首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
俯冲带部分熔融   总被引:3,自引:3,他引:0  
张泽明  丁慧霞  董昕  田作林 《岩石学报》2020,36(9):2589-2615
俯冲带是地幔对流环的下沉翼,是地球内部的重要物理与化学系统。俯冲带具有比周围地幔更低的温度,因此,一般认为俯冲板片并不会发生部分熔融,而是脱水导致上覆地幔楔发生部分熔融。但是,也有研究认为,在水化的洋壳俯冲过程中可以发生部分熔融。特别是在下列情况下,俯冲洋壳的部分熔融是俯冲带岩浆作用的重要方式。年轻的大洋岩石圈发生低角度缓慢俯冲时,洋壳物质可以发生饱和水或脱水熔融,基性岩部分熔融形成埃达克岩。太古代的俯冲带很可能具有与年轻大洋岩石圈俯冲带类似的热结构,俯冲的洋壳板片部分熔融可以形成英云闪长岩-奥长花岗岩-花岗闪长岩。平俯冲大洋高原中的基性岩可以发生部分熔融产生埃达克岩。扩张洋中脊俯冲可以导致板片窗边缘的洋壳部分熔融形成埃达克岩。与俯冲洋壳相比,俯冲的大陆地壳具有很低的水含量,较难发生部分熔融,但在超高压变质陆壳岩石的折返过程中可以经历广泛的脱水熔融。超高压变质岩在地幔深部熔融形成的熔体与地幔相互作用是碰撞造山带富钾岩浆岩的可能成因机制。碰撞造山带的加厚下地壳可经历长期的高温与高压变质和脱水熔融,形成S型花岗岩和埃达克质岩石。  相似文献   

2.
The shift of lava geochemistry between volcanic front to rear-arc volcanoes in active subduction zones is a widespread phenomenon. It is somehow linked to an increase of the slab surface depth of the subducting oceanic lithosphere and increasing thickness of the mantle wedge and new constraints for its causes may improve our understanding of magma generation and element recycling in subduction zones in general. As a case study, this paper focuses on the geochemical composition of lavas from two adjacent volcanic centres from the volcanic front (VF) to rear-arc (RA) transition of the Southern Kamchatkan subduction zone, with the aim to examine whether the shift in lava geochemistry is associated with processes in the mantle wedge or in the subducted oceanic lithosphere or both. The trace element and O-Sr-Nd-Hf-Pb (double-spike)-isotopic composition of the mafic Mutnovsky (VF) and Gorely (RA) lavas in conjunction with geochemical modelling provides constraints for the degree of partial melting in the mantle wedge and the nature of their slab components. Degrees of partial melting are inferred to be significantly higher beneath Mutnovsky (∼18%) than Gorely (∼10%). The Mutnovsky (VF) slab component is dominated by hydrous fluids, derived from subducted sediments and altered oceanic crust, eventually containing minor but variable amounts of sediment melts. The composition of the Gorely slab component strongly points to a hydrous silicate melt, most likely mainly stemming from subducted sediments, although additional fluid-contribution from the underlying altered oceanic crust (AOC) is likely. Moreover, the Hf-Nd-isotope data combined with geochemical modelling suggest progressive break-down of accessory zircon in the melting metasediments. Therefore, the drastic VF to RA shift in basalt chemistry mainly arises from the transition of the nature of the slab component (from hydrous fluid to melt) in conjunction with decreasing degrees of partial melting within ∼15 km across-arc. Finally, systematic variations of key inter-element with high-precision Pb-isotope ratios provide geochemical evidence for a pollution of the Mutnovsky mantle source with Gorely melt components but not vice versa, most likely resulting from trench-ward mantle wedge corner flow. We also present a geodynamic model integrating the location of the Mutnovsky and Gorely volcanic centres and their lava geochemistry with the recently proposed thermal structure of the southern Kamchatkan arc and constraints about phase equilibria in subducted sediments and AOC. Herein, the slab surface hosting the subducted sediments suffers a transition from dehydration to melting above a continuously dehydrating layer of AOC. Wider implications of this study are that an onset of (flush-) sediment melting may ultimately be the main trigger for the VF to RA transition of lava geochemistry in subduction zones.  相似文献   

3.
D. Arcay  M.-P. Doin  E. Tric  R. Bousquet   《Tectonophysics》2007,441(1-4):27-45
At continental subduction initiation, the continental crust buoyancy may induce, first, a convergence slowdown, and second, a compressive stress increase that could lead to the forearc lithosphere rupture. Both processes could influence the slab surface PT conditions, favoring on one side crust partial melting or on the opposite the formation of ultra-high pressure/low temperature (UHP-LT) mineral. We quantify these two effects by performing numerical simulations of subduction. Water transfers are computed as a function of slab dehydration/overlying mantle hydration reactions, and a strength decrease is imposed for hydrated mantle rocks. The model starts with an old oceanic plate ( 100 Ma) subducting for 145.5 Myr with a 5 cm/yr convergence rate. The arc lithosphere is thermally thinned between 100 km and 310 km away from the trench, due to small-scale convection occuring in the water-saturated mantle wedge. We test the influence of convergence slowdown by carrying on subduction with a decreased convergence rate (≤ 2 cm/yr). Surprisingly, the subduction slowdown yields not only a strong slab warming at great depth (> 80 km), but also a significant cooling of the forearc lithosphere at shallower depth. The convergence slowdown increases the subducted crust temperature at 90 km depth to 705 ± 62 °C, depending on the convergence rate reduction, and might thus favor the oceanic crust partial melting in presence of water. For subduction velocities ≤ 1 cm/yr, slab breakoff is triggered 20–32 Myr after slowdown onset, due to a drastic slab thermal weakening in the vicinity of the interplate plane base. At last, the rupture of the weakened forearc is simulated by imposing in the thinnest part of the overlying lithosphere a dipping weakness plane. For convergence with rates ≥ 1 cm/yr, the thinned forearc first shortens, then starts subducting along the slab surface. The forearc lithosphere subduction stops the slab surface warming by hot asthenosphere corner flow, and decreases in a first stage the slab surface temperature to 630 ± 20 °C at 80 km depth, in agreement with PT range inferred from natural records of UHP-LT metamorphism. The subducted crust temperature is further reduced to 405 ± 10 °C for the crust directly buried below the subducting forearc. Such a cold thermal state at great depth has never been sampled in collision zones, suggesting that forearc subduction might not be always required to explain UHP-LT metamorphsim.  相似文献   

4.
西天山特克斯北中酸性火成岩地球化学特征及成因意义   总被引:2,自引:2,他引:0  
朱志敏  赵振华  熊小林 《岩石学报》2012,28(7):2145-2157
新疆西天山特克斯县城北部伊特公路沿线和库勒萨依出露大量中酸性火成岩,伊特公路沿线为石英钠长斑岩,库勒萨依为石英闪长斑岩和花岗闪长斑岩。岩石地球化学和同位素组成研究表明,前者为典型的岛(陆)弧带火成岩,而后者具有埃达克岩的成分特征,两者均为古亚洲洋壳在俯冲过程中岩浆活动的产物。早先俯冲的较冷洋壳板片在深处脱水诱发上覆地幔楔熔融,熔体上升并经历壳幔相互作用等过程引发伊特公路一带弧岩浆活动; 由于洋壳持续俯冲,后来新形成的靠近洋脊的年轻板片由于高热在较浅处直接发生部分熔融形成埃达克岩浆,并上侵至库勒萨依一带。库勒萨依斑岩体SIMS锆石 U-Pb年龄为342.5±2.3Ma,属于早石炭世。两组中酸性火成岩的地球化学特征表明,古亚洲洋(南天山洋)在早石炭世还未完全闭合,洋壳向北的持续俯冲过程造成伊犁-中天山板块南缘广泛的岩浆活动,此时西天山陆壳增生方式主要为侧向增生,增生物质主要为洋壳板片(埃达克岩)和洋壳板片流体交代的地幔楔成分。  相似文献   

5.
We evaluate the pressure–temperature (P–T) conditions of ongoing regional metamorphism at the top of the oceanic crust of the subducted Pacific and Philippine Sea plates through a combination of phase diagrams and hypocenter distribution and based on the dehydration-induced earthquake hypothesis. The brute-force method was employed to find the best match thermal structure to link the hypocenter distribution and dehydration. The estimated thermal structure varies far from the values obtained from numerical simulation. Our estimates are consistent with the qualitative physical prediction for the variation of temperature in different subduction zones and provide quantitative constraints for the models.In northeastern Japan, the P–T path for the top of the oceanic crust turns to the high-T side at a depth of around 90 km. The depth corresponds to the location of the volcanic front and an active convection of the wedge mantle below this depth is suggested. Our computations also reveal the effect of an exceptional scenario beneath the Kanto region. The temperature in the Kanto region, where the cold lid of the Philippine Sea plate prevents heating by the return-flow of mantle wedge above, is much lower than that of northeastern Japan. The subduction of younger Philippine Sea plate leads to a higher-temperature in the oceanic crust. In the central Shikoku region, the thermal structure exhibits high-T/P nature. Heating by shear deformation can explain the high-T/P path in the depth range from 20 to 35 km. The Kyushu area shows moderate type T/P path reaching up to eclogite facies conditions. In the Kii and central Shikoku region, the thermal structure exhibits high-T/P nature. However, the absolute values for the areas seem to have problem in physical context. Our results has risen the significance of sediment subduction in the southwest Japan and requirement for further improvements in this technique including the aspect of variation of the bulk composition of the subducted material.  相似文献   

6.
《Gondwana Research》2010,17(3-4):458-469
We evaluate the pressure–temperature (P–T) conditions of ongoing regional metamorphism at the top of the oceanic crust of the subducted Pacific and Philippine Sea plates through a combination of phase diagrams and hypocenter distribution and based on the dehydration-induced earthquake hypothesis. The brute-force method was employed to find the best match thermal structure to link the hypocenter distribution and dehydration. The estimated thermal structure varies far from the values obtained from numerical simulation. Our estimates are consistent with the qualitative physical prediction for the variation of temperature in different subduction zones and provide quantitative constraints for the models.In northeastern Japan, the P–T path for the top of the oceanic crust turns to the high-T side at a depth of around 90 km. The depth corresponds to the location of the volcanic front and an active convection of the wedge mantle below this depth is suggested. Our computations also reveal the effect of an exceptional scenario beneath the Kanto region. The temperature in the Kanto region, where the cold lid of the Philippine Sea plate prevents heating by the return-flow of mantle wedge above, is much lower than that of northeastern Japan. The subduction of younger Philippine Sea plate leads to a higher-temperature in the oceanic crust. In the central Shikoku region, the thermal structure exhibits high-T/P nature. Heating by shear deformation can explain the high-T/P path in the depth range from 20 to 35 km. The Kyushu area shows moderate type T/P path reaching up to eclogite facies conditions. In the Kii and central Shikoku region, the thermal structure exhibits high-T/P nature. However, the absolute values for the areas seem to have problem in physical context. Our results has risen the significance of sediment subduction in the southwest Japan and requirement for further improvements in this technique including the aspect of variation of the bulk composition of the subducted material.  相似文献   

7.
George W. DeVore 《Lithos》1983,16(4):255-263
The hydrated altered basalts of the oceanic crust, if subducted, could release large volumes of water during their phase transformations and partial melting reactions. If heat from shear strain recrystallizations largely heats the altered basaltic layer, only a 2 km thick layer could be heated significantly before the slab reaches 80–125 km depth. Most of the released waters should be driven into the deeper but cooler regions at the slab and andesitic-tonalitic partial melts should form in the heated altered basalt layer. Large volumes of water initially at the surface could be added to the mantle and tonalitic partial melts could be lost from the oceanic crust and added to the continental plate and could account for continental growth.  相似文献   

8.
We use published and new trace element data to identify element ratios which discriminate between arc magmas from the supra-subduction zone mantle wedge and those formed by direct melting of subducted crust (i.e. adakites). The clearest distinction is obtained with those element ratios which are strongly fractionated during refertilisation of the depleted mantle wedge, ultimately reflecting slab dehydration. Hence, adakites have significantly lower Pb/Nd and B/Be but higher Nb/Ta than typical arc magmas and continental crust as a whole. Although Li and Be are also overenriched in continental crust, behaviour of Li/Yb and Be/Nd is more complex and these ratios do not provide unique signatures of slab melting. Archaean tonalite-trondhjemite-granodiorites (TTGs) strongly resemble ordinary mantle wedge-derived arc magmas in terms of fluid-mobile trace element content, implying that they did not form by slab melting but that they originated from mantle which was hydrated and enriched in elements lost from slabs during prograde dehydration. We suggest that Archaean TTGs formed by extensive fractional crystallisation from a mafic precursor. It is widely claimed that the time between the creation and subduction of oceanic lithosphere was significantly shorter in the Archaean (i.e. 20 Ma) than it is today. This difference was seen as an attractive explanation for the presumed preponderance of adakitic magmas during the first half of Earth's history. However, when we consider the effects of a higher potential mantle temperature on the thickness of oceanic crust, it follows that the mean age of oceanic lithosphere has remained virtually constant. Formation of adakites has therefore always depended on local plate geometry and not on potential mantle temperature.  相似文献   

9.
Compositions of post-Miocene basalts erupted in the Garibaldi and Central America volcanic arcs exhibit significant correlations with the age of the subducted plate. In general, SiO2, Al2O3, CaO, V, and (Sr/P)N decrease and FeO, MgO, TiO2 and Na2O increase as the age of the subducted plate decreases. Variations in CaO/Al2O3, SiO2, (Sr/P)N, and Ba are compatible with lesser slab input, and hence less hydrous melting conditions in the mantle wedge in segments of the arcs overlying the youngest oceanic lithosphere. This interpretation is supported by comparison with peridotite melting experiments, which suggest higher melt pressures and temperatures in the mantle wedge above very young oceanic lithosphere. These observations point to a model in which dehydration of the downgoing slab occurs at shallow depths in subduction systems involving oceanic lithosphere younger than about 20 Ma. Because young oceanic lithosphere is relatively warm, little post-subduction heating is required to produce metamorphic reactions that release slab volatiles. Geodynamic models indicate most volatile-liberating reactions will occur within the seismogenic zone in oceanic lithosphere younger than 20 Ma, thus limiting the volatile flux beneath the arc and encouraging drier, higher temperature and higher pressure melting conditions in the mantle wedge in comparison to typical arc systems. Liberation of volatiles in the downgoing plate is strongly dependant on the shear stress on the fault, but is predicted to occur within the seismogenic zone for shear stresses greater than 33 MPa. Similarly, early loss of volatiles is predicted over a wide range of convergence rates, plate dips, and convergence angles. These results are shown to be robust for realistic ranges of slab dip, convergence angle, and shear stress, suggesting that volatile-poor melt generation is a characteristic of modern and ancient arc systems that involve subduction of young oceanic lithosphere.  相似文献   

10.
It is being accepted that earthquakes in subducting slab are caused by dehydration reactions of hydrous minerals. In the context of this “dehydration embrittlement” hypothesis, we propose a new model to explain key features of subduction zone magmatism on the basis of hydrous phase relations in peridotite and basaltic systems determined by thermodynamic calculations and seismic structures of Northeast Japan arc revealed by latest seismic studies. The model predicts that partial melting of basaltic crust in the subducting slab is an inevitable consequence of subduction of hydrated oceanic lithosphere. Aqueous fluids released from the subducting slab also cause partial melting widely in mantle wedge from just above the subducting slab to just below overlying crust at volcanic front. Hydrous minerals in the mantle wedge are stable only in shallow (< 120 km) areas, and are absent in the layer that is dragged into deep mantle by the subducting slab. The position of volcanic front is not restricted by dehydration reactions in the subducting slab but is controlled by dynamics of mantle wedge flow, which governs the thermal structure and partial melting regime in the mantle wedge.  相似文献   

11.
Garnet‐bearing peridotite lenses are minor but significant components of most metamorphic terranes characterized by high‐temperature eclogite facies assemblages. Most peridotite intrudes when slabs of continental crust are subducted deeply (60–120 km) into the mantle, usually by following oceanic lithosphere down an established subduction zone. Peridotite is transferred from the resulting mantle wedge into the crustal footwall through brittle and/or ductile mechanisms. These ‘mantle’ peridotites vary petrographically, chemically, isotopically, chronologically and thermobarometrically from orogen to orogen, within orogens and even within individual terranes. The variations reflect: (1) derivation from different mantle sources (oceanic or continental lithosphere, asthenosphere); (2) perturbations while the mantle wedges were above subducting oceanic lithosphere; and (3) changes within the host crustal slabs during intrusion, subduction and exhumation. Peridotite caught within mantle wedges above oceanic subduction zones will tend to recrystallize and be contaminated by fluids derived from the subducting oceanic crust. These ‘subduction zone peridotites’ intrude during the subsequent subduction of continental crust. Low‐pressure protoliths introduced at shallow (serpentinite, plagioclase peridotite) and intermediate (spinel peridotite) mantle depths (20–50 km) may be carried to deeper levels within the host slab and undergo high‐pressure metamorphism along with the enclosing rocks. If subducted deeply enough, the peridotites will develop garnet‐bearing assemblages that are isofacial with, and give the same recrystallization ages as, the eclogite facies country rocks. Peridotites introduced at deeper levels (50–120 km) may already contain garnet when they intrude and will not necessarily be isofacial or isochronous with the enclosing crustal rocks. Some garnet peridotites recrystallize from spinel peridotite precursors at very high temperatures (c. 1200 °C) and may derive ultimately from the asthenosphere. Other peridotites are from old (>1 Ga), cold (c. 850 °C), subcontinental mantle (‘relict peridotites’) and seem to require the development of major intra‐cratonic faults to effect their intrusion.  相似文献   

12.
岛弧火山岩主要为俯冲带的俯冲板片脱水形成的富大离子亲石元素流体交代地幔楔,并使其发生部分熔融,产生岛弧岩浆作用而形成的,岩石组合通常为玄武岩—安山岩—英安岩—流纹岩及相应侵入岩组合。它以Al2O3、K2O高,低Ti O2,且K2ONa2O为特征,相对富集LILE,亏损HFSE,特别是Ti、Nb、Ta等。本文主要从岛弧岩浆作用的起因着手,分析流体和熔体对地幔楔的交代作用,以及岛弧岩浆作用过程,进而分析岛弧火山岩的地球化学特征。  相似文献   

13.
蛇绿岩型金刚石和铬铁矿深部成因   总被引:5,自引:0,他引:5  
地球上的原生金刚石主要有3种产出类型,分别来自大陆克拉通下的深部地幔金伯利岩型金刚石、板块边界深俯冲变质岩中超高压变质型金刚石,和陨石坑中的陨石撞击型金刚石。在全球5个造山带的10处蛇绿岩的地幔橄榄岩或铬铁矿中均发现金刚石和其他超高压矿物的基础上,我们提出地球上一种新的天然金刚石产出类型,命名为蛇绿岩型金刚石。认为蛇绿岩型金刚石普遍存在于大洋岩石圈的地幔橄榄岩中,并提出蛇绿岩型金刚石和铬铁矿的深部成因模式。认为早期俯冲的地壳物质到达地幔过渡带(410~660 km深度)后被肢解,加入到周围的强还原流体和熔体中,当熔融物质向上运移到地幔过渡带顶部,铬铁矿和周围的地幔岩石以及流体中的金刚石等深部矿物一并结晶,之后,携带金刚石的铬铁矿和地幔岩石被上涌的地幔柱带至浅部,经历了洋盆的拉张和俯冲阶段,最终在板块边缘就位。  相似文献   

14.
俯冲带复杂的壳幔相互作用   总被引:15,自引:0,他引:15  
俯冲带除俯冲板片脱水形成的富大离子亲石元素流体、交代地幔楔形成的岛弧钙碱性玄武岩安山岩-英安岩-流纹岩及相应侵入岩组合外,还存在由俯冲扳片熔融形成的埃达克质熔体交代地慢楔形成的埃达克岩-富铌玄武岩-富镁安山岩组合,从而构成了俯冲带的流体交代与熔体交代两大类壳慢相互作用体系及相应的岩石组合。熔体交代作用的显著特点是Mg、高场强元素Nb、Ti、P等含量增加,Nd/Sr值增高,而Si、K、Na及La/Yb降低。洋壳板片或洋脊俯冲、玄武质岩浆底侵使地壳增厚,或板片断离、撕裂等作用均可产生埃达克质熔体并随之产生熔体交代作用。流体和熔体与地幔橄揽岩的相互作用构成了俯冲带复杂的地球化学体系。  相似文献   

15.
The beginnings of hydrous mantle wedge melting   总被引:5,自引:3,他引:2  
This study presents new phase equilibrium data on primitive mantle peridotite (0.33 wt% Na2O, 0.03 wt% K2O) in the presence of excess H2O (14.5 wt% H2O) from 740 to 1,200°C at 3.2–6 GPa. Based on textural and chemical evidence, we find that the H2O-saturated peridotite solidus remains isothermal between 800 and 820°C at 3–6 GPa. We identify both quenched solute from the H2O-rich fluid phase and quenched silicate melt in supersolidus experiments. Chlorite is stable on and above the H2O-saturated solidus from 2 to 3.6 GPa, and chlorite peridotite melting experiments (containing ~6 wt% chlorite) show that melting occurs at the chlorite-out boundary over this pressure range, which is within 20°C of the H2O-saturated melting curve. Chlorite can therefore provide sufficient H2O upon breakdown to trigger dehydration melting in the mantle wedge or perpetuate ongoing H2O-saturated melting. Constraints from recent geodynamic models of hot subduction zones like Cascadia suggest that significantly more H2O is fluxed from the subducting slab near 100 km depth than can be bound in a layer of chloritized peridotite ~ 1 km thick at the base of the mantle wedge. Therefore, the dehydration of serpentinized mantle in the subducted lithosphere supplies free H2O to trigger melting at the H2O-saturated solidus in the lowermost mantle wedge. Alternatively, in cool subduction zones like the Northern Marianas, a layer of chloritized peridotite up to 1.5 km thick could contain all the H2O fluxed from the slab every million years near 100 km depth, which suggests that the dominant form of melting below arcs in cool subduction zones is chlorite dehydration melting. Slab PT paths from recent geodynamic models also allow for melts of subducted sediment, oceanic crust, and/or sediment diapirs to interact with hydrous mantle melts within the mantle wedge at intermediate to hot subduction zones.  相似文献   

16.
大陆俯冲过程中的流体   总被引:5,自引:1,他引:5  
李曙光  侯振辉 《地学前缘》2001,8(3):123-129
含水矿物矿物稳定性的实验研究和超高压岩石的同位素地球化学研究表明 ,大陆地壳在俯冲过程中 ,随着变质程度的升高和部分含水矿物的相继分解 ,会有流体释放出来。当俯冲深度接近5 0km ,俯冲陆壳岩石中大量低级变质含水矿物 (如绿泥石、绿帘石、阳起石 )会脱水并从俯冲陆壳逸出形成流体流。这一流体流可溶解带走俯冲陆壳内已从云母类矿物逸出的放射成因Ar及部分U、Pb ,并导致w(U) /w(Pb)升高。这一阶段逸出的流体有可能交代、水化仰冲壳楔 ,为其发生部分熔融形成同碰撞花岗岩或加速山根下地壳的榴辉岩化创造条件。在俯冲深度为 5 0~ 10 0km ,变镁铁质岩石中的角闪石相继分解并释放出H2 O。由于变镁铁质岩石在陆壳中所占比例较少 ,因此 ,这一阶段释放的水不能形成大规模的流体流 ,因而不能使体系内的过剩Ar大量散失 ,但足以形成局部循环 ,加速变镁铁质岩石及其互层或邻近围岩的榴辉岩化变质反应。在俯冲深度 >10 0km的超高压变质阶段 ,仅有少量的含水矿物分解 ,而多硅白云母仍保持稳定。这时俯冲陆壳内只可能有少量粒间水存在 ,从而导致俯冲陆壳与周围软流圈地幔不能发生充分的相互作用。  相似文献   

17.
The gneisses and granitoids of Bastar craton (with rock suites up to 3.5 Ga) show calc-alkaline trondhjemitic characteristics. The rocks are enriched in both LILE and HFSE than primordial mantle. They have also relatively higher abundances of LILE and strong depletion at P and Ti in the multielement diagram. The depletion of Ti and P indicates retention of these elements by titanite and/or apatite during partial melting. It is proposed that subduction of an oceanic slab and its consequent melting led to the formation of the protoliths of the gneisses without much interaction with the mantle wedge. The granitoids represent temporally distinct suites formed in response to further melting of slab at greater depth and interaction of magma with the mantle wedge during their transport to the crust.  相似文献   

18.
One of the major processes in the formation and deformation of continental lithosphere is the process of arc volcanism. The plate-tectonic theory predicts that a continuous chain of arc volcanoes lies parallel to any continuous subduction zone. However, the map pattern of active volcanoes shows at least 24 areas where there are major spatial gaps in the volcanic chains (> 200 km). A significant proportion (~ 30%) of oceanic crust is subducted at these gaps. All but three of these gaps coincide with the collision or subduction of a large aseismic plateau or ridge.The idea that the collision of such features may have a major tectonic impact on the arc lithosphere, including cessation of volcanism, is not new. However, it is not clear how the collision or subduction of an oceanic plateau perturbs the system to the extent of inhibiting arc volcanism. Three main factors necessary for arc volcanism are (1) source materials for the volcanics—either volatiles or melt from the subducting slab and/or melt from the overlying asthenospheric wedge, (2) a heat source, either for the dehydration or the melting of the slab, or the melting within the asthenosphere and (3) a favorable state of stress in the overlying lithosphere. The absence of any one of these features may cause a volcanic gap to form.There are several ways in which the collision or subduction of an oceanic plateau may affect arc volcanism. The clearest and most common cases considered are those where the feature completely resists subduction, causing local plate boundaries to reorganize. This includes the formation of new plate-bounding transform faults or a flip in subduction polarity. In these cases, subduction has slowed down or stopped and the lack of source material has created a volcanic gap.There are a few cases, most notably in Peru, Chile, and the Nankai trough, where the dip of subduction is so shallow that effectively no asthenospheric wedge exists to produce source material for volcanism. The shallow dip of the slab may be a buoyant effect of the plateau imbedded in the oceanic lithosphere.The cases which are the most enigmatic are those where subduction is continuous, the oceanic plateau is subducted along with the slab, and the dip of the slab is clearly steep enough to allow arc volcanism; yet a volcanic gap exists. In these areas, the subducted plateau may have a fundamental effect on the physical process of arc volcanism itself. The presence of a large topographic feature on the subducting plate may affect the stress state in the are by increasing the amount of decoupling between the two plates. Alternatively, the subduction of the plateau may change the chemical processes at depth if either the water-rich top of the plateau with accompanying sediments are scraped off during subduction or if the ridge is compositionally different.  相似文献   

19.
The Japan Trench subduction zone, located east of NE Japan, has regional variation in seismicity. Many large earthquakes occurred in the northern part of Japan Trench, but few in the southern part. Off Miyagi region is in the middle of the Japan Trench, where the large earthquakes (M > 7) with thrust mechanisms have occurred at an interval of about 40 years in two parts: inner trench slope and near land. A seismic experiment using 36 ocean bottom seismographs (OBS) and a 12,000 cu. in. airgun array was conducted to determine a detailed, 2D velocity structure in the forearc region off Miyagi. The depth to the Moho is 21 km, at 115 km from the trench axis, and becomes progressively deeper landward. The P-wave velocity of the mantle wedge is 7.9–8.1 km/s, which is typical velocity for uppermost mantle without large serpentinization. The dip angle of oceanic crust is increased from 5–6° near the trench axis to 23° 150 km landward from the trench axis. The P-wave velocity of the oceanic uppermost mantle is as small as 7.7 km/s. This low-velocity oceanic mantle seems to be caused by not a lateral anisotropy but some subduction process. By comparison with the seismicity off Miyagi, the subduction zone can be divided into four parts: 1) Seaward of the trench axis, the seismicity is low and normal fault-type earthquakes occur associated with the destruction of oceanic lithosphere. 2) Beneath the deformed zone landward of the trench axis, the plate boundary is characterized as a stable sliding fault plain. In case of earthquakes, this zone may be tsunamigenic. 3) Below forearc crust where P-wave velocity is almost 6 km/s and larger: this zone is the seismogenic zone below inner trench slope, which is a plate boundary between the forearc and oceanic crusts. 4) Below mantle wedge: the rupture zones of thrust large earthquakes near land (e.g. 1978 off Miyagi earthquake) are located beneath the mantle wedge. The depth of the rupture zones is 30–50 km below sea level. From the comparison, the rupture zones of large earthquakes off Miyagi are limited in two parts: plate boundary between the forearc and oceanic crusts and below mantle wedge. This limitation is a rare case for subduction zone. Although the seismogenic process beneath the mantle wedge is not fully clarified, our observation suggests the two possibilities: earthquake generation at the plate boundary overridden by the mantle wedge without serpentinization or that in the subducting slab.  相似文献   

20.
《Gondwana Research》2010,17(3-4):401-413
We present new pieces of evidence from seismology and mineral physics for the existence of low-velocity zones in the deep part of the upper mantle wedge and the mantle transition zone that are caused by fluids from the deep subduction and deep dehydration of the Pacific and Philippine Sea slabs under western Pacific and East Asia. The Pacific slab is subducting beneath the Japan Islands and Japan Sea with intermediate-depth and deep earthquakes down to 600 km depth under the East Asia margin, and the slab becomes stagnant in the mantle transition zone under East China. The western edge of the stagnant Pacific slab is roughly coincident with the NE–SW Daxing'Anling-Taihangshan gravity lineament located west of Beijing, approximately 2000 km away from the Japan Trench. The upper mantle above the stagnant slab under East Asia forms a big mantle wedge (BMW). Corner flow in the BMW and deep slab dehydration may have caused asthenospheric upwelling, lithospheric thinning, continental rift systems, and intraplate volcanism in Northeast Asia. The Philippine Sea slab has subducted down to the mantle transition zone depth under Western Japan and Ryukyu back-arc, though the seismicity within the slab occurs only down to 200–300 km depths. Combining with the corner flow in the mantle wedge, deep dehydration of the subducting Pacific slab has affected the morphology of the subducting Philippine Sea slab and its seismicity under Southwest Japan. Slow anomalies are also found in the mantle under the subducting Pacific slab, which may represent small mantle plumes, or hot upwelling associated with the deep slab subduction. Slab dehydration may also take place after a continental plate subducts into the mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号