppmv. This results in a temperature decrease over China. The influences of CO2 concentration on climate show seasonal and regional patterns as well, with a signi cant influence in winter. On the contrary, CO2 concentration has less impact in summer season. In some cases, temperature even increases with decreasing in CO2 concentration. This temperature increase is the outcome of decrease in cloud amount; hence increase the solar radiation that reached the earth's surface. This result suggests that cloud amount plays a very important role in climate change and could direct the response patterns of some climate variables such as temperature during certain periods and over certain regions. In the Tibetan Plateau, the temperature responses to changes of the above two factors are generally weaker than those in other regions because the cloud amount in this area is generally more than in the other areas. Relative to the current climate, changes in orbital parameters have less impact on the LGM climate than changes in CO2 concentration. However,both factors have rather less contributions to the climate change in the LGM. About 3%-10% changes in the annual mean temperature are contributed by CO2.  相似文献   

18.
This research investigates the effect of climate change on the thermal structure of lakes in response to watershed hydrology. We applied a hydrodynamic water quality model coupled to a hydrological model with a future climate scenario projected by a GCM A2 emission scenario to the Yongdam Reservoir, South Korea. In the climate change scenario, the temperature will increase by 2.1°C and 4.2°C and the precipitation will increase by 178.4?mm and 464.4?mm by the 2050 and 2090, respectively, based on 2010. The pattern changes of precipitation and temperature increase due to climate change modify the hydrology of the watershed. The hydrological model results indicate that they increase both surface runoff itself and temperature. The reservoir model simulation with the hydrological model results showed that increasing air temperature is related to higher surface water temperature. Surface water temperature is expected to increase by about 1.2°C and 2.2°C from the 2050 and 2090, respectively, based on the 2010 results. The simulation results of the effects of climate warming on the thermal structure of the Asian Monsoon Area Lake showed consistent results with those of previous studies in terms of greater temperature increases in the epilimnion than in the hypolimnion, increased thermal stratification, and decreasing thermocline depths during the summer and fall. From this study, it was concluded that the hydrodynamic water quality model coupled to the hydrological model could successfully simulate the variability of the epilimnetic temperature, changed depth and magnitude of the thermocline and the changed duration of summer stratification.  相似文献   

19.
Using a regional climate model MM5 nested to an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate the relative Last Glacial Maximum (LGM) climate response to different mechanisms over China. Model simulations of the present day (PD) climate and the LGM climate change are in good agreement with the observation data and geological records, especially in the simulation of precipitation change. Under the PD and LGM climate, changes of earth orbital parameters have a small influence on the annual mean temperature over China.However, the magnitude of the effect shows a seasonal pattern, with a significant response in winter. Thus,this influence cannot be neglected. During the LGM, CO2 concentration reached its lowest point to 200 ppmv. This results in a temperature decrease over China. The influences of CO2 concentration on climate show seasonal and regional patterns as well, with a significant influence in winter. On the contrary, CO2concentration has less impact in summer season. In some cases, temperature even increases with decreasing in CO2 concentration. This temperature increase is the outcome of decrease in cloud amount; hence increase the solar radiation that reached the earth's surface. This result suggests that cloud amount plays a very important role in climate change and could direct the response patterns of some climate variables such as temperature during certain periods and over certain regions. In the Tibetan Plateau, the temperature responses to changes of the above two factors are generally weaker than those in other regions because the cloud amount in this area is generally more than in the other areas. Relative to the current climate, changes in orbital parameters have less impact on the LGM climate than changes in CO2 concentration. However,both factors have rather less contributions to the climate change in the LGM. About 3%-10% changes in the annual mean temperature are contributed by CO2.  相似文献   

20.
分位数映射法在RegCM4中国气温模拟订正中的应用   总被引:1,自引:0,他引:1  
将一种分位数映射法RQUANT,应用到一个区域气候模式(RegCM4)所模拟中国气温的误差订正中。从气候平均态、年际变率、极端气候及农业气候等多方面,评估了该方法对日平均气温、日最高气温和日最低气温模拟的订正效果。结果表明,该订正方法对模式模拟的日平均、日最高和最低气温气候平均态的订正效果都非常明显,中国大部分地区的订正结果与观测的偏差在±0.5℃之间。在降低极端气温指数和农业气候相关指数的模拟误差方面也有显著的效果,但对气温年际变率的订正效果有限。结合以往对降水订正的评估分析,该方法对模式模拟结果有较好的订正效果,可以应用于区域气候模式的气候变化模拟预估中,为气候变化及相关影响评估研究提供更适用和可靠的数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号