首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spatial patterns of abundance of the zooplankton of Tomales Bay, California, were studied over one year from August 1987 to September 1988. Samples were taken on six transects up the long axis of the bay, and the species composition and abundance of common species were determined. Distribution patterns were similar to those observed in other estuaries and bays, with species from nearby neritic waters occurring in the outer bay and a few resident species in the inner bay. This pattern may be best explained by size-selective predation within the bay. Most alternative explanations can be ruled out for Tomales Bay, except for possible temperature effects on cool-temperate neritic species. The four common species ofAcartia in Tomales Bay were in two subgenera, each of which included a neritic species and a smaller inner-bay species. The occurrence of the smaller of each pair in the inner bay, which has been observed forAcartia and other species in other estuaries and bays, may also be a result of size-selective predation.  相似文献   

2.
The distribution of two classes of lipid biomarker compounds (fatty acids and sterols) was used in conjunction with several bulk parameters (total suspended solids, chlorophyll a, and particulate carbon and nitrogen concentrations) to examine spatial and temporal variability in the sources of particulate organic matter (POM) important to southern Chesapeake Bay. Based on these geochemical parameters, we found that suspended and sedimentary organic matter in the southern Chesapeake Bay is derived from autochthonous sources including a mixture of fresh and detrital phytoplankton, zooplankton, and bacteria. The dominant factor contributing to temporal variability during our study was phytoplankton productivity. Enrichments in particulate organic carbon, chlorophyll a, total fatty acids, total sterols, and a number of biomarkers specific to phytoplankton sources were found in particles collected from surface (1 m) and deep (1 m above the bottom) portions of the water column at several sites during the spring bloom in March 1996 and during a localized bloom in July 1995. Comparison of sites at the mouths of two tributaries (York and Rappahannock rivers) to southern Chesapeake Bay with two sites located in the bay mainsterm indicates spatial variation in the composition of POM was not significant in this region of the bay. The energetic nature of this region of the Chesapeake Bay most likely contributes to the observed homogeneity. Comparison with biomarker studies conducted in other estuaries suggests the high levels of productivity characteristic of the Chesapeake Bay contribute to high background levels of POM.  相似文献   

3.
We examined relative abundance of juvenile weakfish,Cynoscion regalis, collected during 1986 and 1987 and tested for spatial differences in growth and survival within Delaware Bay. Juvenile weakfish recruit to all areas of Delaware Bay, and two cohorts were present during each year of the study. Although catch per unit effort (CPUE) varied among areas within the bay, there was a general trend of higher CPUE at lower salinities; abundance quickly declined near the end of September in all areas of the bay. Estimated growth rates from otolith increment analysis of juvenile weakfish ranged from 0.69 mm d−1 to 0.97 mm d−1. Spatial and temporal patterns in recent growth rate followed a general pattern: highest in the middle bay, lowest in the upper bay, and intermediate in the lower bay. Mortality rates were usually lowest in the low salinity region of the middle and upper bay during both years. There was no difference in mortality between cohorts in the middle bay, while in the upper bay the later-spawned fish had lower mortality and in the lower bay the early-spawned fish had lower mortality. Analysis of spatial and temporal patterns in growth and mortality suggests that there is a seasonal trade-off between habitat usage and resource availability for juvenile weakfish. The function of oligohaline and mesohaline waters as optimal nursery areas (in terms of growth and survival) changes due to the seasonally dynamic physicochemical characteristics in Delaware Bay.  相似文献   

4.
Florida Bay is a shallow, semi-enclosed lagoon that has recently experienced significant changes to its ecosystem. These include increased turbidity and the occurrence of cyanobacteria blooms in the central region of the bay. To accurately understand these changes we need to understand the spatial and temporal patterns in observed water quality parameters. To this end, we have used empirical orthogonal functions (EOFs) to analyze both the spatial and temporal variability in an 8-yr record of water quality variables. We have used the EOFs in two ways, one highlighting local changes occurring in the bay, the other emphasizing changes occurring on a bay-wide scale. The local analysis shows that the central region of the bay has the greatest variability in water quality parameters, especially with respect to chlorophyll and nutrient concentrations. The bay-wide analysis shows a different picture. The chlorophyll blooms in the central bay are not apparent bay-wide indicating that they are a local manifestation of processes occurring on a bay-wide scale. The spatial and temporal patterns for nitrate are dissimilar from the other nutrients raising the possibility that the mechanisms controlling nitrate differ from those controlling other nutrients. On a bay-wide scale, spatial patterns are similar to distributions of sediment type and show the significance of interactions between the water column and benthos. Time-series analysis of the EOFs shows that the dominant variation of many water quality parameters is seasonal, even though a system-wide shift occurred between 1994–1995 corresponding to an increase in rainfall and runoff from the Everglades.  相似文献   

5.
Patterns and variability in reproductive output of pelagic fish are seldom determined at the ecosystem scale. We examined temporal and spatial variability in spawning by bay anchovy (Anchoa mitchilli), and in distribution and abundances of its pelagic early-life stages, throughout Chesapeake Bay. On two cruises in June and July 1993, ichthyoplankton and zooplankton were collected on 15 transects at 18.5-km (10 nautical mile) intervals over the 260-km length of the bay. Finer-scale sampling was carried out in a grid of stations between two transects on each cruise. Regional abundance patterns of bay anchovy eggs and larvae in the lower, mid, and upper Bay were compared with zooplankton abundances, environmental variables, and biovolumes of two gelatinous predators—the scyphomedusa Chrysaora quinquecirrha and the lobate ctenophore Mnemiopsis leidyi. Abundances of anchovy eggs, and, especially, larvae were higher in July than in June. Baywide daily egg production increased from 4.25×1012 in June to 8.43×1012 in July. Concentrations of zooplankton that are potential anchovy prey nearly doubled on a baywide basis between June and July, while biovolumes of the ctenophore declined. Except for scyphomedusan biovolumes, all analyzed organisms differed regionally in abundance and were patchily distributed at 1-km to 10-km sampling scales. Negative correlations between larval anchovy abundances and gelatinous predator biovolumes suggested that predation may have controlled abundances of bay anchovy early-life stages. Biomasses of adult anchovy, estimated from daily egg productions, were higher in the lower Bay and remarkably similar—23,433 tons in June and 23,194 tons in July. Most spawning by bay anchovy occurred during July in the seaward third of Chesapeake Bay, emphasizing the importance of this region for recruitment potential of the Bay's most abundant fish.  相似文献   

6.
Raritan Bay, located between the states of New York and New Jersey, has a long history of cultural eutrophication and associated harmful algal blooms (HABs). Despite striking chemical and biological alterations occurring in Raritan Bay, publications in the early 1960s were the last to report consecutive measurements of both water quality parameters and plankton species composition in this system. The objectives of this study were to characterize water quality trends and plankton composition in a eutrophic estuary, compare current environmental conditions to those documented in Raritan Bay 50 years ago (i.e., at the same six sampling sites), and to further clarify the relationship among nutrients, secondary consumers, and algal bloom generation in this system using ordination techniques. This study (monthly data collected from April 2010–October 2012) indicates that Raritan Bay continues to exhibit numerous symptoms of eutrophication, including high algal biomass, high turbidity, violations of the dissolved oxygen standard to protect fish health, and blooms of potentially harmful phytoplankton species. Altered spatial and temporal patterns for nitrate and soluble reactive phosphorus (SRP) over the past 50 years may suggest new, changing, or expanding sources of nutrients. A total of 14 HAB species have been identified, including Heterosigma akashiwo, which formed a bloom in the upper Raritan Bay during summer 2012 in association with hypoxic conditions. Multivariate analyses indicate that abundance of this species is positively associated with high temperature, salinity, nitrate, and SRP and negatively associated with spring river discharge rates and total zooplankton abundance in Raritan Bay.  相似文献   

7.
Increased nutrient loadings have resulted in low dissolved oxygen (DO) concentrations in bottom waters of the Patuxent River, a tributary of Chesapeake Bay. We synthesize existing and newly collected data to examine spatial and temporal variation in bottom DO, the prevalence of hypoxia-induced mortality of fishes, the tolerance of Patuxent River biota to low DO, and the influence of bottom DO on the vertical distributions and spatial overlap of larval fish and fish eggs with their gelatinous predators and zooplankton prey. We use this information, as well as output from watershed-quality and water-quality models, to configure a spatially-explicit individual-based model to predict how changing land use within the Patuxent watershed may affect survival of early life stages of summer breeding fishes through its effect on DO. Bottom waters in much of the mesohaline Patuxent River are below 50% DO saturation during summer. The system is characterized by high spatial and temporal variation in DO concentrations, and the current severity and extent of hypoxia are sufficient to alter distributions of organisms and trophic interactions in the river. Gelatinous zooplankton are among the most tolerant species of hypoxia, while several of the ecologically and economically important finfish are among the most sensitive. This variation in DO tolerances may make the Patuxent River, and similar estuaries, particularly susceptible to hypoxia-induced alterations in food web dynamics. Model simulations consistently predict high mortality of planktonic bay anchovy eggs (Anchoa mitchilli) under current DO, and increasing survival of fish eggs with increasing DO. Changes in land use that reduce nutrient loadings may either increase or decrease predation mortality of larval fish depending on the baseline DO conditions at any point in space and time. A precautionary approach towards fisheries and ecosystem management would recommend reducing nutrients to levels at which low oxygen effects on estuarine habitat are reduced and, where possible, eliminated.  相似文献   

8.
Estuaries are critical habitats for larvae and juveniles of many marine fishes, possibly because they promote high growth rates and survival rates. We investigated spatial and temporal changes in growth rate of larval bay anchovy (Anchoa mitchilli), in the middle Hudson River estuary where abundance of larvae is high. In two consecutive summer seasons, we sampled larvae at 4 sites evenly spaced over 45 km, at weekly intervals for up to a month. We examined otoliths to determine age in days and then used age-length regressions to estimate growth rate. In 1995, larval anchovy growth rates varied from 0.39 to 0.88 mm d−1 (median=0.48 mm d−1). In 1996, growth rates varied from 0.41 to 0.77 mm d−1 (median=0.55 mm d−1). In both years, we found significant spatial and temporal variation in growth rate. Larvae collected in the upper portion of Haverstraw Bay tended to grow more slowly than larvae collected in other sites. The dates on which the most rapidly growing larvae were collected varied from site to site. Neither temperature nor salinity variations explained growth rate differences. Growth rate variation, probably governed by patches of zooplankton, occurred on temporal scales of a week and spatial scales of 15 km.  相似文献   

9.
Surface water transport and larval dispersal potential within Mission Bay, San Diego, California and along the southern California coast were studied with drift test tubes. Drift tubes, released once during each season at six sites inside Mission Bay, traveled up to 173 km north and 205 km south of Mission Bay at maximum rates of 36 cm per s (north) and 50 cm per s (south). These findings were used to estimate probability of larval transport out of Mission Bay for the intertidal spionid polychaete Pseudopolydora paucibranchiata (Okuda) which occurred in the back of the bay. Outer coast drift tube returns were used to determine potential for gene flow, via larval exchange, between populations in isolated bays along the California coast. Drift tube recoveries and larval abundances in the plankton indicate that few Pseudopolydora larvae leave Mission Bay, but that longshore currents can carry those which do to other suitable bay habitats.  相似文献   

10.
有效识别和评估各滩涂区域资源开发承载力时空变化的差异,有利于滩涂资源的科学规划,对实现沿海滩涂资源的高效利用与保护具有重要意义。本文针对渤海半封闭海湾滩涂特征的空间差异性,基于“驱动力-状态-影响”模型,构建了滩涂资源开发承载力评估体系,对研究区域7个评价单元在4个代表年份的资源承载力进行了评估,阐明了海湾滩涂资源开发承载力时空演变特征。结果表明:围填工程减弱了渤海湾滩涂资源开发承载能力,工程大规模建设期间(2003—2012年)各评价单元承载力均呈下降趋势,2012年后随着国家围填海管控措施的实施,滩涂承载力有回升态势;在空间上滩涂资源承载力表现为湾顶的降幅高于海湾南部区域,滩涂开发前后天津港附近区域承载力较弱,黄骅港以南滩涂养殖区承载力较强。  相似文献   

11.
Zooplankton are an important trophic link and a key food source for many larval fish species in estuarine ecosystems. The present study documents temporal and spatial zooplankton dynamics in Suisun Bay and the Sacramento–San Joaquin Delta—the landward portion of the San Francisco Estuary (California, USA)—over a 37-year period (1972–2008). The zooplankton community experienced major changes in species composition, largely associated with direct and indirect effects of introductions of non-native bivalve and zooplankton species. A major clam invasion and many subsequent changes in zooplankton abundance and composition coincided with an extended drought and accompanying low-flow/high-salinity conditions during 1987–1994. In the downstream mesohaline region, the historically abundant calanoid copepods and rotifers have declined significantly, but their biomass has been compensated to some extent by the introduced cyclopoid Limnothoina tetraspina. The more upstream estuary has also experienced long-term declining biomass trends, particularly of cladocerans and rotifers, although calanoid copepods have increased since the early 1990s due to the introduced Pseudodiaptomus spp. In addition, mysid biomass has dropped significantly throughout the estuary. Shifts in zooplankton species composition have also been accompanied by an observed decrease in mean zooplankton size and an inferred decrease in zooplankton food quality. These changes in the biomass, size, and possibly chemical composition of the zooplankton community imply major alterations in pelagic food web processes, including a drop in prey quantity and quality for foraging fish and an increase in the importance of the microbial food web for higher trophic levels.  相似文献   

12.
A large data set obtained by a 1-year monthly determination of water quality from Sanya Bay, South China Sea, was treated by three-way principal component analysis aimed at exploring the spatial and temporal patterns of water quality in Sanya Bay. Tucker3 model of optimum complexity (2, 2, 1) explaining 33.18% of the data variance, allowed interpretation of the data information in three modes. The model explained spatial and temporal variation trends in terms of water quality variables during the study period. Water quality in sampling station (S2) Sanya River was mainly influenced by Sanya River, and water quality in other stations (S1, S3–S10) were mainly influenced by the waters in South China Sea. The results delineated the mouth of Sanya River as critical from pollution point of view. The dry season from October to the next April and rainy season from May to September have different influences on water quality in Sanya Bay. The information extracted by the three-way models would be very useful to regional agencies in developing a strategy to carry out scientific plans for resource use based on marine system functions.  相似文献   

13.
《China Geology》2019,2(4):522-529
In recent years, development activities have had a significant impact on the environment of the Jiaozhou Bay, China. To ensure the sustainable economic and social development of the Jiaozhou Bay area, it is necessary to strengthen corresponding control measures. The important prerequisite is to properly understand the environmental conditions laws of natural change, especially the dynamic processes of sediment and the characteristics of landform evolution. Based on the data of continuous observation at 6 stations in Jiaozhou Bay for 25 hours, the Hydrodynamic Eutrophication Model (HEM-3D) was used to simulate the sediment erosion and deposition. The results show that the maximum suspended sediment concentration in the sea area of Jiaozhou Bay is about 40 mg/L, which appears in the northwestern area of the bay top and the Cangkou watercourse area, and the low concentration is located in the area of the central Jiaozhou Bay towards the bay mouth. The suspended sediment is 6–10 mg/L. Affected by a decrease in seawater material, the direction of the prevailing current in the Jiaozhou Bay area is different from that of the sediment transport. The velocity of the flood current is higher than that of the ebb current. However, during flood tide, the flux of resuspended seafloor sediment outside and at the mouth of the bay is limited and cannot contribute significantly to the suspended sediment in the bay. During ebb tide, the resuspended sediment at the shallow-water bay head and the east and west sides spreads toward the bay mouth with the ebb current, although it extends beyond the bay through the bay mouth. The research results can provide scientific support for the Jiaozhou Bay project construction and environmental protection.  相似文献   

14.
Three sequential hurricanes made landfall over the South Florida peninsula in August and September 2004. The storm systems passed north of the Everglades wetlands and northeastern Florida Bay, but indirect storm effects associated with changes in freshwater discharge during an otherwise drought year occurred across the wetland–estuary transition area. To assess the impacts of the 2004 hurricane series on hydrology, nutrients, and microbial communities in the Everglades wetlands to Florida Bay transition area, results are presented in the context of a seasonal cycle without hurricane activity (2003). Tropical activity in 2004 increased rainfall over South Florida and the study area, thereby temporarily relieving drought conditions. Not so much actual rainfall levels at the study site but more so water management practices in preparation of the hurricane threats, which include draining of an extensive freshwater canal system into the coastal ocean to mitigate inland flooding, rapidly reversed hypersalinity in the wetlands-estuary study area. Although annual discharge was comparable in both years, freshwater discharge in 2004 occurred predominantly during the late wet season, whereas discharge was distributed evenly over the 2003 wet season. Total organic carbon (TOC), ammonium ( \operatornameNH + 4 \operatorname{NH} ^{ + }_{4} ), and soluble reactive phosphorus (SRP) concentrations increased during the hurricane series to concentrations two to five times higher than long-term median concentrations in eastern Florida Bay. Spatiotemporal patterns in these resource enrichments suggest that TOC and SRP originated from the Everglades mangrove ecotone, while \operatornameNH + 4 \operatorname{NH} ^{ + }_{4} originated from the bay. Phytoplankton biomass in the bay increased significantly during storm-related freshwater discharge, but declined at the same time in the wetland mangrove ecotone from bloom conditions during the preceding drought. In the bay, these changes were associated with increased nanophytoplankton and decreased picophytoplankton biomass. Heterotrophic bacterial production increased in response to freshwater discharge, whereas bacterial abundance decreased. Hydrochemical and microbial changes were short-lived, and the wetland–bay transition area reverted to more typical oligotrophic conditions within 3 months after the hurricanes. These results suggest that changes in freshwater discharge after drought conditions and during the hurricane series forced the productivity and P-enriched characteristics of the wetland’s mangrove ecotone, although only briefly, to the south into Florida Bay.  相似文献   

15.
This work describes the climate change impact study on rainfall patterns in Macta watershed, located in the northwest of Algeria. The monthly rainfall data collection, verification and validation have built a database with 42 stations, each with 42 years of observations from 1970 to 2011. The study of annual total rainfall has identified a downward trend and quantifies the deficits that are within the observation time series. The division of the annual rainfall series into four periods allowed to highlighting the increase in inter-year temporal variability with the coefficient of variation increases from 17 to 27%. The study shows an annual rainfall deficit increment from 13 to 25%. The standard deviation values decrease significantly for the last two periods showing a spatial variability. Multivariate statistical study by the hierarchical clustering method resulted in the formation of station groups indicating the unification of monthly rainfall patterns.  相似文献   

16.
Orissa is one of the most flood prone states of India. The floods in Orissa mostly occur during monsoon season due to very heavy rainfall caused by synoptic scale monsoon disturbances. Hence a study is undertaken to find out the characteristic features of very heavy rainfall (24 hours rainfall ≥125 mm) over Orissa during summer monsoon season (June–September) by analysing 20 years (1980–1999) daily rainfall data of different stations in Orissa. The principal objective of this study is to find out the role of synoptic scale monsoon disturbances in spatial and temporal variability of very heavy rainfall over Orissa. Most of the very heavy rainfall events occur in July and August. The region, extending from central part of coastal Orissa in the southeast towards Sambalpur district in the northwest, experiences higher frequency and higher intensity of very heavy rainfall with less interannual variability. It is due to the fact that most of the causative synoptic disturbances like low pressure systems (LPS) develop over northwest (NW) Bay of Bengal with minimum interannual variation and the monsoon trough extends in west-northwesterly direction from the centre of the system. The very heavy rainfall occurs more frequently with less interannual variability on the western side of Eastern Ghat during all the months and the season except September. It occurs more frequently with less interannual variability on the eastern side of Eastern Ghat during September. The NW Bay followed by Gangetic West Bengal/Orissa is the most favourable region of LPS to cause very heavy rainfall over different parts of Orissa except eastern side of Eastern Ghat. The NW Bay and west central (WC) Bay are equally favourable regions of LPS to cause very heavy rainfall over eastern side of Eastern Ghat. The frequency of very heavy rainfall does not show any significant trend in recent years over Orissa except some places in north-east Orissa which exhibit significant rising trend in all the monsoon months and the season as a whole.  相似文献   

17.
The summer monsoon rainfall over Orissa occurs mostly due to low pressure systems (LPS) developing over the Bay of Bengal and moving along the monsoon trough. A study is hence undertaken to find out characteristic features of the relationship between LPS over different regions and rain-fall over Orissa during the summer monsoon season (June-September). For this purpose, rainfall and rainy days over 31 selected stations in Orissa and LPS days over Orissa and adjoining land and sea regions during different monsoon months and the season as a whole over a period of 20 years (1980-1999) are analysed. The principal objective of this study is to find out the role of LPS on spatial and temporal variability of summer monsoon rainfall over Orissa. The rainfall has been significantly less than normal over most parts of Orissa except the eastern side of Eastern Ghats during July and hence during the season as a whole due to a significantly less number of LPS days over northwest Bay in July over the period of 1980-1999. The seasonal rainfall shows higher interannual variation (increase in coefficient of variation by about 5%) during 1980-1999 than that during 1901-1990 over most parts of Orissa except northeast Orissa. Most parts of Orissa, especially the region extending from central part of coastal Orissa to western Orissa (central zone) and western side of the Eastern Ghats get more seasonal monsoon rainfall with the development and persistence of LPS over northwest Bay and their subsequent movement and persistence over Orissa. The north Orissa adjoining central zone also gets more seasonal rainfall with development and persistence of LPS over northwest Bay. While the seasonal rainfall over the western side of the Eastern Ghats is adversely affected due to increase in LPS days over west central Bay, Jharkhand and Bangladesh, that over the eastern side of the Eastern Ghats is adversely affected due to increase in LPS days over all the regions to the north of Orissa. There are significant decreasing trends in rainfall and number of rainy days over some parts of southwest Orissa during June and decreasing trends in rainy days over some parts of north interior Orissa and central part of coastal Orissa during July over the period of 1980-1999  相似文献   

18.
TRMM3B42降雨数据在渭河流域的应用分析   总被引:3,自引:0,他引:3       下载免费PDF全文
运用渭河流域24个气象站点日降雨数据对2001~2012年热带测雨卫星(TRMM)3B42数据在不同子流域、不同降雨强度以及不同时间尺度的精度进行了对比验证,并对比分析了基于TRMM和站点数据的渭河流域降雨时空分布特征。结果显示:在不同子流域的日TRMM数据比站点观测数据对低值降雨更为敏感,而在极大值降雨数据观测上两者差距较大,月尺度TRMM站点观测数据确定性系数在0.89到0.96之间;两种数据在流域降雨的时空分布上表现一致性,在年内6月中旬~10月初为湿润多雨期,其余月份降雨较少,空间分布呈东南部大,西北部小的格局。  相似文献   

19.
The seasonal abundance and spatial distribution of eggs and early larvae of the bay anchovy,Anchoa mitchilli, and the weakfish,Cynoscion regalis, were determined from plankton collections taken during 1971–1976 in the lower Chesapeake Bay. Eggs and larvae of the bay anchovy,Anchoa mitchilli, dominated the ichthyoplankton, making up 96% of the total eggs and 88% of all larvae taken. A comparison of egg and larval densities from the lower Chesapeake Bay to existing data from other East Coast estuaries suggested that Chesapeake Bay is a major center of spawning activity for this species.Anchoa mitchilli spawning commenced in May when mean water column temperatures approached 17°C and abruptly ceased after August. Eggs and early larvae presented a continuous distribution throughout the study area during these months. Eggs and larvae of several sciaenid species, especiallyC. regalis, ranked second in numerical abundance. Larval weakfish were consistently taken in late summer of each sampling year but peak abundance and distribution was observed in August 1971. Sciaenid eggs exhibited a distinct polyhaline distribution with greatest concentrations observed at the Chesapeake Bay entrance or along the Bay eastern margin. Analysis of sciaenid egg morphometry and larval occurrence suggested spawning activity of at least four species. Additional important species represented by eggs and/or larvae in the lower Chesapeake Bay wereHypsoblennius hentzi, Gobiosoma ginsburgi, Trinectes maculatus, Symphurus plagiusa andParalichthys dentatus with the remaining species occurring infrequently.  相似文献   

20.
Thermal discharges from the Oyster Creek Nuclear Generating Station do not affect mortality in natural populations ofMercenaria mercenaria (Linné) in Barnegat Bay, New Jersey. The analyses of daily growth increments and disturbance bands in shell cross-sections of death assemblages of the pelecypods collected at the mouth of Oyster Creek (strongly affected by thermal discharges) and at three control sites (unaffected by thermal discharges) in the bay indicate that similar mortality patterns exist in all assemblages. This is revealed by mortality rate curves, survivorship curves, and life tables, which are nearly identical for each assemblage. Each death assemblage results from natural and not census mortality, as is evident from its corresponding death-frequency histogram which shows that individuals have died at different times of the year. The peak frequency of stress and death occurs in older individuals of the populations and develops in the summer and winter. The high incidence of summer death may be associated with the effects of physiologic stress during spawning and with increased activity of predators and parasites during the warmer months of the year, whereas high winter mortality seems to be caused by harsh environmental conditions. Mortality data recorded on life assemblages ofM. mercenaria transplanted to the substrate for 1 year at the mouth of Oyster Creek and at a single control site in the bay show that mortality is significantly greater in the assemblage transplanted to the control site. Shell microgrowth analysis of the dead specimens collected from the transplanted assemblages reveals the following: (1) Maximum frequency of death in clams is between 50 mm and 65 mm in h′ (see text), and at 5 to 6 years of age; (2) peak frequency of death occurs in the summer; (3) no significant difference in the seasonal frequency of death exists between the two samples; and (4) natural instead of catastrophic mortality is evident. It is concluded that mortality ofM. mercenaria in Barnegat Bay is caused by the normal population dynamics of the species. The pattern of ontogenetic mortality in the bivalve is high-low-high. Mortality is high during the planktonic larval stages, low subsequent to spat settlement, and high again in the gerontic stage. Mortality rates rise significantly after sexual maturity is attained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号