首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
以华北陆块南部豫西偃师县龙门镇地区全取芯铝土矿钻孔ZK4704为主要研究对象,通过岩芯观察和垂向上连续取样,运用扫描电镜、能谱分析、X射线衍射分析、差热分析、红外光谱分析等手段对本溪组含铝岩系的矿物学特征及其垂向变化规律进行了分析。研究表明,偃龙地区本溪组含铝岩系的矿物均为自生矿物,除后期重结晶作用的影响外,主要以隐晶质或微晶存在,矿物成分在垂向上具有明显的变化规律:下部和上部泥岩以粘土矿物为主,但下部泥岩以伊利石为主,上部泥岩以高岭石为主。中部铝矿物含量较高,粘土矿物含量较少。在上述分析基础上,以化学风化作用的基本原理和产生的条件为联结本溪组含铝岩系矿物学特征和原岩的纽带,分析了铝土矿的原岩。认为,可以迅速水解的火山灰是最有可能的含铝岩系的原岩,而由弱碱性的海相环境逐渐转变为弱酸性沼泽环境的海退序列可以很好地解释水解过程中化学环境的变化,含铝岩系基底强烈的古岩溶作用,可以为硬水铝石的产生提供良好的泄水条件。偃龙地区本溪组铝土矿的火山灰物源可由华北陆块北缘和我国西部地区同时期强烈活动的火山作用提供。  相似文献   

2.
The distribution of the clay minerals of the Banco Negro Inferior-Río Chico Group succession (BNI-RC), a middle Danian–middle Eocene mainly continental epiclastic–pyroclastic succession exposed in the Golfo San Jorge Basin, extra-Andean Patagonia (∼46° LS), is assessed in order to determine the possible origin of clay and specific non-clay minerals using X-ray diffraction and scanning electron microscopy analyses. The control over the clay mineralogy of the sedimentary settings, contemporary volcanism, paleoclimate and weathering conditions is considered. A paleoclimatic reconstruction is provided and correlated with the main global warming events that occurred during the early Paleogene.Mineralogical analyses of BNI-RC demonstrate that smectite and kaolin minerals (kaolinite, halloysite and kaolinite/smectite mixed layers) are the main clay minerals, whereas silica polymorphs (volcanic glass and opal) are common non-clay minerals. Throughout the succession, smectite and kaolin minerals are arranged in different proportions in the three clay–mineral assemblages. These show a general vertical trend in which the smectite-dominated assemblage (S1) is replaced by the smectite-dominated assemblage associated with other clays (S2) and the kaolinite-dominated assemblage (K), and finally by S2 up-section. The detailed micromorphological analysis of the clay and non-clay minerals allows us to establish that the origins of these are by volcanic ash weathering, authigenic and pedogenic, and that different stages in the evolution of mineral transformations have occurred.The supply of labile pyroclastic material from an active volcanic area located to the northwest of the study area could have acted as precursor of the authigenic and volcanogenic minerals of the analyzed succession. Diverse fine-grained lithological facies (muddy and tuffaceous facies) and sedimentary settings (coastal swamp and transitional environments, and different fluvial systems) together with variable climate and weathering conditions controlled the mineralogical transformations and the arrangement of clay–mineral assemblages. The paleoclimatic reconstruction suggests a general warm and humid climate. However, the temporal trend of the clay–mineral assemblages, the ratios between smectite and kaolinite and the micromorphological analysis of clay minerals contrasted with evidence from sedimentological analyses suggest a warm and seasonal climate for the basal part of the unit, a warm and humid climate with a relatively more perennial rainfall regime in the middle part of the unit, and a warm and less humid, probably subhumid, climate up-section. Such a reconstruction makes it possible to establish a correlation with some of the hyperthermal events of the Early Paleogene Global Warming (EPGW) and, consequently, constitute one of the most complete time records of the EPGW in South America.  相似文献   

3.
梁晓亮  谭伟 《地学前缘》2022,29(1):29-41
华南离子吸附型稀土矿床提供了全球超过90%的重稀土,是我国优势的战略性关键金属矿产资源。掌握这类矿床的成矿机制和禀赋特征,可为增加稀土资源储量和高效利用稀土资源提供理论支撑。离子吸附型稀土矿床主要发育在富稀土花岗岩、浅变质岩及火山岩的风化壳中。基岩中的(含)稀土矿物是风化壳中离子态稀土的主要来源,其矿物组合很大程度上决定了稀土矿床的禀赋和分异特征。在物理-化学风化和微生物作用下,造岩矿物、含稀土矿物和稀土独立矿物逐渐溶解,使稀土元素活化和再富集。一方面,母岩风化形成的黏土矿物和铁锰氧化物具有较大的比表面积和一定的表面电荷密度,是稀土离子的主要载体;另一方面,稀土离子通过离子交换、表面吸附与络合、共沉淀,以及形成次生稀土矿物等途径富集在次生矿物表面,其富集-分异特征和赋存状态受矿物类型、pH、微生物活动等因素所控制。利用高分辨透射电镜结合选区电子衍射和电子能量损失谱,以及同步辐射X射线吸收精细结构谱,有望在原子级尺度查明稀土的微观赋存状态。未来研究需更多关注基岩中(含)稀土矿物组合及其演化路径的制约因素、微生物风化对离子吸附型稀土矿床成矿作用的约束,以及稀土元素的微观赋存状态等问题。  相似文献   

4.
Mineralogy of granulated wood ash from a heating plant in Kalmar, Sweden   总被引:3,自引:0,他引:3  
The central heating plant of Kalmar, Sweden produces 200-300 tons wood ash every year. A stabilised material for nutrient recycling is produced by adding water and dolomite to the wood ash and granulating the mixture. Combined mineralogy and chemistry can be used to interpret the transformation processes that occur during hardening and weathering of the granules, thus leading to a possibility to refine the production process and final characteristics of the granules. Mineralogy was separately studied in the wood ash, dolomite, self-hardened wood ash and granules by X-ray diffraction. Magnesium- and calcium-containing minerals are most common in the ash materials in the present study. The amounts of portlandite and calcite present in self-hardened and granulated ash samples are clearly higher than those in the untreated ash, showing that these minerals are formed during the treatments. Additionally, one potassium-containing secondary mineral, syngenite, is formed during the self-hardening of wood ash. Quartz, dolomite and the Fe-K-Mg-silicate in the granules originate from dolomite. The secondary minerals gypsum and calcium silicate hydrate are present in the granules. Portlandite occurs only in control granules in the field study. This suggests that hardening of granules continues in the field and portlandite is transformed into calcite. After up to 3 years on forest soil, the crystalline compounds dolomite, calcite, quartz, ankerite, albite and alumohydrocalcite are present in granules, of which alumohydrocalcite is formed as a secondary mineral in the field. These results suggest that the dissolution of granulated wood ash is strongly delayed compared with untreated wood ash and self-hardened wood ash because of the formation of less soluble compounds during the granulation process.  相似文献   

5.
微生物影响硅酸盐矿物风化作用的模拟试验   总被引:18,自引:1,他引:17  
研究了硅酸盐细菌对矿物的风化作用。选用土壤中常见的钾长石、伊利石等矿物作为细菌风化作用的对象,通过在含有矿物颗粒的无氮培养基中培养硅酸盐细菌,使其在培养液中与矿物颗粒发生相互作用,再取样并处理后进行电镜观察和X-射线衍射分析。电镜观察结果表明细菌对矿物试样表面确实发生了溶蚀作用,被细菌作用后的矿粉,颗粒浑圆,边缘模糊不清,表面呈凹凸不平状,矿物颗粒被大量的菌体物质所覆盖。用X-射线衍射分析检测到细菌对具不同晶体结构矿物的“选择性”破坏作用,在有多种矿物同时存在的情况下,细菌对较易分解的矿物破坏作用速度较快。结合矿物学与微生物学相关知识,初步分析了细菌培养液中细菌与矿物界面之间的相互作用以及土壤生态系统中矿物的生物风化作用过程。  相似文献   

6.
Clay mineralogy and major-element geochemistry of 35 surface sediment samples collected in 21 major to moderate rivers of Luzon, Philippines are used to evaluate the present chemical weathering process. The clay mineral assemblage consists mainly of smectite (average 86%) with minor kaolinite (9%) and chlorite (5%) and very scarce illite (1%), and does not show strong island-wide differences. The major element results of both bulk and clay-fraction sediments indicate that the formation of clay minerals is accompanied by leaching of Ca and Na first and of Fe and Mn thereafter during the chemical weathering process. A low-moderate chemical weathering degree of bulk sediments and a moderate-intensive degree of clay-fraction sediments are obtained in Luzon rivers based on proxies of chemical index of alteration (CIA) and smectite crystallinity. It is suggested that the majority of andesitic–basaltic volcanic and sedimentary rocks along with the tectonically active geological setting and sub-tropical East Asian monsoon climate are responsible for the predominance of smectite in the clay mineral assemblage.  相似文献   

7.
本文系统总结了沉积岩定年的意义和常用的定年手段,详细介绍了火山灰锆石U-Pb定年在沉积岩定年上的应用。从火山事件层的分布、火山灰夹层的识别、火山灰锆石的区分、应用实例等方面对前人的研究进行概述,旨在为科研工作者运用火山灰锆石U-Pb定年提供借鉴经验。与传统的成岩矿物K-Ar/Ar-Ar和Rb-Sr定年技术相比,火山灰锆石U-Pb定年在沉积岩定年上具有显著的优势。火山灰夹层具有广泛性和等时性,且锆石U-Pb同位素体系不容易受到扰动,因此火山灰锆石U-Pb定年是高精度沉积岩定年的首选方案。沉积岩定年涉及到野外观察、样品采集、室内岩相学观察及地质年代学分析和年龄解释等多个环节。在这些环节中,识别火山灰夹层是最关键的一点,也是一大难点。这需要明确火山灰夹层的岩石类型并了解火山事件沉积层的分布,在此基础上通过野外观察和室内研究进一步判别,这样可以更加准确地识别出火山灰夹层。此外,火山灰锆石定年需要区分火山灰锆石、碎屑锆石、继承/捕获锆石,可以通过矿物形态学和矿物化学特征来加以区分。  相似文献   

8.
Arieh Singer 《Earth》1980,15(4):303-326
The interpretation of paleoclays for paleoclimatic purposes is based on five major assumptions: (1) clay mineral formation is directly related to climatic parameters; (2) once formed in the weathering milieu, clay minerals are stable and do not change any more as long as the climate remains stable (pre-burial stability); (3) clay mineral assemblages are uniform throughout the weathering profile; (4) once formed or deposited and buried, clay minerals are stable (post-burial stability); (5) the sensitivity of clay minerals towards environmental factors is uniform. All these assumptions have only a limited validity. Clay mineral formation is in few cases directly related to climatic parameters, nor do clay minerals always represent the stable end products in equilibrium with environmental factors. The vertical distribution pattern of authigenically formed clay minerals is seldom monomineralic. Post-depositional changes are not infrequent. The sensitivity of clay minerals to environmental factors is variable. The use of paleoclays occurring in paleosols and weathering profiles is reviewed. Paleoclays occurring in paleosols or weathering profiles are, in well-defined situations, suitable for paleoclimatic interpretation. At our present state of knowledge, references as to the nature of climates of the past that are based solely on the interpretation of paleoclays are warranted only in exceptional cases. Authigenic occurrences of clay minerals with limited stability fields that can be used as ‘marker minerals’ and the isotopic composition of paleoclay minerals promise, with future research, to increase the value of paleoclays as paleoclimatic indicators.  相似文献   

9.
Fine fractions of soils on the Barton Peninsula, King George Island, West Antarctica have been forming during the last 6000 yr since the last deglaciation. Texturally, they are mostly composed of mineral and rock fragments with some volcanic ashes, which are also indicated by geochemical compositions representing for the nonclay silicate minerals and low values of chemical index of alteration. No significant changes are observed in major- and trace element abundances. Such geochemical characteristics suggest that chemical weathering of bedrocks on the Barton Peninsula seems insignificant and that the soils are composed of physically weathered mineral and rock fragments which are mixed with eolian additions of volcanic ashes and Patagonian dusts. Chondrite-normalized rare earth element (REE) distribution patterns of the Barton Peninsula soils are slightly different from those of bedrocks, indicating that the REE abundances and characteristics were influenced by eolian additions. Mixing calculations, which mass-balance the REEs, suggest that volcanic ashes blown from Deception Island were the major eolian contributor, followed by atmospheric dusts sourced from Patagonia, South America. Even in the warmer and humid climatic conditions in the maritime Antarctic region, the chemical weathering of bedrocks appears to be insignificant, probably due to the relatively short duration of weathering since the last deglaciation.  相似文献   

10.
Increasingly complex life forms were found in older biological soil crusts in the Gurbantaunggut Desert in Northwestern China. These crusts may play a critical role in mineral erosion and desert soil formation by modifying the weathering environment and ultimately affecting mineralogical variance. To test this hypothesis, variations in the morphological features and mineralogical components of successional biological soil crusts at 1 cm were studied by optical microscopy, SEM and grain size analysis. Concentrations of erosion-resistant minerals decreased with crust succession, while minerals susceptible to weathering increased with crust development. Neogenetic minerals were found in late stage crusts, but not in early stage crusts. Silt and clay concentrations were highest in early formation crusts and soil mean particle size decreased with crust succession. Cyanobacteria, lichen and moss were shown to erode and etch rocks, and secondary minerals produced by weathering were localized with the living organisms. Thus, more developed crusts appeared to contribute to greater mineral weathering and may be a major cause of mineralogical variance seen in the Gurbantunggut Desert. The greater activity and complexity of older crusts, as well as their improved moisture condition may function to accelerate mineral weathering. Therefore, protection and recovery of biological crusts is vital for desert soil formation.  相似文献   

11.
Bacillus mucilaginosus is a common soil bacterium,and usually used as a model bacterium in studying microbe-mineral interactions.Several reaction mechanisms of B.mucilaginosus weathering silicate minerals were proposed.However,the molecule mechanisms and detailed processes were still unclear.In this paper,bacterium-mineral interactions were studied in terms of variations in pH value over the experimental period,variations in mineral composition,weathering rates of silicate minerals and volatile metabolites in the culture medium,etc.,to further explore the bacterium-mineral interaction mechanisms.The results showed that B.mucilaginosus could enhance silicate mineral weathering obviously.The weathering rates were quite different for various kinds of silicate minerals,and the weathering rate of weathered adamellite could reach 150 mg/m2/d.Although B.mucilaginosus produced little acidic substance,pH in the microenvironment of bacterium-mineral complex might be far lower than that of the circumjacent environment;a large amount of acetic acid was found in the metabolites,and was likely to play an important role as a ligand.These results appear to suggest that acidolysis and ligand degradation are the main mechanisms of B.mucilaginosus dissolving silicate minerals,the formation of bacterium-mineral complexes is the necessary condition for the bacteria weathering silicate minerals,and extracelluar polysaccharides played important roles in bacterium-mineral interaction processes by forming bacterium-mineral complexes and maintaining the spe-cial physicochemical properties of microenvironment.  相似文献   

12.
长石风化作用及影响因素分析   总被引:6,自引:0,他引:6       下载免费PDF全文
长石类矿物是地壳中最常见的硅酸盐矿物,其风化作用对地球表面环境有显著影响,因而是风化作用研究的重点矿物之一。文中以长石为例,对硅酸盐矿物的风化作用研究现状从矿物的自然风化、模拟矿物化学风化和矿物的生物风化3个方面进行阐述;对影响矿物风化的各种因素及其在风化过程中所起的作用,以及长石微生物风化作用的机理和过程进行分析;指出目前硅酸盐矿物风化研究中存在的问题,并对未来的发展方向提出建议,指出对微生物-矿物复合体微环境物理化学性质的深入研究可能成为揭示微生物-矿物相互作用机理的一个突破口。  相似文献   

13.
The major, trace and rare earth elements geochemistry and clay mineral compositions in the river bed sediments from lower reaches of Godavari river suggest that they are derived from weathering of felsic rocks. Trace and rare earth elemental compositions indicate evidence of sedimentary sorting during transportation and deposition. Lower concentrations of transition elements, such as V, Ni and Cr imply enrichment of felsic minerals in these bed sediments. The REE pattern in lower Godavari sediments is influenced by the degree of source rock weathering. The light rare earth elements (LREE) content are indicating greater fractionation compared to the heavy rare earth elements (HREE). A striking relationship is observed between TiO2 and gZREE content suggesting a strong control by LREE-enriched titaniferous minerals on REE chemistry. Shale-normalized REE pattern demonstrate a positive Eu anomaly, suggesting weathering of feldspar and their secondary products, which are enriched in Eu. Chondrite-normalised REE pattern is characteristic of felsic volcanic, granites and gnessic source rocks. Trace elemental compositions in sediments located near urban areas suggest influence of anthropogenic activity. Chemical Index of Alteration (CIA) is high (avg. 65.76), suggesting a moderate chemical weathering environment. X-ray diffraction analysis of clay fraction shows predominance of clay minerals that are formed because of the chemical weathering of felsic rocks.  相似文献   

14.
贵州威宁地区宣威组底部稀土含矿岩系的成因类型一直有较大争议.在野外实地调查的基础上,运用矿物学、岩相古地理与地球化学等手段进行了系统性研究.结果显示,区内二叠系宣威组底部稀土含矿岩系广泛分布,连续性好,含矿段厚度为2~16 m,并伴生有铌、锆、镓等元素;稀土氧化物平均品位0.15%,最高可达1.60%.主量、微量和稀土元素分析表明威宁地区稀土含矿岩系中含有来自玄武岩及火山灰的典型矿物,稀土配分模式与玄武岩相比具有继承性,研究区化学风化作用较强、成分成熟度较高代表其经过长距离搬运,遭受了改造;峨眉山玄武岩为该稀土层提供了主要物质来源,稀土层受源岩成分的控制,经历了沉积分选及再循环作用,还遭受了来自上地壳的中酸性岩浆物质源区的混染.其成因机制可能为在晚二叠世炎热、潮湿、强风化的环境中,玄武岩经过风化剥蚀后,搬运至沉积基底低洼处的三角洲平原亚相中的洪泛平原微相环境,与火山灰一同沉积沉淀,在风化和淋滤作用下稀土等元素以离子形式被解析出来,从而被吸附性强的高岭石等黏土矿物吸附于表面,或进入矿物晶格,形成富稀土层.   相似文献   

15.
Major and trace element analyses of representative samples of various types of banded iron-formation and its various minerals, associated sediments, iron ores and volcanic tuff from different localities of Orissa, India, are presented in this paper. The Orissa banded iron-formation is classified as Precambrian banded iron formation and is similar to the oxide facies iron formation of Lake Superior type. The Orissa iron formation consists only of iron oxide and silica with total absence of iron silicate, sulfide and carbonate minerals, and is devoid of terrigenous material. The trace element content suggests the source of the underlying quartzite to be a continental igneous rock mass, while the interbedded tuff are of undoubted volcanic origin. The overlying iron formation were chemically precipitated as oxidate sediments in which the principal iron mineral — magnetite — was formed at low temperature in a shallow marine environment. From the overwhelming similarity of major and trace element contents of all the samples from the different localities, it is postulated that these detached outcrops originated in the same continous basin.  相似文献   

16.
Chemical weathering of silicate minerals consumes atmospheric CO2 and is a fundamental component of geochemical cycles and of the climate system on long timescales. Artificial acceleration of such weathering (“enhanced weathering”) has recently been proposed as a method of mitigating anthropogenic climate change, by adding fine-grained silicate materials to continental surfaces. The efficacy of such intervention in the carbon cycle strongly depends on the mineral dissolution rates that occur, but these rates remain uncertain. Dissolution rates determined from catchment scale investigations are generally several orders of magnitude slower than those predicted from kinetic information derived from laboratory studies. Here we present results from laboratory flow-through dissolution experiments which seek to bridge this observational discrepancy by using columns of soil returned to the laboratory from a field site. We constrain the dissolution rate of olivine added to the top of one of these columns, while maintaining much of the complexity inherent in the soil environment. Continual addition of water to the top of the soil columns, and analysis of elemental composition of waters exiting at the base was conducted for a period of five months, and the solid and leachable composition of the soils was also assessed before and after the experiments. Chemical results indicate clear release of Mg2+ from the dissolution of olivine and, by comparison with a control case, allow the rate of olivine dissolution to be estimated between 10−16.4 and 10−15.5 moles(Mg) cm−2 s−1. Measurements also allow secondary mineral formation in the soil to be assessed, and suggest that no significant secondary uptake of Mg2+ has occurred. The olivine dissolution rates are intermediate between those of pure laboratory and field studies and provide a useful constraint on weathering processes in natural environments, such as during soil profile deepening or the addition of mineral dust or volcanic ash to soils surfaces. The dissolution rates also provide critical information for the assessment of enhanced weathering including the expected surface-area and energy requirements.  相似文献   

17.
燕山中段 (主要是指北京市平谷县内 )大红峪组火山岩 ,在火山活动的间歇期 ,存在古风化现象。古风化使火山岩的成分、结构遭受改变 ,以致影响对岩石岩性的确定及同位素年龄的测定等。不同的地质环境 ,其风化情景不同。文中论述了火山岩的三种风化带及其不同的风化环境特征 ,并与现代风化带进行了对比。研究大红峪组的古风化现象 ,有利于更好地认识当时的地质环境。  相似文献   

18.
丹霞地貌砂岩的微观化学风化作用电子探针研究   总被引:2,自引:0,他引:2  
利用偏光显微镜观察、电子探针分析等手段对江西龙虎山丹霞地貌崖壁砂岩的微观化学风化作用的发展过程进行了研究,重点观测黑云母蛭石化以及长石黏土化过程中矿物组分的变化,进而探讨丹霞地貌砂岩的微观化学风化作用机理。在微观化学风化下,强风化层胶结物中的方解石迅速分解流失,从而导致黑云母大量发生蛭石化和铁的氧化物在矿物边部富集;长石则大量发生黏土化而使高岭石、石英等矿物富集。研究表明丹霞地貌砂岩在微观化学风化作用下矿物分解以及新矿物的形成都破坏原来岩石中的力学平衡,因而风化作用在宏观上表现为岩面片状剥离和重力崩塌,据此推断更大尺度的风化作用可能与岩石中矿物的微观化学风化作用存在着密切联系,是微观化学风化作用长期累积后在宏观上的综合表现。   相似文献   

19.
Chemical analyses of high-temperature coal ashes were used to establish the distribution, association and relationship between major inorganic elements such as Si, Al, Ti, Fe, Mn, Mg, Ca, Na, K, P, S and CO2 in a number of New South Wales economic coal seams and to study the composition and character of mineral matter in these coals. The methods used for the evaluation of the data were statistical analysis (univariate and bivariate), ratios, normative mineral composition and variation diagrams.The distribution of major and minor inorganic elements in coal appears to be related to the amount of mineral matter occurring in coal (determined as ash yield) and its mineralogical composition. The quantitative variations in levels of these elements can be classified as in-seam and inter-seam variations. In-seam variations are largely ash yield dependent, i.e. the levels of an element (wt.%) in coal increase along with the increase of its ash content (wt.%). The inter-seam variations are more complex and are related to both ash yield and to the mineralogical composition of mineral matter.The principal components of New South Wales coal ashes are silicon and aluminium. Silicon may be present as silica or combined with aluminium in different proportions to form clay minerals, such as kaolinite, illite, mixed-layer clay minerals, and smectite. Thus, the concentration levels of aluminium in relation to silicon in coal may give an indication about the character of clay minerals present in coal.Ratios and correlation coefficients of element pairs such as Al and Ti, Na and K, and Na and Al were used to determine differences in the chemical composition of high-temperature coal ashes of seams from various stratigraphic positions and provinces. In some seams the nature of associations of these elements is more significant than in others. This is interpreted as being a product of specific environmental conditions controlling the deposition of these seams.The nature of clay mineral content in coal is believed to be a major reason for chemical dissimilarities found between seams of various stratigraphic levels and geographic areas. For example, in some seams kaolinite, in others expandable clay minerals are dominant. The vertical distribution of these minerals has a stratigraphic significance. Within the Upper Permian Newcastle Coal Measures a trend from kaolinite-rich through to expandable minerals-rich and to kaolinite-rich assemblages can be observed from the bottom to the top. These changes are noticeably gradual.All significant variations in the clay mineral assemblages could relate to the long-term changes in the provenance of sedimentary material, weathering conditions in the source area and the rate of subsidence in the place of deposition. These changes are associated with major tectonic events controlling the history of sedimentation within the paralic Sydney and Gunnedah Basins during the Permian.  相似文献   

20.
Seven spinel-group minerals in various geological settings have been revealed in the rocks of the Khibiny pluton. Hercynite, gahnite, and vuorelainenite occur only in xenoliths of hornfels after volcanic and sedimentary rocks, whereas spinel and magnesiochromite occur in alkaline ultramafic rocks of dike series. Franklinite has been discovered in a low-temperature hydrothermal vein. Ubiquitous magnetite is abundant in foyaite, foidolites, alkaline ultrabasic rocks, and pegmatite and hydrothermal veins and may even be the main mineral in some foidolite varieties. The spinel-group minerals are characterized by various chemical compositions due to the fractionation of nepheline syenites resulting in formation of the Main ring of foidolites and apatite-nepheline ore. Like most other minerals found throughout the pluton, magnetite is characterized by variation in the chemical composition along the radial line from the contact with country Proterozoic volcanic rocks to the geometric center of the pluton. Toward the center, the total Ti and Mn contents in magnetite increase from 5–15 up to 40 at %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号