首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
海底天然气水合物中甲烷逸出对全球气候的影响   总被引:4,自引:3,他引:1  
全球气候变化会降低海底天然气水合物的稳定性导致水舍物失稳分解,反过来天然气水合物分解释放出的大量甲烷气,又会对全球气候变化产生巨大的影响,地质历史上许多重大地质事件(如LPTM事件)都可能与天然气水合物的分解释气作用有关.除了地质历史上强烈的甲烷突然释放事件,现代海底的渗漏或喷口也连续不断地向海水甚至大气输入甲烷,从而影响着全球气候变化.由于天然气水合物中甲烷逸出对全球气候影响的研究刚刚起步,还缺乏海洋沉积物和海水中甲烷传输的恰当模式,甲烷在海水中的溶解度、甲烷的氧化作用及上升流等因素对其的影响程度,以及它对大气甲炕和二氧化碳浓度变化的具体贡献等目前还很不清楚,亟需深化研究.  相似文献   

2.
在世纪时间尺度上,甲烷的全球增温潜势大约是二氧化碳的30倍.甲烷排放被认为导致了地球史上多次全球气候变化事件的发生和大规模的物种灭绝现象.因此,研究甲烷生成过程对于理解全球气候变化至关重要.长期以来一直认为,海洋中可检测到的生源甲烷完全是由低氧和无氧环境中产甲烷古菌的厌氧代谢活动产生的.但是,有众多研究报道显示,全球海洋范围内的许多含氧表面水体和近表水体中的甲烷是过饱和的,由此造成向大气甲烷净排放.含氧海水生成甲烷的现象被称为"海洋甲烷悖论".尽管该悖论仍未完全得到解决,但是最近的研究已经提出了一些有关含氧海水中甲烷生成的科学假说.文章将对甲烷在全球气候中的重要性的理解进行总结,并分析含氧海水环境中甲烷生成的生物过程及其机理.此外,我们将初步探讨相关微生物代谢过程与气候及海洋环境的全球性变化之间的关系.  相似文献   

3.
湖泊生态系统产甲烷与甲烷氧化微生物研究进展   总被引:3,自引:1,他引:2  
唐千  薛校风  王惠  邢鹏 《湖泊科学》2018,30(3):597-610
湖泊生态系统是重要的大气甲烷来源,其甲烷释放量占全球自然生态系统的40%.产甲烷和甲烷氧化微生物在湖泊甲烷生产和消耗过程中发挥关键作用.本文综述了近期有关湖泊生态系统甲烷产生与氧化过程的研究进展,重点介绍产甲烷与甲烷氧化微生物在湖泊中的分布特征、代谢途径以及调控机制.现有研究表明,湖泊中甲烷的生成不仅仅依靠赋存于沉积物和水体厌氧层的产甲烷古菌,还可能来自有氧环境中其他产甲烷微生物的代谢作用.湖泊中的甲烷在脱离水体逸散至大气之前,被甲烷氧化微生物利用,转化成二氧化碳和小分子有机化合物(如甲醇、甲醛和甲酸等).除了传统依赖氧气作为电子受体的好氧氧化过程外,新近研究还揭示了多种厌氧甲烷氧化过程,包括依赖还原硫酸盐、硝酸盐和亚硝酸盐以及Fe~(3+)/Mn~(4+)等金属离子的甲烷氧化过程.文献综合分析表明,反硝化型厌氧甲烷氧化过程主要发生在淡水湖泊中,而硫酸盐还原型主要发生在高盐度或者高碱度湖泊中.水体温度、溶解氧浓度可以显著影响产甲烷与甲烷氧化微生物的丰度与群落结构,其他湖泊环境条件,如盐度、pH和有机质类型等都可能改变产甲烷与甲烷氧化微生物的分布和代谢活性.不同湖泊类型的比较研究,有助于全面掌握影响湖泊产甲烷与甲烷氧化微生物的时空分布与代谢特征的主导因素.  相似文献   

4.
海底天然气渗漏的地球物理特征及识别方法   总被引:6,自引:4,他引:2       下载免费PDF全文
海底天然气渗漏是在海洋环境中广泛分布的自然现象.海底天然气渗漏可以指示沉积层中的烃类聚集带,渗漏出的大量气体(主要是甲烷)可能影响全球的气候变化,此外,与海底渗漏相关的浅层气改变了海底沉积物的土工性质,可能对海底工程构成威胁.因此海底渗漏研究意义重大.海底天然气渗漏不仅影响海底沉积物的物理性质,而且还极大地改变海底地形地貌,它能在海底形成麻坑、泥火山、冷泉碳酸盐岩以及化学自养生物群落等现象.在海底渗漏发生的地方,地形地貌特征可以在海洋测深和逆向散射数据上得到反映;沉积物的声学特征可以在地震剖面上得到反映,如形成声混浊、声空白、亮点、多次波、速度下拉等;有些渗漏在海面形成油渍膜,油渍膜可以在合成孔径雷达图像上得到反映.根据海底渗漏的上述地球物理特征,可以识别出可能渗漏区域,海底渗漏的证实需要用到海底观测和取样分析资料.  相似文献   

5.
过去温度变化的定量记录对于深入探讨气候变化机制非常重要,不仅有助于检验并改善气候模式模拟的准确性,也可以为全球变化背景下的气候变化幅度提供参考.青藏高原由于其特殊的地理位置影响着大气环流格局,研究青藏高原气候变化有助于理解高原对全球气候变化的响应及其与全球气候系统之间的关系.生物标志化合物代用指标在气候变化研究中的应用为定量重建高原过去温度变化提供了可能.湖泊沉积物中甘油二烷基甘油四醚类化合物(GDGTs)来源相对复杂,其分布特征受多种气候与环境因素影响.本文对青藏高原27个湖泊表层沉积物及部分湖泊流域表土样品GDGTs进行分析,探讨湖泊表层沉积物中GDGTs分布特征的影响因素,并建立其与气候要素的定量关系.结果显示:(1)绝大多数湖泊表层沉积物GDGTs以b GDGTs为主,crenarchaeol和GDGT-0含量较低;(2)高原多数湖泊表层沉积物与表土GDGTs分布没有显著差异,表明i GDGTs可能同时来源于湖泊环境和陆源输入;(3)湖泊表层沉积物i GDGTs分布主要受湖水水化学要素(p H和盐度)及近地表大气年均温的影响,对于青藏高原小型湖泊,TEX86可能反映湖水p H的变化;(4)湖泊表层沉积物b GDGTs分布主要受气候要素(温度和降水)控制;(5)利用已发表的转换方程重建高原同一地区温度差异明显,因此利用GDGTs定量重建青藏高原过去气候前必须开展GDGTs的现代过程调查.本研究基于湖泊表层沉积物b GDGTs分布,分别利用代用指标(MBT,CBT)及不同b GDGTs化合物组分丰度(fabun)与湖泊所在地的年均气温(MAAT)建立了适用于青藏高原湖泊古气候研究的转换方程,为高原古气候定量重建提供研究基础.  相似文献   

6.
岳尚华 《地球》2013,(9):38-41
正甲烷作为一种温室气体的效力是二氧化碳的23至25倍。科学家们担心,随着北极冰架逐渐缩减,甲烷气体将以前所未有的规模释放,这将大幅增加全球气候变化的速度。甲烷是大气中的重要微量气体,它既能产生温室效应,又能参与大气中的光化学反应,从而直接或间接引起全球气候变化。它是仅次于二氧化  相似文献   

7.
大气和地表之间热辐射交换引起的地气温度耦合(即大气温度反馈)是影响地表能量收支平衡的重要因子.文章旨在阐述大气温度反馈机理,讨论影响其强度和空间分布的主要因子;并以全球变暖为例,论述大气温度反馈如何与外强迫和气候反馈过程耦合最终对全球增暖产生贡献.基于ERA-Interim再分析资料,利用地表反馈响应分析方法,计算大气温度反馈核,以此来阐述大气温度反馈的物理机制及其强度的空间分布与气候态温度、水汽和云水含量空间分布的关系,以及全球增暖加速期间大气温度反馈对全球平均表面温度增加的贡献.分析表明大气温度反馈过程主要通过与气候系统外强迫和内部过程的耦合作用,将各独立过程引起的地表能量收支异常信号放大.研究结果表明大气温度反馈显著放大了CO_2浓度升高、冰雪融化、水汽含量增加和海洋热量吸收减缓引起的地表增暖,削弱了云量增加引起的地表降温效应.同时,也放大了地表潜热通量增加造成的地表冷却效应.从全球平均结果来看,全球快速变暖前后,尽管外强迫和气候系统内部过程引起的全球平均总地面直接能量通量扰动为负,但大气温度反馈造成的全球平均总地面能量通量扰动却为正,且后者幅度远大于前者,这导致全球平均总地面净能量通量扰动正异常.由此可见,大气温度反馈对全球变暖起到了至关重要的作用.  相似文献   

8.
天然气水合物体系动态演化研究(Ⅱ):海底滑坡   总被引:2,自引:5,他引:2  
天然气水合物被认为是大陆边缘沉积物强度变弱的一个因子,从而能解释大陆边缘海底滑坡的一些观测现象。天然气水合物的形成使沉积物强度增加,而其分解则使沉积物强度变弱。虽然无法直接观测沉积物中天然气水合物的活动过程与相应的海底滑坡,大量的背景资料表明,天然气水合物崩解常常有助于触发海底沉积物块体的运动。此外,大型滑塌可以释放大量的固态天然气水合物,水合物在水柱中上浮。大块天然气水合物可以在分解前到达海洋的上部层,一些甲烷可以直接进入大气中。本文综述与天然气水合物体系演化有关的海底滑坡的研究现状。  相似文献   

9.
作为全球变化的主要表现之一,气候变暖对人类赖以生存的地球环境已经产生了不可磨灭的影响.其中,气候变暖如何影响污染物传播引起了科学家的广泛关注.持久性有机污染物(POPs)是可以进行全球传输的污染物.揭示气候变暖对POPs全球循环的影响机制对于准确理解POPs循环的过程和相关政策的制定具有重要的指导意义.本文综述了此领域近十年来的主要研究工作,总结了气候变暖对POPs排放、迁移、储存、降解和毒性的影响,简述了相关模型的特点和主要应用,并指出目前研究中存在的问题以及未来研究的主要方向.在气候变暖条件下,POPs全球循环的变化主要体现在以下几个方面:(1)全球变暖直接促进了POPs的二次排放,升温将导致POPs从土壤和海洋中挥发出来,而冰川融化、冻土退化则可以将POPs二次释放进入淡水生态系统;(2)全球极端气候(干旱和洪水)通过剧烈的地表侵蚀过程,将土壤所负载的POPs重新释放进入环境,进而改变了POPs的全球分布;(3)气候变暖条件下大气与海洋环流的变化将显著改变全球POPs的迁移路径;(4)气候变暖改变了海洋生物生产力,进而改变了海洋对POPs的储存能力;(5)部分地区水生及陆地食物链结构在气候变暖的情景下发生了明显变化,这种变化可以导致POPs在生态系统中毒性的放大;(6)尽管气候变暖在促使POPs再挥发的同时也加速着其降解的过程,但是总体上气候变暖增加了环境中POPs的总量;(7)各种模型的耦合应用对未来气候变暖情景下POPs环境行为的反馈与响应进行了预测,这些工作有助于政策和法律制定者在POPs控制措施中全面考虑气候变暖对POPs环境载荷的影响.在未来,气候变暖与全球变化的其他表现协同影响POPs的循环将是下一步的研究重点,POPs与碳循环、水循环互相关联耦合,其相互作用机制将是生态系统对气候变化适应性研究的一个新方向.  相似文献   

10.
海底冷泉羽状流是海底冷泉活动最直接的表现形式,与天然气水合物动态成藏和动态油气系统密切相关.近年来,因其对全球气候变化的影响和潜在的资源前景,冷泉流体活动受到越来越多重视.本文对全球重要海域海底冷泉羽状流的分布和通量相关研究进行总结分析,发现冷泉羽状流广泛分布在主动和被动大陆边缘,而在弧后地质背景和走滑大陆边缘发现较少,研究不够深入.在构造活动活跃、沉积速率和运移通道渗透率高的地质背景下,冷泉羽状流一般呈区域性聚集发育,规模与通量较大.目前研究发现,通常单个羽状流渗漏孔的通量一般介于3.5 mL/min~ 13.9 L/min之间,但受制于观测技术和成本,羽状流的通量估算具有不确定性,且易受到不同地质和海洋控制因素的影响.另外,冷泉羽状流发育区往往对应或指示重要海洋油气富集区,通过与海域天然气水合物试采结果和天然气水合物工业生产指标进行对比分析,认为大型单体冷泉羽状流以及与水合物赋存或深部油气藏相关的区域性羽状流群具有重大资源效应,主要体现在羽状流本身的气体通量资源效应、与天然气水合物的密切联系以及对于海洋深部动态油气藏的指示三个方面.建议重视对海底冷泉羽状流发育区的调查与探测,尤其针对大型单体冷泉羽状流,加强对其活动特征的长期观测,从而明确其时序渗漏特性、活动机制以及海洋与地质因素的控制作用.通过研究有效的通量测量技术和方法,建立冷泉羽状流资源评价技术标准,从而推进其进一步开发与利用.  相似文献   

11.
海洋天然气水合物体系天然气水合物成藏受甲烷供给及埋藏的控制.根据海洋天然气水合物体系甲烷的质量守恒,建立了海洋环境沉积物孔隙水溶解甲烷对流和扩散作用及微生物原位产甲烷作用供给甲烷形成天然气水合物的数值模型,对水合物脊ODP1247站位天然气水合物成藏过程进行了模拟研究,结果表明该站位孔隙水溶解甲烷的对流和扩散作用是天然气水合物成藏过程中最主要的甲烷供给方式,微生物原位生成甲烷供给的比例很小,并且在1.67 Ma以来天然气水合物藏受沉积速率变化而动态变化,但幅度不大,至今形成的水合物饱和度约0~3%,与钻探确定的饱和度接近.  相似文献   

12.
微生物是驱动海洋元素循环的主体,在调节全球气候变化中起着重要作用.近半个世纪海洋研究的一个谜团就是"为什么有着一个相当于大气CO2碳总量的惰性溶解有机碳(Recalcitrant Dissolved Organic Carbon, RDOC)库在海洋中长期存在?".生物泵(Biological Pump, BP)和微食物环(Microbial Loop, ML)研究加深了我们对生物在海洋碳循环中作用的理解,但直到微型生物碳泵(Microbial Carbon Pump, MCP)理论的提出,才真正阐释了海洋惰性溶解有机碳来源和存储的生物地球化学机制. MCP是由微型生物介导的溶解有机碳(非沉降)转化和迁移的海洋储碳新机制,提出了RDOC产生的3个重要途径:(1)微型生物特别是异氧细菌和古菌在有机质降解代谢过程中改造并分泌RDOC;(2)病毒颗粒裂解宿主导致细胞的死亡并释放RDOC;(3)原生动物等捕食者摄食微型生物并释放RDOC. MCP揭示了海洋RDOC的惰性机制,定义了两类RDOC组分(RDOCc和RDOCt),为调节气候和改善生态环境提供了可验证的理论.为纪念中国科学家在海洋碳循环领域的突出贡献,文章在回顾海洋微型生物与碳循环相关研究基础上,系统总结并讨论了MCP理论提出以来中国在此领域的国际引领地位和影响力,并展望了未来研究的方向.  相似文献   

13.
温室效应.全球气候变暖,这些问题驱使人们去调查、了解和预测气候变化.科学家知道,全球性的和地区性的热量、淡水和碳的循环在气候变化中起着重要的作用,而在海洋中的这些循环特征要远远超过在大气中.因此.研究并模拟气候变化的关键就是要了解热量、淡水和碳在海水与大气之间的交换过程,并了解它们在上层海水与下层海水及赤道与极地的大洋区域之间储存与传递的过程。  相似文献   

14.
本文通过海底火山和海底水热活动对海温影响实例,指出海水温度不仅受大气状态的影响,而且还受海洋地壳热力状态的影响。在对海温变化的研究中,除考虑海气间的相互作用外,洋壳对海温的影响也是不可忽视的。对全球气候有重大影响的厄尼诺事件可能是洋壳、海水、大气相互作用的结果。  相似文献   

15.
土壤微生物碳泵储碳机制概论   总被引:8,自引:0,他引:8  
土壤有机碳储量高于大气和陆地植被碳的总和,是一个巨大的陆地碳库.土壤碳库收支的微小波动势必影响区域碳通量和全球气候变化.土壤有机碳是土壤储碳机制的核心要素,探究土壤有机碳的组成、来源和稳定性机制是深入认识陆地碳汇功能和应对气候变化的关键.近年来提出的土壤微生物碳泵(microbial carbon pump,MCP)概念强调了土壤微生物同化合成产物是土壤稳定有机碳库的重要贡献者,其概念体系可以较好地阐释土壤有机碳的来源、形成与截获过程.本文以微生物介导的土壤有机碳转化过程为主线,详细阐述了土壤MCP介导的储碳机制及其影响因素,并展望了该机制驱动下可给予关注的代表性科学问题.  相似文献   

16.
海洋对干旱半干旱区气候变化的影响   总被引:1,自引:0,他引:1  
干旱半干旱区约占全球陆地总面积的41%,由于增温显著、降水稀少,导致生态脆弱、生存环境恶化,对全球气候变化的响应相对敏感.海洋作为地球气候系统的重要调节器,在干旱半干旱区气候变化过程中发挥着至关重要的作用;尤其在现代气候变化,海洋活动对干旱半干旱区气候变率的影响不可忽视.文章回顾了近百年干旱半干旱地区的气候变化特征,总结了海洋活动对其变化影响的研究进展,重点归纳了太平洋年代际振荡(PDO)、大西洋多年代际振荡(AMO)以及El Ni?o和La Ni?a等对干旱半干旱地区气候变化的影响;概述了不同海洋振荡因子协同影响干旱半干旱气候变化的机制.研究表明:全球干旱半干旱区在近百年来表现出显著的强化增温现象,呈现出明显的年代际干湿变化特征;该变化特征与海洋年代际尺度振荡因子有密切关系,由于海洋振荡因子的不同位相组合显著改变海陆热力差,进而影响西风急流、行星波及阻塞频率,导致干旱半干旱区温度及干湿特征发生改变.随着干旱半干旱地区气候变化的加剧,未来的海洋活动变化对其影响将出现新的特征,这将增加干旱半干旱地区未来气候变化的不确定性,加剧干旱半干旱区对全球气候的影响.  相似文献   

17.
海底冷泉是一种重要的地质活动,当前对冷泉的研究逐渐从定性研究过渡到定量研究.本文利用遥控深潜器视频资料对美国西海岸卡斯卡迪亚大陆边缘活动冷泉进行研究.观察视频资料发现,研究区活动冷泉的释放主要有两种形式,一是甲烷气泡的缓慢逸散,二是含甲烷流体快速喷发形成羽状流.缓慢逸散的甲烷气泡多为透明椭球形,羽状流喷口处多为锥形,流体浓度高时呈白色不透明状,流体边缘处往往为灰色半透明.羽状流流动方向整体向上,内部往往存在复杂的湍流涡.针对研究区中两种释放形式,分别利用不同方法进行流场的定量研究,其中,冷泉羽流的流场定量分析是通过粒子图像测速技术来获得冷泉羽状流瞬时全场流动定量信息,在此基础上试算了羽流的卷吸系数.本文利用图像测速技术对冷泉流场进行定量研究,可为估算甲烷通量等研究提供新的数据来源,对研究冷泉地质过程及其对全球气候变化的影响都具有重要意义.  相似文献   

18.
提取西太平洋“暖池”区海底沉积物柱状样不同层次样品的总DNA, 构建沉积物中的细菌16S rDNA克隆文库, 通过PCR-RFLP分析与序列测定, 对沉积物中的细菌类群及其与环境的关系进行了分析. 结果表明, 该海区沉积物中的细菌分别属于8个主要类群, 其中紫细菌(Proteobacteria)的γ-亚群为各个层次中的优势菌群, 而科尔韦尔氏菌属(Colwellia)为优势种属; α-亚群也均有分布; 而β-亚群分布很少. 不同深度之间细菌类群的区别主要在于δ-, ε-紫细菌亚群和CFB类群(CytophagaFlexibacteriaBacteroides), 它们在沉积物中的分布均呈现随深度增加而减少的趋势. 系统发育分析表明, 在各个深度沉积物中各有18%~30%的细菌与甲烷代谢相关, 15%~25%的细菌与硫代谢相关, 说明甲烷代谢和硫代谢在该海区的深海物质能量循环中占据着重要地位.  相似文献   

19.
通过美国加州林火期间的地震、CO气体监测等数据的统计分析,认为地震对气候干燥、林火的发生以及CO气体浓度变化存在重要影响;对比分析日本3·11地震前后的海洋表面温度变化,认为海底地震的热能释放是导致海水温度升高及海洋热膨胀的重要因素,并进而通过海气交换对大气圈等产生影响;综上分析认为,地震活动伴随有大量的热能及气体释放,并对地球系统的多个方面产生影响,在全球变化中具有重要作用。  相似文献   

20.
《地球》2018,(4)
正(一)全球气候变暖由于人口的增加和人类生产活动的规模越来越大,向大气释放的二氧化碳、甲烷、一氧化二氮、氯氟碳化合物、四氯化碳、一氧化碳等温室气体不断增加,导致大气的组成发生变化,大气质量受到影响,气候有逐渐变暖的趋势。较高的温度可使极地冰川融化,淹没一些海岸地区。全球变暖还可能影响到降雨和大气环流的变化,使气候反常,易造成旱涝灾害,这些都可能导致生态系统发生变化和破坏,对人类生活产生一系列重大影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号