首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
柯林斯冰帽两支冰芯层位记录证实了该冰帽主冰穹顶部(海拔约700m)属暖渗浸带,小冰穹顶部(海拔约250m)属渗浸带。雪、冰的层位分布和密度变化包含了一定的测年信息。主冰穹顶冰芯密度-深度曲线在表层呈现韵律性变化,与层位记录中的融化冻结现象相对应,据此粗略划分年层,断定当地年积累雪层厚度为3-3.5m,折合水当量1650-1925kg/m2a,年平均积累速率约为2.0m/a(冰当量)。主冰穹顶成冰深度为38-39m,此深度以上密度自上而下缓慢增加,但以下由于含水层的出现,密度迅速升高,在5-6m区间达到900kg/m3。小冰穹冰芯除表层外,密度基本在800-900kg/m3之间,冰芯中雪冰互层,存在污化面,40m以下发现很厚的火山灰沉积物。小冰穹平均年积累率约为0.7m/a(冰当量),成冰深度7-8m,成冰年限为10年左右  相似文献   

2.
本文着重描述了SGR钻孔处冰盖上的积雪在密实化过程中的特征变化,并对该过程进行了分段的和全面的回归分析.结果表明,冰盖密度随深度增大,但增长幅度随深度减小.作者提出密度变化减小度的概念.计算得出的所研究冰芯钻取点的密度变化减小度为-0.15kg/m~3·m~2,粒雪成冰前的密实速率平均值为4.08kg/m~3·a.本文得到的冰盖密度变化“临界点”与以往报道的有所不同.分析这一现象时,作者强调当积雪还在活动层时冰盖温度的影响,并以此解释密度剖面的异常变化以及离差的回升.特别指出,积雪的密度变化具有气候学意义,它在一定程度上能够反映出积雪形成及变化过程中气候变化的某些信息.本文由密度变化确定的钻孔点雪冰转化深度为50米.  相似文献   

3.
A ground truth study was performed on first year fast ice in Kongsfjorden, Svalbard, during spring 1997 and 1998. The survey included sea ice thickness monitoring as well as observation of surface albedo, attenuation of optical radiation in the ice, physical properties and texture of snow and sea ice. The average total sea ice thickness in May was about 0.9 m, including a 0.2 m thick snow layer on top. Within a few weeks in both years, the snow melted almost completely, whereas the ice thickness decreased by not more than 0.05 m. During spring, the lower part of the snow refroze into a solid layer. The sea ice became more porous. Temperatures in the sea ice increased and the measurable salinity of the sea ice decreased with time. Due to snow cover thinning and snow grain growth, maximum surface albedo decreased from 0.96 to 0.74. Texture analysis on cores showed columnar ice with large crystals (max. crystal lenght > 0.1 m) below a 0.11 m thick mixed surface layer of granular ice with smaller crystals. In both years, we observed sea ice algae at the bottom part of the ice. This layer has a significant effect on the radiation transmissivity.  相似文献   

4.
珠穆朗玛峰北坡东绒布冰川成冰作用的新认识   总被引:7,自引:3,他引:4  
冰川成冰作用的研究对于选择冰芯钻取点具有重要的科学意义。前人对珠穆朗玛峰北坡冰川成冰作用的研究,由于缺少高海拔区域的实测资料而具有一定的局限性。文章通过1998年东绒布冰川垭口处(6 500 m a. s. l.)11 m冰芯和海拔6 450 m处20 m冰芯剖面的成冰作用过程研究,认识到由于水、热条件的逐年波动,冰川成冰作用也处于变化之中。珠穆朗玛峰北坡东绒布冰川高海拔区域,在一定的水、热条件下(如气温较低和降水量较大等),再冻结-重结晶作用依然占主导地位,该成冰作用至少在垭口部位是有分布的。而一般在气温较高或降水量较少等条件下,冰川的成冰作用则以冷渗浸-重结晶作用为主。  相似文献   

5.
Initial results from a field experiment on fast ice in Kongsfjorden, Svalbard, in March 2002 are presented. We measured surface reflectance and under-ice irradiance using an advanced, portable spectroradiometer sensitive in the visible and near-infrared parts of the electromagnetic spectrum, i.e. 350-1100 nm. Under-ice irradiance (UV-A, UV-B and photosynthetically active radiation [PAR]) was measured down to depths of 7.5 m by vertical profiling using a six-channel radiometer. We also present model results of wavelength-dependent transmittance of radiation through a combined snow and sea ice layer for various thicknesses of snow. Model results show that the snow and sea ice is more transparent for solar radiation in the PAR region (400-700 nm) than at shorter and longer wavelengths. This is confirmed by the field measurements. Even very thin snow layers on top of the sea ice efficiently prevent solar radiation from penetrating the snow–sea ice system. For example, a 5 cm thick snow layer reduces under-ice irradiance in the PAR region with a factor of about 10. Measurements of under-ice UV irradiance show that both UV-A and UV-B irradiance is reduced with a factor of more than 10 at depths of 7.5 m below the ice compared to at the ice-sea water interface.  相似文献   

6.
钻孔内温度实测表明,柯林斯冰帽积累区大部分呈温性,消融区可能呈冷性。冰帽活动层温度明显受气温季节变化的影响,降水暖渗浸对冰的增温作用显著,雪盖对温度分布也显示了一定的影响。测量显示,冰帽纵深层的温度大都接近融点,而小冰穹顶附近十数米范围内温度变化较大。小冰穹顶附近,钻进时30m以下孔中出水现象显著,可能是冰内径流、差异运动和较高盐度等因素共同作用的结果。  相似文献   

7.
Glaciological investigations of the Upper Fremont Glacier in the Wind River Range of Wyoming were conducted during 1990–1991. The glaciological data will provide baseline information for monitoring future changes to the glacier and support ongoing research utilizing glacial-ice-core composition to reconstruct paleoenvironmental records. Ice thickness, determined by radio-echo sounding, ranged from 60 to 172 m in the upper half of the glacier. Radio-echo sounding of ice thickness at one point was confirmed by drilling 159.7 m to bedrock. The difference between radio-echo sounding depth and measured drilling depth was about 4 m. Annual ablation (including snow, firn, and ice) measured for the 1990–1991 period averaged about 0.93 m/a. Densification proceeds rapidly on Upper Fremont Glacier. Measured densities in the near-surface parts of the glacier ranged from 4.4 x 105 g/m3 at the surface to larger than 8.5 x 105 g/m3 at depths exceeding 14 m. Surface ice velocity and direction were monitored from July 1990 to August 1991. Ice velocity decreased in a downslope direction. The largest measured velocity was about 3.1 m/a and the smallest was 0.8 m/a. The yearly mean air temperature of the study site during the period from July 11, 1990 to July 10, 1991 was -6.9°. Borehole temperatures from 10-m depths are 0 ± 0.4°. The warmer borehole temperatures relative to the yearly mean air temperature may be caused by the latent heat of freezing, as meltwater from the surface percolates into the glacier and refreezes. [Key words: glaciers, Wyoming, Wind River Range, ice thickness, ablation rates.]  相似文献   

8.
I. Sobota 《Polar Science》2011,5(3):327-336
This study examines the mass balance, accumulation, melt, and near-surface ice thermal structure of Irenebreen, a 4.1 km2 glacier located in northwest Spitsbergen, Svalbard. Traditional glaciological mass balance measurements by stake readings and snow surveying have been conducted annually at the glacier since 2002, yielding a mean annual net mass balance of −65 cm w.e. for the period 2002–2009. In 2009, the annual mass balance of Irenebreen was −63 cm w.e. despite above-average snow accumulation in winter. The near-surface ice temperature in the accumulation area was investigated with automatic borehole thermistors. The mean annual surface ice temperatures (September–August) of the accumulation area were −3.7 °C at 1 m depth and −3.3 °C at 10 m depth. Irenebreen is potentially polythermal, with cold ice and a temperate surface layer during summer. This temperate surface layer is influenced by seasonal changes in temperature. In winter, the temperature of all the ice is below the melting point and temperate layers are probably present in basal sections of the glacier. This supposition is supported by the presence of icings in the forefield of Irenebreen.  相似文献   

9.
The dramatic decline in Arctic sea ice cover is anticipated to influence atmospheric temperatures and circulation patterns. These changes will affect the terrestrial climate beyond the boundary of the Arctic, consequently modulating terrestrial snow cover. Therefore, an improved understanding of the relationship between Arctic sea ice and snow depth over the terrestrial Arctic is warranted. We examined responses of snow depth to the declining Arctic sea ice extent in September, during the period of 1979–2006. The major reason for a focus on snow depth, rather than snow cover, is because its variability has a climatic memory that impacts hydrothermal processes during the following summer season. Analyses of combined data sets of satellite measurements of sea ice extent and snow depth, simulated by a land surface model (CHANGE), suggested that an anomalously larger snow depth over northeastern Siberia during autumn and winter was significantly correlated to the declining September Arctic sea ice extent, which has resulted in cooling temperatures, along with an increase in precipitation. Meanwhile, the reduction of Arctic sea ice has amplified warming temperatures in North America, which has readily offset the input of precipitation to snow cover, consequently further decreasing snow depth. However, a part of the Canadian Arctic recorded an increase in snow depth driven locally by the diminishing September Arctic sea ice extent. Decreasing snow depth at the hemispheric scale, outside the northernmost regions (i.e., northeastern Siberia and Canadian Arctic), indicated that Arctic amplification related to the diminishing Arctic sea ice has already impacted the terrestrial Arctic snow depth. The strong reduction in Arctic sea ice anticipated in the future also suggests a potential long-range impact on Arctic snow cover. Moreover, the snow depth during the early snow season tends to contribute to the warming of soil temperatures in the following summer, at least in the northernmost regions.  相似文献   

10.
何剑锋  陈波 《极地研究》1995,7(4):56-67
从1992年4月至12月对东南极中山站近岸当年冰生物量及其环境因子进行了观测。冰底有色层出现在4月下旬和11月下旬,集中于冰底2~3cm,叶绿素a最高含量分别为88.3mg/m3和2810mg/m3,相应的冰藻数量分别为3.5×106和1.21×108个/升。柱总叶绿素a含量的季节性变化极为显著,尤其是以春季的大幅度快速增值为特征,变化范围为1.17~59.7mg/m2,冰藻生物量主要分布在冰底,冬季期间则集中在冰底或冰的中上层。藻类优势种较为单一,秋季优势种为Nitzschialecointei、N.barkleyi和N.cylindrus;春季优势种为Amphiprorakjelmani,Berkeleyarutilans和N.lecointei。中山站近岸冰藻生物量的垂直分布和季节变化以及春季优势种的组成与东南极其它固冰区具有较强的相似性,与亚南极固冰区差异较大。  相似文献   

11.
李栓科 《极地研究》1995,7(4):10-19
拉斯曼丘陵在渐新世已被冰盖覆没,晚渐新世冰盖厚度最大,自中新世开始,冰盖逐渐减薄后退,但该丘陵仍为冰盖占据。更新世冰川作用规模不及第三纪。18kaB.P.该丘陵区覆冰厚度超过170m,冰盖前缘仅增厚30m左右。冰盖后退出露基岩约在10.0kaB.P.前后,自9.41~6.5kaB.P.,冰川以2~3m/a的速率后退,岛屿区全部出露;自6.5~5.0kaB.P.,冰川后退速率减为1.0~1.5m/a,丘陵区裸露50%以上;约自5.0kaB.P.开始,丘陵区几乎全部出露,冰川冰盖范围与今基本相同。  相似文献   

12.
季节性积雪区不同遮挡条件下深霜发育比较   总被引:1,自引:0,他引:1  
以中国科学院天山积雪雪崩研究站为研究区,在2009~2010年冬季观测期利用体视显微镜(XTZ-E)及拍照设备和雪特性分析仪(Snow Fork),对3种遮挡条件的开阔地(0遮挡)、树缘(50%遮挡)和树下(90%遮挡)的积雪深霜进行连续观测,比较和分析西北季节性积雪区不同遮挡条件下的深霜发育特征。研究表明:1)深霜发育主要受温度制约,其次是温度梯度。由不同遮挡条件引起积雪累积和太阳辐射差异而导致雪深不同,从而形成的温度环境差异,是深霜发育差异的根本原因。2)深霜发育厚度与雪深呈正相关关系,有开阔地(0遮挡)>树缘(50%遮挡)>树下(90%遮挡),融雪期深霜的消减速率为树下>开阔地>树缘。3)深霜冰晶粒径呈先减小(稳定累积期-过渡期)再增大(-融雪期)的变化,积雪稳定累积期后,深霜粒径开阔地>树缘>树下。4)2009~2010年冬季雪深大,因而圆角深霜(DHxr)和圆角刻面冰晶(FCxr)在深霜中发育最多,二者共占70%~80%。开阔地易发育杯型深霜(DHcp),树缘和树下则易发育柱状条纹深霜(DHla)、棱柱状深霜(DHpr)和刻面冰晶(FCso)。深霜中胶结态冰晶约占10%~30%,其比例在开阔地深霜中递减,而在树缘和树下处递增。  相似文献   

13.
A newly digitized record of snow depth from the Abisko Scientific Research Station in northern Sweden covers the period 1913-present. Mean snow depths were taken from paper records of measurements made on a profile comprising 10 permanent stakes. This long-term record yields snow depths consistent with two other shorter term Abisko records: measurements made at another 10-stake profile (1974-present) and at a single stake (1956-present). The measurement interval is variable, ranging from daily to monthly, and there are no data for about half of the winter months in the period 1930-1956. To fill the gaps, we use a simple snowpack model driven by concurrent temperature and precipitation measurements at Abisko. Model snow depths are similar to observed; differences between the two records are comparable to those between profile and single stake measurements. For both model and observed snow depth records, the most statistically significant trend is in winter mean snow depths, amounting to an increase of about 2 cm or 5 % of the mean per decade over the whole measurement period, and 10% per decade since the 1930-40s, but all seasonal means of snow depth show positive trends on the longest timescales. However, the start, end, and length of the snow season do not show any statistically significant long-term trends. Finally, the relation between the Arctic Oscillation index and Abisko temperature, precipitation and snow depth is positive and highly significant, with the best correlations for winter.  相似文献   

14.
纳尔逊冰帽雪—粒雪的演化依赖于融水渗浸冻结作用下的暖变质过程。积雪的密实化过程的快慢,取决于温度条件和融水的参与程度,以及自身的物理状况。粒雪的密实化过程表现为均匀且变幅小。纳尔逊冰帽成冰深度在23~25m,成冰历时17~19年。成冰带分为暖渗浸—重结晶带,渗浸—冻结带,消融带。  相似文献   

15.
以海拔依赖型变暖为理论基础,研究山地积雪对气候变暖的响应机制,是当前气候变化研究的热点问题。基于2000—2019年MODIS积雪物候数据,对秦岭南北积雪日数时空变化进行分析,探讨了秋冬两季厄尔尼诺指数(NINO)、青藏高原气压对积雪异常的影响。结果表明:(1) 2013年后秦岭南北气候由“变暖停滞”转为“增温回升”,积雪日数随之呈现转折下降,积雪日数≥10 d栅格占比由前期的35.1%下降为8.6%。(2)在垂直地带规律上,秦岭山地以1950~2000 m为临界点,大巴山区以1600~1650 m为临界点,低海拔地区积雪日数随海拔增加速率要低于高海拔地区。2100~3150 m海拔带是积雪日数的垂直变化的关键带;(3)在影响因素上,NINO C区、NINO Z区秋冬海温和青藏高原冬季高压,是秦岭山地、汉江谷地和大巴山区积雪异常的有效指示信号。当赤道太平洋中部秋冬海温偏低,且青藏高原冬季高压偏低时,上述3个子区积雪日数异常偏多。(4)在环流机制方面,相对于积雪日数偏少年,秦岭南北积雪日数偏多年1—2月0℃等温线位置偏南,低温环境为增加冰雪物质积累、延缓冰雪消融提供了气温条件;1月区域存...  相似文献   

16.
南极长城站区稳定积雪期始于4月中至6月初,8月中至10月达最大深度。1988年沿海地带一般积雪深度为0.6~0.8m,低洼处及建筑物附近可达1.2~1.6m,甚至超过1.8m;潮汐带雪盖下部温度受海冰影响普遍偏低;11月底至来年1月初的消融过程中,积雪表层常常处于相变区,雪层底部温度比冰点低0.02℃,融水下渗形成雪盖下部潜流;积雪相态及其温度变化与大气-雪感热通量的变化过程相对应,大气-雪感热交换是积雪消融的重要因子之一。  相似文献   

17.
极地冰雪环境地球化学指标及其指示意义   总被引:3,自引:0,他引:3       下载免费PDF全文
极地冰雪中可以反映气候环境的环境地球化学指标主要是可溶性杂质和不可溶性微粒。可溶性杂质主要包括H+、Na+、Mg2 +、Ca2 +、NH4+、Cl- 、NO3- 、SO42 - 、CH3SO3- 等。本文在概述冰雪中的这些化学杂质的来源影响因素和时空分布特征的基础上 ,概述了冰雪中NO3- 沉积的主要来源 (即闪电作用和高层大气光化学作用产生的含氮化合物等 )及其影响因素 (包括太阳活动、火山活动、超新星活动、核爆炸试验和沉积后的蒸发及迁移作用等 ) ,SO42 - 的主要来源 (即海洋生物释放和火山喷发等 )、影响因素 (包括源区温度、ENSO事件及海冰面积等 )和它们的时空变化特点 ;讨论了南、北极地区冰雪中微粒沉积的主要源区和变化特征。。  相似文献   

18.
Chinese meteorological satellite FY-1D can obtain global data from four spectral channels which include visible channel(0.58-0.68 μm) and infrared channels(0.84-0.89 μm,10.3-11.3 μm,11.5-12.5 μm).2366 snow and ice samples,2024 cloud samples,1602 land samples and 1648 water samples were selected randomly from Arctic imageries.Land and water can be detected by spectral features.Snow-ice and cloud can be classified by textural features.The classifier is Bayes classifier.By synthesizing five d ays classifying result of Arctic snow and ice cover area,complete Arctic snow and ice cover area can be obtained.The result agrees with NOAA/NESDIS IMS products up to 70%.  相似文献   

19.
The fabrics and crystals of Bohai one year ice show that the noncontinuous ice growth rate enables the level ice layers with different amount of air bubbles to be formed in lower part of an ice sheet which was clearly seen from CT technology; typical grain ice and columnar ice occur in the grey ice which grows in stable water; thaw refrozen ice and rafted ice have their specific crystal characters. On the Arctic sea ice, the ice core located at 72°24.037′N, 153°33.994′W and 2.2 m in length was a 3 year ice floe and a new sort of crystal was found, which is defined as refrozen clastic pieces. The crystal profile of the ice core 4.86 m in length located at 74°58.614′N, 160°31.830′W shows the evidence that ice ridge changed into hummock.  相似文献   

20.
A simple quasi-empirical model is presented to calculate the deformation rate and age scale corresponding to ice core depth, where grain size and shape are determined only by grain growth and grain deformation processes. Given the size and elongation of grains as a function of ice core depth and the accumulation rate at the ice-sheet surface, it is possible to determine the ice core age scale. The model results are in good agreement with measured values of the rate of grain deformation and the age scale for the GIPS2 ice core at depths above 700 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号