首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Dynamo action within the cores of Ap stars may offer intriguing possibilities for understanding the persistent magnetic fields observed on the surfaces of these stars. Deep within the cores of Ap stars, the coupling of convection with rotation likely yields magnetic dynamo action, generating strong magnetic fields. However, the surface fields of the magnetic Ap stars are generally thought to be of primordial origin. Recent numerical models suggest that a primordial field in the radiative envelope may possess a highly twisted toroidal shape. We have used detailed 3-D simulations to study the interaction of such a twisted magnetic field in the radiative envelope with the core-dynamo operating in the interior of a 2 solar mass A-type star. The resulting dynamo action is much more vigorous than in the absence of such a fossil field, yielding magnetic field strengths (of order 100 kG) much higher than their equipartition values relative to the convective velocities. We examine the generation of these fields, as well as the growth of large-scale magnetic structure that results from imposing a fossil magnetic field. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Ap star magnetism is often attributed to fossil magnetic fields which have not changed much since the pre‐main‐sequence epoch of the stars. Stable magnetic field configurations are known which could persist probably for the entire mainsequence life of the star, but they may not show the complexity and diversity exhibited by the Ap stars observed. We suggest that the Ap star magnetism is not a result of stable configurations, but is the result of an instability based on strong toroidal magnetic fields buried in the stars. The highly nonaxisymmetric remainders of the instability are reminiscent of the diversity of fields seen on Ap stars. The strengths of these remnant magnetic fields are actually between a few per cent up to considerable fractions of the internal toroidal field; this means field strengths of the order of kGauss being compatible with what is observed. The magnetic fields emerge at the surface rather quickly; rough estimates deliver time‐scales of the order of a few years. Since rotation stabilizes the instability, normal A stars may still host considerable, invisible toroidal magnetic fields (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We present the first maps of the surface magnetic fields of a pre-main-sequence binary system. Spectropolarimetric observations of the young, 18 Myr, HD 155555 (V824 Ara, G5IV+K0IV) system were obtained at the Anglo-Australian Telescope in 2004 and 2007. Both data sets are analysed using a new binary Zeeman–Doppler imaging (ZDI) code. This allows us to simultaneously model the contribution of each component to the observed circularly polarized spectra. Stellar brightness maps are also produced for HD 155555 and compared to previous Doppler images.
Our radial magnetic maps reveal a complex surface magnetic topology with mixed polarities at all latitudes. We find rings of azimuthal field on both stars, most of which are found to be non-axisymmetric with the stellar rotational axis. We also examine the field strength and the relative fraction of magnetic energy stored in the radial and azimuthal field components at both epochs. A marked weakening of the field strength of the secondary star is observed between the 2004 and 2007 epochs. This is accompanied by an apparent shift in the location of magnetic energy from the azimuthal to radial field. We suggest that this could be indicative of a magnetic activity cycle. We use the radial magnetic maps to extrapolate the coronal field (by assuming a potential field) for each star individually – at present ignoring any possible interaction. The secondary star is found to exhibit an extreme tilt (≈75°) of its large-scale magnetic field to that of its rotation axis for both epochs. The field complexity that is apparent in the surface maps persists out to a significant fraction of the binary separation. Any interaction between the fields of the two stars is therefore likely to be complex also. Modelling this would require a full binary field extrapolation.  相似文献   

4.
We argue that the first stars may have spanned the conventional mass range rather than be identified with the very massive objects  (∼100–103 M)  favoured by numerical simulations. Specifically, we find that magnetic field generation processes acting in the first protostellar systems suffice to produce fields that exceed the threshold for magneto-rotational instability (MRI) to operate, and thereby allow the MRI dynamo to generate equipartition-amplitude magnetic fields on protostellar mass scales below  ∼50 M  . Such fields allow primordial star formation to occur at essentially any metallicity by regulating angular momentum transfer, fragmentation, accretion and feedback in much the same way as occurs in conventional molecular clouds.  相似文献   

5.
A model for the angular momentum transfer within the convection zone of a rapidly rotating star is introduced and applied to the analysis of recent observations of temporal fluctuations of the differential rotation on the young late-type stars AB Doradus (AB Dor) and LQ Hydrae (LQ Hya). Under the hypothesis that the mean magnetic field produced by the stellar dynamo rules the angular momentum exchanges and that the angular velocity depends only on the distance s from the rotation axis and the time, the minimum azimuthal Maxwell stress  | BsB φ|  , averaged over the convection zone, is found to range from ∼0.04 to  ∼0.14 T2  . If the poloidal mean magnetic field   B s   is of the order of 0.01 T, as indicated by the Zeeman–Doppler imaging maps of those stars, then the azimuthal mean field   B φ  can reach an intensity of several teslas, which significantly exceeds equipartition with the turbulent kinetic energy. Such strong fields can account also for the orbital period modulation observed in cataclysmic variables and RS Canum Venaticorum systems with a main-sequence secondary component. Moreover, the model allows us to compute the kinetic energy dissipation rate during the maintenance of the differential rotation. Only in the case of the largest surface shear observed on LQ Hya may the dissipated power exceed the stellar luminosity, but the lack of a sufficient statistic on the occurrence of such episodes of large shear does not allow us to estimate their impact on the energy budget of the convection zone.  相似文献   

6.
We present a combined model for magnetic field generation and transport in cool stars with outer convection zones. The mean toroidal magnetic field, which is generated by a cyclic thin-layer α Ω dynamo at the bottom of the convection zone is taken to determine the emergence probability of magnetic flux tubes in the photosphere. Following the nonlinear rise of the unstable thin flux tubes, emergence latitudes and tilt angles of bipolar magnetic regions are determined. These quantities are put into a surface flux transport model, which simulates the surface evolution of magnetic flux under the effects of large-scale flows and turbulent diffusion. First results are discussed for the case of the Sun and for more rapidly rotating solar-type stars. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
A possible mechanism for screening of the surface magnetic field of an accreting neutron star, by the accreted material, is investigated. We model the material flow in the surface layers of the star by an assumed two-dimensional velocity field satisfying all the physical requirements. Using this model velocity we find that, in the absence of magnetic buoyancy, the surface field is screened (i.e. there is submergence of the field by advection) within the time-scale of material flow of the top layers. On the other hand, if magnetic buoyancy is present, the screening happens over a time-scale that is characteristic of the slower flow of the deeper (and hence, denser) layers. For accreting neutron stars, this longer time-scale turns out to be about 105 yr, which is of a similar order of magnitude to the accretion time-scale of most massive X-ray binaries.  相似文献   

8.
Observations of rapidly rotating solar-like stars show a significant mixture of opposite-polarity magnetic fields within their polar regions. To explain these observations, models describing the surface transport of magnetic flux demand the presence of fast meridional flows. Here, we link subsurface and surface magnetic flux transport simulations to investigate (i) the impact of meridional circulations with peak velocities of  ≤125 m s−1  on the latitudinal eruption pattern of magnetic flux tubes and (ii) the influence of the resulting butterfly diagrams on polar magnetic field properties. Prior to their eruption, magnetic flux tubes with low field strengths and initial cross-sections below  ∼300 km  experience an enhanced poleward deflection through meridional flows (assumed to be polewards at the top of the convection zone and equatorwards at the bottom). In particular, flux tubes which originate between low and intermediate latitudes within the convective overshoot region are strongly affected. This latitude-dependent poleward deflection of erupting magnetic flux renders the wings of stellar butterfly diagrams distinctively convex. The subsequent evolution of the surface magnetic field shows that the increased number of newly emerging bipoles at higher latitudes promotes the intermingling of opposite polarities of polar magnetic fields. The associated magnetic flux densities are about 20 per cent higher than in the case disregarding the pre-eruptive deflection, which eases the necessity for fast meridional flows predicted by previous investigations. In order to reproduce the observed polar field properties, the rate of the meridional circulation has to be of the order of 100 m s−1, and the latitudinal range from which magnetic flux tubes originate at the base of the convective zone (≲50°) must be larger than in the solar case (≲35°).  相似文献   

9.
We calculate the disc and boundary layer luminosities for accreting rapidly rotating neutron stars with low magnetic fields in a fully general relativistic manner. Rotation increases the disc luminosity and decreases the boundary layer luminosity. A rapid rotation of the neutron star substantially modifies these quantities as compared with the static limit. For a neutron star rotating close to the centrifugal mass shed limit, the total luminosity has contribution only from the extended disc. For such maximal rotation rates, we find that well before the maximum stable gravitational mass configuration is reached, there exists a limiting central density, for which particles in the innermost stable orbit will be more tightly bound than those at the surface of the neutron star. We also calculate the angular velocity profiles of particles in Keplerian orbits around the rapidly rotating neutron star. The results are illustrated for a representative set of equation of state models of neutron star matter.  相似文献   

10.
To explain the observed intermingling of polarities in the magnetic field distributions of rapidly rotating stars, surface magnetic flux transport models demand the presence of fast meridional flows.We combine simulations of the pre-eruptive and post-eruptive magnetic flux transport in cool stars to investigate the influence of a fast meridional circulation on the latitudinal eruption pattern of magnetic flux tubes and on the polar magnetic field properties. Magnetic flux tubes rising through the convection zone experience an enhanced latitude-dependent poleward deflection through meridional flows, which renders the wings of stellar butterfly diagrams convex. The larger amount of magnetic flux emerging at higher latitudes supports the intermingling of opposite polarities of polar magnetic fields and yields magnetic flux densities in the polar regions about 20% higher than in the case disregarding the pre-eruptive deflection. Taking the pre-eruptive evolution of magnetic flux into account therefore eases the need for the fast meridional flows predicted by previous investigations. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We develop equations and obtain solutions for the structure and evolution of a protodisc region that is initially formed with no radial motion and super-Keplerian rotation speed when wind material from a hot rotating star is channelled towards its equatorial plane by a dipole-type magnetic field. Its temperature is around 107 K because of shock heating and the inflow of wind material causes its equatorial density to increase with time. The centrifugal force and thermal pressure increase relative to the magnetic force and material escapes at its outer edge. The protodisc region of a uniformly rotating star has almost uniform rotation and will shrink radially unless some instability intervenes. In a star with angular velocity increasing along its surface towards the equator, the angular velocity of the protodisc region decreases radially outwards and magnetorotational instability (MRI) can occur within a few hours or days. Viscosity resulting from MRI will readjust the angular velocity distribution of the protodisc material and may assist in the formation of a quasi-steady disc. Thus, the centrifugal breakout found in numerical simulations for uniformly rotating stars does not imply that quasi-steady discs with slow outflow cannot form around magnetic rotator stars with solar-type differential rotation.  相似文献   

12.
We examine the possibility of probing dynamo action in mass-losing stars, components of Algol-type binaries. Our analysis is based on the calculation of non-conservative evolution of these systems. We model the systems U Sge and β Per where the more massive companion fills its Roche lobe at the main sequence (case AB) and where it has a small helium core (early case B) respectively. We show that to maintain evolution of these systems at the late stages which are presumably driven by stellar 'magnetic braking', an efficient mechanism for producing large-scale surface magnetic fields in the donor star is needed. We discuss the relevance of dynamo operation in the donor star to the accelerated mass transfer during the late stages of evolution of Algol-type binaries. We suggest that the observed X-ray activity in Algol-type systems may be a good indicator of their evolutionary status and internal structure of the mass-losing stellar components.  相似文献   

13.
We have produced brightness and magnetic field maps of the surfaces of CV Cha and CR Cha: two actively accreting G- and K-type T Tauri stars in the Chamaeleon I star-forming cloud with ages of 3–5 Myr. Our magnetic field maps show evidence for strong, complex multipolar fields similar to those obtained for young rapidly rotating main-sequence stars. Brightness maps indicate the presence of dark polar caps and low-latitude spots – these brightness maps are very similar to those obtained for other pre-main-sequence and rapidly rotating main-sequence stars.
Only two other classical T Tauri stars have been studied using similar techniques so far: V2129 Oph and BP Tau. CV Cha and CR Cha show magnetic field patterns that are significantly more complex than those recovered for BP Tau, a fully convective T Tauri star.
We discuss possible reasons for this difference and suggest that the complexity of the stellar magnetic field is related to the convection zone; with more complex fields being found in T Tauri stars with radiative cores (V2129 Oph, CV Cha and CR Cha). However, it is clearly necessary to conduct magnetic field studies of T Tauri star systems, exploring a wide range of stellar parameters in order to establish how they affect magnetic field generation, and thus how these magnetic fields are likely to affect the evolution of T Tauri star systems as they approach the main sequence.  相似文献   

14.
Stellar magnetic activity in slowly rotating stars is often cyclic, with the period of the magnetic cycle depending critically on the rotation rate and the convective turnover time of the star. Here we show that the interpretation of this law from dynamo models is not a simple task. It is demonstrated that the period is (unsurprisingly) sensitive to the precise type of non-linearity employed. Moreover the calculation of the wave-speed of plane-wave solutions does not (as was previously supposed) give an indication of the magnetic period in a more realistic dynamo model, as the changes in length-scale of solutions are not easily captured by this approach. Progress can be made, however, by considering a realistic two-dimensional model, in which the radial length-scale of waves is included. We show that it is possible in this case to derive a more robust relation between cycle period and dynamo number. For all the non-linearities considered in the most realistic model, the magnetic cycle period is a decreasing function of | D | (the amplitude of the dynamo number). However, discriminating between different non-linearities is difficult in this case and care must therefore be taken before advancing explanations for the magnetic periods of stars.  相似文献   

15.
In our previous search for magnetic fields in Herbig Ae stars, we pointed out that HD 101412 possesses the strongest magnetic field among the Herbig Ae stars and hence is of special interest for follow‐up studies of magnetism among young pre‐main‐sequence stars. We obtained high‐resolution, high signal‐to‐noise UVES and a few lower quality HARPS spectra revealing the presence of resolved magnetically split lines. HD 101412 is the first Herbig Ae star for which the rotational Doppler effect was found to be small in comparison to the magnetic splitting and several spectral lines observed in unpolarized light at high dispersion are resolved into magnetically split components. The measured mean magnetic field modulus varies from 2.5 to 3.5kG, while the mean quadratic field was found to vary in the range of 3.5 to 4.8 kG. To determine the period of variations, we used radial velocity, equivalent width, line width, and line asymmetry measurements of variable spectral lines of several elements, as well as magnetic field measurements. The period determination was done using the Lomb‐Scargle method. The most pronounced variability was detected for spectral lines of He I and the iron peak elements, whereas the spectral lines of CNO elements are only slightly variable. From spectral variations and magnetic field measurements we derived a potential rotation period Prot = 13.86 d, which has to be proven in future studies with a larger number of observations. It is the first time that the presence of element spots is detected on the surface of a Herbig Ae/Be star. Our previous study of Herbig Ae stars revealed a trend towards stronger magnetic fields for younger Herbig Ae stars, confirmed by statistical tests. This is in contrast to a few other (non‐statistical) studies claiming that magnetic Herbig Ae stars are progenitors of the magnetic Ap stars. New developments in MHD theory show that the measured magnetic field strengths are compatible with a current‐driven instability of toroidal fields generated by differential rotation in the stellar interior. This explanation for magnetic intermediate‐mass stars could be an alternative to a frozen‐in fossil field (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
In previous work, stable approximately axisymmetric equilibrium configurations for magnetic stars were found by numerical simulation. Here, I investigate the conditions under which more complex, non-axisymmetric configurations can form. I present numerical simulations of the formation of stable equilibria from turbulent initial conditions and demonstrate the existence of non-axisymmetric equilibria consisting of twisted flux tubes lying horizontally below the surface of the star, meandering around the star in random patterns. Whether such a non-axisymmetric equilibrium or a simple axisymmetric equilibrium forms depends on the radial profile of the strength of the initial magnetic field. The results could explain observations of non-dipolar fields on stars such as the B0.2 main-sequence star τ Sco or the pulsar 1E 1207.4-5209. The secular evolution of these equilibria due to Ohmic and buoyancy processes is also examined.  相似文献   

17.
The correlation between stellar activity, as measured by the indicator Δ R HK, and the Rossby number Ro in late-type stars is revisited in light of recent developments in solar dynamo theory. Different stellar interior models, based on both mixing-length theory and the full spectrum of turbulence, are used in order to see to what extent the correlation of activity with Rossby number is model dependent, or otherwise can be considered universal. Although we find some modest model dependence, we find that the correlation of activity with Rossby number is significantly better than with rotation period alone for all the models we consider. Dynamo theory suggests that activity should scale with the dynamo number. A current model of the solar dynamo, the so-called interface dynamo, proposes that the amplification of the toroidal magnetic field by differential rotation (the ω -effect) and the production of the poloidal magnetic field from toroidal by helical turbulence (the α -effect) take place in different, adjacent layers near the base of the convection zone. A new scale analysis based on the interface dynamo shows that the appropriate dynamo number does not depend on the Rossby number alone, but also depends on an additional dimensionless factor related to the differential rotation. This leads to a new interpretation of the correlation between activity and Rossby number, which in turn leads to some conclusions about the magnitude of differential rotation in the dynamo layers of late-type main-sequence stars.  相似文献   

18.
We use time evolutions of the linear perturbation equations to study the oscillations of rapidly rotating neutrons stars. Our models account for the buoyancy due to composition gradients and we study, for the first time, the nature of the resultant g modes in a fast spinning star. We provide detailed comparisons of non-stratified and stratified models. This leads to an improved understanding of the relationship between the inertial modes of a non-stratified star and the g modes of a stratified system. In particular, we demonstrate that each g mode becomes rotation dominated, i.e. approaches a particular inertial mode, as the rotation rate of the star is increased. We also discuss issues relating to the gravitational wave driven instability of the various classes of oscillation modes.  相似文献   

19.
Today the Sun has a regular magnetic cycle driven by a dynamo action. But how did this regular cycle develop? How do basic parameters such as rotation rate, age, and differential rotation affect the generation of magnetic fields? Zeeman Doppler imaging (ZDI) is a technique that uses high‐resolution observations in circularly polarised light to map the surface magnetic topology on stars. Utilising the spectropolarimetric capabilities of future large solar telescopes it will be possible to study the evolution and morphology of the magnetic fields on a range of Sun‐like stars from solar twins through to rapidly‐rotating active young Suns and thus study the solar magnetic dynamo through time. In this article I discuss recent results from ZDI of Sun‐like stars and how we can use night‐time observations from future solar telescopes to solve unanswered questions about the origin and evolution of the Sun's magnetic dynamo (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We present maximum-entropy reconstructions of the rapidly rotating dwarf single star BD+22°4409 (LO Peg) from observations at the William Herschel Telescope in 1993 August. Since this star is too faint to use the conventional single- or three-line Doppler imaging methods, we make use of the novel method of least-squares deconvolution, which utilizes the large number of photospheric lines in an echelle spectrum to produce a single high signal-to-noise ratio profile.
The star-spot distributions from the image reconstructions show cool features at both high and low latitudes, in contradiction to recent theoretical predictions of the dynamo behaviour in rapidly rotating stars. Cross-correlation of the images from consecutive nights shows a good correlation from the small-scale structures, but no evidence of surface differential rotation. From the cross-correlation of the high-latitude spot we are able to reject the period of 9.22 h of Jeffries et al. in favour of their preferred period of 10.17 h, confirming the result of Robb & Cardinal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号