首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the paper a recently proposed method for damage localization and quantification of RC-structures from response measurements is tested on experimental data. The method investigated requires at least one response measurement along the structures and the ground surface acceleration. Further, the two lowest time-varying eigenfrequencies of the structure must be identified. The data considered are sampled from a series of three RC-frame model tests performed at the structural laboratory at Aalborg University, Denmark during the autumn of 1996. The frames in the test series were exposed to two or three series of ground motions of increasing magnitude. After each of these runs the damage state of the frame was examined and each storey of the frame were classified into one of the following six classifications: undamaged, cracked, lightly damaged, damaged, severely damaged or collapse. During each of the ground motion events the storey accelerations were measured by accelerometers. After application of the last earthquake sequence to the structure the frames were cut into pieces and each of the beams and columns was statically tested and damage assessment was performed using the obtained stiffnesses. The damage in the storeys determined by the suggested method was then compared to the damage classification from the visual inspection as well as the static tests. It was found that especially in the cases where the damage is concentrated in a certain area of the structure a very good damage assessment is obtained using the suggested method. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
A 2-bay, 6-storey model test reinforced concrete frame (scale l:5) subjected to sequential earthquakes of increasing magnitude is considered in this paper. The frame was designed with a weak storey, in which the columns are weakened by using thinner and weaker reinforcement bars. The aim of the work is to study the global response to a damaging strong motion earthquake event of such buildings. Special emphasis is put on examining to what extent damage in the weak storey can be identified from global response measurements during an earthquake where the structure survives, and what level of excitation is necessary in order to identify the weak storey. Furthermore, emphasis is put on examining how and where damage develops in the structure and especially how the weak storey accumulates damage. Besides the damage in each storey the structure is identified by a static load at the top storey while measuring the horizontal displacement of the stories and also visual inspection is performed. From the investigations it is found that the reason for failure in the weak storey is that the absolute value of the stiffness deteriorates to a critical value where large plastic deformations occur and the storey is not capable of transferring the shear forces from the storeys above so failure is unavoidable.  相似文献   

3.
This paper explores the potential of a new time domain identification procedure to detect changes in structural dynamic characteristics on the basis of measurements. This procedure is verified using mathematical models simulated on the computer. The experiments involve two eight-storey steel structures with and without energy devices, and a 47-storey building at San Francisco during the Loma Prieta earthquake. The recursive instrumental variable method and extended Kalman filter algorithm are used as identification algorithms. An exploratory investigation is made of the usefulness of various indices, such as mode shape and storey drift, that can be extracted accurately from identification to quantify changes in the characteristics of the physical system. It is concluded that the change of storey drift is the key information to the detection of changes in structural parameters, from which the proposed system identification algorithm can be applied with an appropriate inelastic model to simulate the dynamic behaviour of real structures undergoing strong ground motion excitations.  相似文献   

4.
动态监测方法在理论上是可行的,方法也是简便的,有着广阔的发展前景,但是,由于结构的复杂性,测量技术的局限性,单纯依赖理论计算分析诊断结构的病害状况并不总是容易实现的,本文介绍一种依据基本振型的振动反应求局刚度的方法,简单,实用,实践中如果辅以调查,考察,类比,分析...,可作出更切合实际的可靠诊断,文中还介绍一些实例,有助于启迪,开拓动态监测的应用领域。  相似文献   

5.
Local measurement for structural health monitoring   总被引:1,自引:0,他引:1  
Localized nature of damage in structures requires local measurements for structural health monitoring. The local measurement means to measure the local, usually higher modes of the vibration in a structure. Three fundamental issues about the local measurement for structural health monitoring including (1) the necessity of making local measurement, (2) the difficulty of making local measurement and (3) how to make local measurement are addressed in this paper. The results from both the analysis and the tests show that the local measurement can successfully monitor the structural health status as longas the local mod es are excited. Unfortunately, the results also illustrate that it is difficult to excite local modes in a structure. Therefore, in order to carry structural health monitoring into effect, we must ( 1 ) ensure that the local modes are excited, and (2) deploy enough sensors in a structure so that the local modes can be monitored.  相似文献   

6.
The results from an experimental blasting program that was performed at the special explosives training field of the General Directorate of Security in Ankara, where new residential blocks are planned to be constructed nearby, are presented. With the objective of estimating the blast-induced ground vibration effects on the proposed structures, various blasting parameters of nineteen surface and underground explosions were recorded in two directions at three measurement stations. Site-specific empirical relationships between peak particle velocity, the amount of explosive and the distance were developed. These relationships were used to construct a practical blasting chart, which gives the maximum amount of explosive to be used as a function of distance, for future underground and surface blasting operations in the training field. Since the use of peak particle velocity in the field of civil engineering has been limited so far, site-specific parameters were also estimated to predict the blast-induced horizontal peak ground acceleration. Then, an attempt was made to investigate the dynamic responses of four and six storey reinforced concrete structures that consist of frame and shear wall type structural systems under the measured accelerations using finite element analysis. The limitations of this approach were discussed within the context of damage estimation.  相似文献   

7.
A moderate size earthquake of magnitude 5 occurred at Whagae‐Myun, Hadong‐Gun, Kyongsangnam‐Do, Korea on 4 July 1936. It caused severe damage to the buildings and other structures in Sang‐Gye‐Sa, a famous and beautiful Buddhist temple. A five‐storey stone pagoda was standing in front of Keumdang, the main building. The top component of the pagoda was tipped over and fell down to the ground during the earthquake. In order to have a quantitative estimate of the intensity of the earthquake, a full‐scale model was constructed through a rigorous verification process. The completed model was mounted on a shaking table and subjected to two kinds of dynamic test: exploratory test and fragility test. The exploratory test was performed with low intensity shaking. In the fragility test, the failure modes of the model were investigated while increasing the shaking intensity. The construction details of the model are described and test procedures are reported. Important relations between failure modes and characteristics of ground motion were obtained from the tests. The intensity of the 1936 earthquake was estimated from the examination of test results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The extended N2 method taking into account higher mode effects in elevation   总被引:1,自引:0,他引:1  
The N2 method has been extended in order to take into account higher mode effects in elevation. The extension is based on the assumption that the structure remains in the elastic range when vibrating in higher modes. The seismic demand in terms of displacements and storey drifts can be obtained by enveloping the results of basic pushover analysis and the results of standard elastic modal analysis. The approach is consistent with the extended N2 method used for plan‐asymmetric buildings. The proposed procedure was applied to three variants of three steel frame buildings used in the SAC project. The structural response was investigated for two sets of ground motions. Different ground motion intensities were used in order to investigate the influence of the magnitude of plastic deformations. The N2 results were compared with the results of nonlinear response‐history analysis, two other pushover‐based methods (modal pushover analysis (MPA) and modified MPA (MMPA)), and pushover analysis without consideration of higher modes. It was found that a considerable influence of higher modes on storey drifts is present at the upper part of medium‐and high‐rise structures. This effect is the largest in the case of elastic behaviour and decreases with ground motion intensity. The higher mode effects also depend on the spectral shape. The approximate methods (extended N2, MPA and MMPA) are able to provide fair estimates of response in the case of the test examples. Accuracy decreases with the height of the building, and with the intensity of ground motion. The N2 results are generally conservative. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The collapse of the Olive View Hospital Psychiatric Day Clinic is studied using three biaxial force-deflection models to represent the columns of the building. These models are: shear collapse, elastic and inelastic. The biaxial models for shear and inelastic behaviour are new developments and are useful for non-linear structural dynamic studies. In the present study, the shear collapse model is intended to represent the actual prototype behaviour. The inelastic model, which is based on a hardening rule of plasticity, is used to study the performance of a hypothetical structure with the same storey shear capacity as the prototype but which exhibits ductile behaviour. The prototype structure had a base storey shear capacity of 25 per cent, and actually failed by shearing of all of the first floor columns. In the present study, the shear collapse model predicted this behaviour even with the El Centro accelerogram as input. This result may have far-reaching significance because many low-rise reinforced concrete buildings which were designed according to recent codes have similar storey shear capacity coefficients and column properties. According to this study, such buildings may collapse even in a moderate earthquake. In the inelastic representation, the structure was found to have a base storey shear capacity of 80 per cent when moment hinging was assumed to occur at the top and bottom of the columns. Even with this high strength capacity, the permanent offset computed from the inelastic model corresponded to a ductility factor of 5 when the Pacoima Dam accelerogram was used as input. On the basis of damage to other structures observed on the site, it seems likely that ground motion of about the Pacoima Dam intensity occurred at Olive View. From this it is concluded that a low-rise ductile frame concrete building, even with this high shear force capacity, may not prove satisfactory for hospital use when subjected to strong ground motion.  相似文献   

10.
A method for parametric system identification of classically damped linear system in frequency domain is adopted and extended for non‐classically damped linear systems subjected up to six components of earthquake ground motions. This method is able to work in multi‐input/multi‐output (MIMO) case. The response of a two‐degree‐of‐freedom model with non‐classical damping, excited by one‐component earthquake ground motion, is simulated and used to verify the proposed system identification method in the single‐input/multi‐output case. Also, the records of a 10 storey real building during the Northridge earthquake is used to verify the proposed system identification method in the MIMO case. In this case, at first, a single‐input/multi‐output assumption is considered for the system and modal parameters are identified, then other components of earthquake ground motions are added, respectively, and the modal parameters are identified again. This procedure is repeated until all four components of earthquake ground motions which are measured at the base level of the building are included in the identification process. The results of identification of real building show that consideration of non‐classical damping and inclusion of the multi‐components effect of earthquake ground motions can improve the least‐squares match between the finite Fourier transforms of recorded and calculated acceleration responses. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
A nonlinear hysteretic model for the response and local damage analyses of reinforced concrete shear frames subject to earthquake excitation is proposed, and, the model is applied to analyse midbroken reinforced concrete (RC) structures due to earthquake loads. Each storey of the shear frame is represented by a Clough and Johnston hysteretic oscillator with degrading elastic fraction of the restoring force. The local damage is numerically quantified in the domain [0,1] using the maximum softening damage indicators which are defined in closed form based on the variation of the eigenfrequency of the local oscillators due to the local stiffness and strength deterioration. The proposed method of response and damage analyses is illustrated using a sample 5 storey shear frame with a weak third storey in stiffness and/or strength subject to sinusoidal and simulated earthquake excitations for which the horizontal component of the ground motion is modeled as a stationary Gaussian stochastic process with Kanai-Tajimi spectrum, multiplied by an envelope function.  相似文献   

12.
13.
When subjected to long‐period ground motions, high‐rise buildings' upper floors undergo large responses. Furniture and nonstructural components are susceptible to significant damage in such events. This paper proposes a full‐scale substructure shaking table test to reproduce large floor responses of high‐rise buildings. The response at the top floor of a virtual 30‐story building model subjected to a synthesized long‐period ground motion is taken as a target wave for reproduction. Since a shaking table has difficulties in directly reproducing such large responses due to various capacity limitations, a rubber‐and‐mass system is proposed to amplify the table motion. To achieve an accurate reproduction of the floor responses, a control algorithm called the open‐loop inverse dynamics compensation via simulation (IDCS) algorithm is used to generate a special input wave for the shaking table. To implement the IDCS algorithm, the model matching method and the H method are adopted to construct the controller. A numerical example is presented to illustrate the open‐loop IDCS algorithm and compare the performance of different methods of controller design. A series of full‐scale substructure shaking table tests are conducted in E‐Defense to verify the effectiveness of the proposed method and examine the seismic behavior of furniture. The test results demonstrate that the rubber‐and‐mass system is capable of amplifying the table motion by a factor of about 3.5 for the maximum velocity and displacement, and the substructure shaking table test can reproduce the large floor responses for a few minutes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
空中人工引发雷电先导过程的特征分析   总被引:7,自引:3,他引:7       下载免费PDF全文
利用闪电电场变化仪对空中人工引发雷电引起的电场变化进行了两站同步观测,并结合高时间分辨率的光学观测资料的分析研究,揭示了一次空中引发雷电先导物理过程的特征. 当携带金属导线的火箭上升到几百米高度时,在金属导线的上端和下端激发产生了一个双向传输的先导,当向下的负先导接近地面时,一个向上的正连接先导由地面激发,正负先导的平均传播速度为0.86×105m/s,随着向下负先导的接地,将产生一个小回击过程,而由金属导线上端激发的向上正先导的传播速度为1.1×105m/s.  相似文献   

15.
This paper illustrates the design of a four-storey, three-bay, moment-resisting, planar steel frame. Non-linear step-by-step integration is used as the analysis technique within the design process itself rather than as a check at the end of the design process. The method of design directly quantifies the accepted seismic-resistant design philosophy that a properly designed structure: (1) resists moderate ground motion without structural damage, and (2) resists severe ground motion without collapse. Actual ground motion accelerograms are selected and scaled to levels representing moderate and severe ground motions. Constraints quantifying structural damage and limited non-structural damage are constructed for the case of moderate ground motion, along with constraints quantifying collapse and limited structural damage for the case of severe ground motion. In addition serviceability constraints are imposed on structural behaviour under gravity loads only. Objective functions include the minimization of structural volume as well as the minimization of response quantities such as storey drifts and inelastically dissipated energy. A sophisticated optimization algorithm is utilized to solve the resulting mathematical programming problem. Comparative results concerning the computational phase as well as performance of both preliminary and final designs are presented. The practicality and reliability of the design method are assessed.  相似文献   

16.
This paper presents two methods to perform system identification at the substructural level, taking advantage of reduction in the number of unknowns and degrees of freedom (DOFs) involved, for damage assessment of fairly large structures. The first method is based on first‐order state space formulation of the substructure where the eigensystem realization algorithm (ERA) and the observer/Kalman filter identification (OKID) are used. Identification at the global level is then performed to obtain the second‐order model parameters. In the second method, identification is performed at the substructural level in both the first‐ and second‐order model identification. Both methods are illustrated using numerical simulation studies where results indicate their significantly better performance than identification using the global structure, in terms of efficiency and accuracy. A 12‐DOF system and a fairly large structural system with 50 DOFs are used where the effects of noisy data are considered. In addition to numerical simulation studies, laboratory experiments involving an eight‐storey frame model are carried out to illustrate the performance of the proposed method. The identification results presented in terms of the stiffness integrity index show that the proposed methodology is able to locate and quantify damage fairly accurately. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
A hypothetical 5‐storey prototype structure with reinforced concrete (RC) frame and unreinforced masonry (URM) wall is considered. The paper focuses on a shake‐table experiment conducted on a substructure of this prototype consisting of the middle bays of its first storey. A test structure is constructed to represent the selected substructure and the relationship between demand parameters of the test structure and those of the prototype structure is established using computational modelling. The dynamic properties of the test structure are determined using a number of preliminary tests before performing the shake‐table experiments. Based on these tests and results obtained from computational modelling of the test structure, the test ground motions and the sequence of shakings are determined. The results of the shake‐table tests in terms of the global and local responses and the effects of the URM infill wall on the structural behaviour and the dynamic properties of the RC test structure are presented. Finally, the test results are compared to analytical ones obtained from further computational modelling of the test structure subjected to the measured shake‐table accelerations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The study of the site effects and the microzonation of a part of the metropolitan Sofia, based on the modelling of seismic ground motion along three cross-sections are performed. Realistic synthetic strong motion waveforms are computed for scenario earthquakes (M=7) applying a hybrid modelling method, based on the modal summation technique and finite differences scheme. The synthesized ground motion time histories are source and site specific. The site amplification is determined in terms of response spectra ratio (RSR). A suite of time histories and quantities of earthquake engineering interest are provided. The results of this study constitute a “database” that describes the ground shaking of the urban area. A case study of experiment-based assessment of vulnerability of a cast-in-situ single storey, industrial, reinforced concrete frame, designed according to Eurocodes 2 and 8 is presented. The main characteristics of damage index and storey drift are discussed for the purposes of microzonation.  相似文献   

19.
基于时域相关分析的结构损伤指数   总被引:3,自引:3,他引:0  
阐述了一种基于时域相关分析的结构损伤指数,并进行了该指数的实验研究,目的是探讨一种对损伤敏感的损伤识别方法。试验模型为具有4根柱子的2层钢框架,模型通过底部4根桩埋在土壤里。在底层柱顶端设置缺口代表损伤,设计了2种损伤,有限元数值模拟分析得到的基频变化率分别为0.42%和0.94%。采用激振器对底板进行正弦激励,激励频率为25Hz。利用顶板和中板响应计算该损伤指数,绘制了损伤指数及其变化率与结构损伤程度的关系曲线。结果显示,该指数对损伤敏感,具有进行损伤判定与标定的潜力。  相似文献   

20.
The presence of stones, solid waste, and other obstructions can deflect small-diameter driven wells during installation, leading to deviations of the well from its intended position. This could lead to erroneous results, especially for measurements of ground water levels by water level meters. A simple method was developed to measure deviations from the intended positions of well screens and determine correction factors required for proper measurement of ground water levels in nonvertical wells. The method is based upon measurement of the hydrostatic pressure in the bottom of a water column, which is established in the well lube. The method was used to correct water level measurement in wells driven through a landfill site. Errors of up to 27 cm in water level were observed at the landfill site. The correction of the water level measurements had a significant effect on estimated local ground water flow directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号