首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Easter microplate-Crough Seamount region located between 25° S–116° W and 25° S–122° W consists of a chain of seamounts forming isolated volcanoes and elongated (100–200 km in length) en echelon volcanic ridges oriented obliquely NE (N 065°), to the present day general spreading direction (N 100°) of the Pacific-Nazca plates. The extension of this seamount chain into the southwestern edge of the Easter microplate near 26°30 S–115° W was surveyed and sampled. The southern boundary including the Orongo fracture zone and other shallow ridges (< 2000 m high) bounding the Southwest Rift of the microplate consists of fault scarps where pillow lava, dolerite, and metabasalts are exposed. The degree of rock alternation inferred from palagonitization of glassy margins suggests that the volcanic ridges are as old as the shallow ridges bounding the Southwest Rift of the microplate. The volcanics found on the various structures west of the microplate consist of depleted (K/Ti < 0.1), transitional (K/Ti = 0.11–0.25) and enriched (K/Ti > 0.25) MORBs which are similar in composition to other more recent basalts from the Southwest and East Rifts spreading axes of the Easter microplate. Incompatible element ratios normalized to chondrite values [(Ce/Yb)N = 1–2.5}, {(La/Sm)N = 0.4–1.2} and {(Zr/Y)N = 0.7–2.5} of the basalts are also similar to present day volcanism found in the Easter microplate. The volcanics from the Easter microplate-Crough region are unrelated to other known South Pacific intraplate magmatism (i.e. Society, Pitcairn, and Salas y Gomez Islands). Instead their range in incompatible element ratios is comparable to the submarine basalts from the recently investigated Ahu and Umu volcanic field (Easter hotspot) (Scientific Party SO80, 1993) and centered at about 80 km west of Easter Island. The oblique ridges and their associated seamounts are likely to represent ancient leaky transform faults created during the initial stage of the Easter microplate formation ( 5 Ma). It appears that volcanic activity on seamounts overlying the oblique volcanic ridges has continued during their westward drift from the microplate as shown by the presence of relatively fresh lava observed on one of these structures, namely the first Oblique Volcanic Ridge near 25° S–118° W at about 160 km west of the Easter microplate West Rift. Based on a reconstruction of the Easter microplate, it is suggested that the Crough seamount (< 800 m depth) was formed by earlier (7–10 Ma) hotspot magmatic activity which also created Easter Island.  相似文献   

2.
The Bauer microplate was an independent slab of oceanic lithosphere that from 17 Ma to 6 Ma grew from 1.4 × 105 km2 to 1.2 × 106 km2 between the rapidly diverging Pacific and Nazca plates. Growth was by accretion at the lengthening and overlapping axes of the (Bauer-Nazca) Galapagos Rise (GR) and the (Pacific-Bauer) East Pacific Rise (EPR). EPR and GR axial propagation to create and rapidly grow the counter-clockwise spinning microplate occurred in two phases: (1) 17–15Ma, when the EPR axis propagated north and the GR axis propagated south around a narrow (100- to 200-km-wide) core of older lithosphere; and (2) 8–6 Ma, when rapid northward propagation of the EPR axis resumed, overlapping ∼400 km of the fast-spreading Pacific-Nazca rise-crest and appending a large (200- to 400-km-wide) area of the west flank of that rise as a ‘northern annex’ to the microplate. Between 15 and 8 Ma the microplate grew principally by crustal accretion at the crest of its rises. The microplate was captured by the Nazca plate and the Galapagos Rise axis became extinct soon after 6 Ma, when the south end of the Pacific-Bauer EPR axis became aligned with the southern Pacific-Nazca EPR axis and its north end was linked by the Quebrada Transform to the northern Pacific-Nazca EPR axis. Incomplete multibeam bathymetry of the microplate margins, and of both flanks of the Pacific-Bauer and Bauer-Nazca Rises, together with archival magnetic and satellite altimetry data, clarifies the growth and (counter-clockwise) rotation of the microplate, and tests tectonic models derived from studies of the still active, much smaller, Easter and Juan Fernandez microplates. Our interpretations differ from model predictions in that Euler poles were not located on the microplate boundary, propagation in the 15–8 Ma phase of growth was not toward these poles, and microplate rotation rates were small (5°/m.y.) for much of its history, when long, bounding transform faults reduced coupling to Nazca plate motion. Some structures of the Bauer microplate boundary, such as deep rift valleys and a broad zone of thrust-faulted lithosphere, are, however, similar to those observed around the smaller, active microplates. Analysis of how the Bauer microplate was captured when coupling to the Pacific plate was reduced invites speculation on why risecrest microplates eventually lose their independence.  相似文献   

3.
The development of an anomalously deep rift appears to be a common characteristic of the evolution of microplates along the East Pacific Rise, including the Galapagos, Easter, and Juan Fernandez microplates. We investigate crustal rifting at Endeavor Deep on the Juan Fernandez microplate using bathymetry, gravity and side scan sonar data. An initial phase of lithospheric extension accompanied by extensive subsidence results in the formation of a very deep rift valley (up to 4 km of relief, 70 km long and 20 km wide). Morphological observations and gravity data derived from GEOSAT satellite altimetry show the subsequent initiation of crustal accretion and development of a mature spreading center. Recent models of the kinematics of microplate rotation allow the amount of opening across Endeavor Deep over the past 1 m.y. to be quantified. We develop a simple mechanical model of rifting involving block faulting and flexural response to explain the gravity signature over the rift valley. The Bouguer gravity anomaly is asymmetric with respect to the surface topography and requires that a shallow-dipping fault on the western wall of the valley dominate the extension at Endeavor Deep. Consideration of three similar microplate rift valleys leads us to suggest that asymmetric rifting is the characteristic process forming microplate deeps.  相似文献   

4.
We use recently acquired magnetic and SeaBeam bathymetric data to examine the spreading rates and plate boundary geometry of the Mid-Atlantic Ridge 30°–36° S. Using a statistically rigorous estimation of rotation poles we develop a precise spreading history of the African—South American plate boundary. The total opening rate for 1–4.23 Myr (Plio-Pleistocene) is nearly constant at 32.3 ± 1 km Myr–1. The spreading rate apparently is faster in the Late Miocene (7.3-5.3 Myr), though this may reflect inaccuracies in the geomagnetic time scale. The rotation poles enable a plate boundary reconstruction with an accuracy of 2–3 km. The reconstructions also show that the plate boundary geometry underwent several changes since the late Miocene including the growth of one ridge segment from 40 to 105 km in length, and the reorientation of another ridge segment which has spread obliquely from 7 to 1 Myr. Pole calculations using both right- and left-stepping fracture zones show an offset of 1–2 km between the deepest, most linear part of a fracture zone trough and the former plate boundary location. The high-resolution plate kinematics suggests that the plate boundary, as a whole, evolves 2-dimensionally as prescribed by rigid plates. On a local scale, asymmetric accretion, asymmetric extension, small lateral ridge jumps (< 3 km), and intra-segment propagation result in minor plate boundary adjustments and deformation to the rigid plates.  相似文献   

5.
SeaMARC II side-scan sonar data reveal that a large area of seafloor north and west of Easter Island has been disrupted by recent submarine volcanism. A large volcanic area begins approximately 60 km WNW of the island and extends for over 130 km to the west. The volcanic field is characterized by high backscatter intensity in the side-scan sonar records and is elevated 400–1000 m above the N-S seafloor fabric that surrounds it. This field, the Abu Volcanic Field, covers at least 2500 km2 and appears to consist of recent lava flows and small volcanoes. Backscatter intensity of the Abu Volcanic Field is similar to that of the adjacent ridge flank which is less than 0.4 Ma, suggesting a similar age for its formation. Two additional areas of high backscatter immediately north of Easter Island cover a combined area of over 300 km2. The sidescan sonar records show that these features are clearly of volcanic origin and are not debris flows from the nearby island. The flows are nearly 300 m thick and are morphologically similar to subaerial pahoehoe lava shields. Their high backscatter indicates that they are also the products of relatively recent submarine volcanic activity. The presence of these large areas of recent volcanism in the vicinity of Easter Island has important implications for the various models that have been proposed to explain the origin of the Easter Seamount Chain. In addition, the similar ages of Easter Island and the Easter Microplate suggest that the presence of a hotspot near or beneath this fast-spreading portion of the East Pacific Rise about 4.5 m.y. ago may have initiated the large-scale rift propagation that created the microplate.  相似文献   

6.
New paleomagnetic data from 11 sites in layered gabbros and lava flows from the Oman Ophiolite indicate stable, early remagnetizations and suggest that the southern portion of the ophiolite (the Wadi Tayin, Sumail, Nakhl-Rustaq and Haylayn massifs) is relatively unrotated since detachment near the paleoridge. The gabbros possess a magnetization carried by a combination of primary and secondary magnetites derived from hydrothermal alteration. Evidence from positive tilt tests, constancy of remanence directions in differing magnetic mineralogies and agreement with previous paleomagnetic data, however, suggests that this remagnetization was acquired early – analogous to the remagnetization of the V2 volcanic series. Thus, the evidence implies that the southern portion of the ophiolite has been primarily translated from the paleoridge since the time of V2 remagnetization, and 120° of clockwise rotation affecting the northern Oman Ophiolite is internal to the ophiolite, rather than a combination of internal and global rotation as previously hypothesized. Given this evidence, we propose a simplified model of a rapid, active microplate rotation of a portion of the ophiolite resulting from spreading at an EPR-type propagating ridge at a high angle to the previous spreading direction. Paleomagnetic data from this and previous studies can be well explained by a rapidly rotating microplate, similar to the kinematic evolution documented for the Juan Fernandez microplate in the modern setting.  相似文献   

7.
We present results from a SeaMARC II bathymetry, gravity, and magnetics survey of the northern end of the large-offset propagating East Rift of the Easter microplate. The East Rift is offset by more than 300 km from the East Pacific Rise and its northern end has rifted into approximately 3 Ma lithosphere of the Nazca Plate forming a broad (70–100 km) zone of high (up to 4 km) relief referred to as the Pito Rift. This region appears to have undergone distributed and asymmetric extension that has been primarily accommodated tectonically, by block faulting and tilting, and to a lesser degree by seafloor spreading on a more recently developed magmatic accretionary axis. The larger fault blocks have dimensions of 10–15 km and have up to several km of throw between adjacent blocks suggesting that isostatic adjustments occur on the scale of the individual blocks. Three-dimensional terrain corrected Bouguer anomalies, a three-dimensional magnetic inversion, and SeaMARC II backscatter data locate the recently developed magmatic axis in an asymmetric position in the western part of the rift. The zone of magmatic accretion is characterized by an axis of negative Bouguer gravity anomalies, a band of positive magnetizations, and a high amplitude magnetization zone locating its tip approximately 10 km south of the Pito Deep, the deepest point in the rift area. Positive Bouguer gravity anomalies and negative magnetizations characterize the faulted area to the east of the spreading axis supporting the interpretation that this area consists primarily of pre-existing Nazca plate that has been block faulted and stretched, and that no substantial new accretion has occurred there. The wide zone of deformation in the Pito Rift area and the changing trend of the fault blocks from nearly N-S in the east to NW-SE in the west may be a result of the rapidly changing kinematics of the Easter microplate and/or may result from ridge-transform like shear stresses developed at the termination of the East Rift against the Nazca plate. The broad zone of deformation developed at the Pito Rift and its apparent continuation some distance south along the East Rift has important implications for microplate mechanics and kinematic reconstructions since it suggests that initial microplate boundaries may consist in part of broad zones of deformation characterized by the formation of lithospheric scale fault blocks, and that what appear to be pseudofaults may actually be the outer boundaries of tectonized zones enclosing significant amounts of stretched pre-existing lithosphere.  相似文献   

8.
Geoid data from Geosat and subsatellite basement depth profiles of the Kane Fracture Zone in the central North Atlantic were used to examine the correlation between the short-wavelength geoid (=25–100 km) and the uncompensated basement topography. The processing technique we apply allows the stacking of geoid profiles, although each repeat cycle has an unknown long-wavelength bias. We first formed the derivative of individual profiles, stacked up to 22 repeat cycles, and then integrated the average-slope profile to reconstruct the geoid height. The stacked, filtered geoid profiles have a noise level of about 7 mm in geoid height. The subsatellite basement topography was obtained from a recent compilation of structure contours on basement along the entire length of the Kane Fracture Zone. The ratio of geoid height to topography over the Kane Fracture Zone valley decreases from about 20–25 cm km-1 over young ocean crust to 5–0 cm km-1 over ocean crust older than 140 Ma. Both geoid and basement depth of profiles were projected perpendicular to the Kane Fracture Zone, resampled at equal intervals and then cross correlated. The cross correlation shows that the short-wavelength geoid height is well correlated with the basement topography. For 33 of the 37 examined pro-files, the horizontal mismatches are 10 km or less with an average mismatch of about 5 km. This correlation is quite good considering that the average width of the Kane Fracture Zone valley at median depth is 10–15 km. The remaining four profiles either cross the transverse ridge just east of the active Kane transform zone or overlie old crust of the M-anomaly sequence. The mismatch over the transverse ridge probably is related to a crustal density anomaly. The relatively poor correlation of geoid and basement depth in profiles of ocean crust older than 130–140 Ma reflects poor basement-depth control along subsatellite tracks.  相似文献   

9.
This paper describes GLORIA sidescan sonar data from a single swath along the Cocos-Nazca Spreading Centre between the 95.5° W propagating rift and the Pacific-Cocos-Nazca triple junction. Almost the whole of the plate boundary was imaged. Five medium sized offsets of the spreading centre, ranging from 10 to 25 km, were seen. Of these, at least one (at 99° W) is a previously unknown propagating rift, propagating westwards away from the Galapagos hotspot at about 40 mm a-1. Two other offsets have some, but not all, of the characteristics of propagating rifts, and may be poorly developed (possibly duelling) propagating rifts or migrating overlapping spreading centres. In each case the apparent propagation rate is between one and two times the half spreading rate. The average length of ridge segments in this region is 70 km, but lengths range from 12 to 135 km. The longest segments are those immediately behind actively propagating ridge offsets. The overall plan shape of the ridge axis is roughly sinusoidal, with a wavelength of 400–500 km and an amplitude of ±20 km. This nonlinear shape has arisen since the spreading centre was created, and may reflect an instability in the mantle plumes that control ridge segmentation.  相似文献   

10.
Analysis of new multibeam bathymetry and all available magnetic data shows that the 340 km-long crest of the East Pacific Rise between Rivera and Tamayo transforms contains segments of both the Pacific-Rivera and the Pacific-North America plate boundaries. Another Pacific-North America spreading segment (Alarcon Rise) extends 60 km further north to the Mexican continental margin. The Pacific-North America-Rivera triple junction is now of the RRR type, located on the risecrest 60 km south of Tamayo transform. Slow North America-Rivera rifting has ruptured the young lithosphere accreted to the east flank of the rise, and extends across the adjacent turbidite plain to the vicinity of the North America-Rivera Euler pole, which is located on the plate boundary. The present absolute motion of the Rivera microplate is an anticlockwise spin at 4° m.y.–1 around a pole located near its southeast corner; its motion has recently changed as the driving forces applied to its margins have changed, especially with the evolution of the southern margin from a broad shear zone between Rivera and Mathematician microplates to a long Pacific-Rivera transform. Pleistocene rotations in spreading direction, by as much as 15° on the Pacific-Rivera boundary, have segmented the East Pacific Rise into a staircase of en echelon spreading axes, which overlap at lengthening and migrating nontransform offsets. The spreading segments vary greatly in risecrest geomorphology, including the full range of structural types found on other rises with intermediate spreading rates: axial rift valleys, split shield volcanoes, and axial ridges. Most offsets between the segments have migrated southward, but within the past 1 m.y. the largest of them (with 14–27 km of lateral displacement) have shown dueling behavior, with short-lived reversals in migration direction. Migration involves propagation of a spreading axis into abyssal hill terrain, which is deformed and uplifted while it occupies the broad shear zones between overlapping spreading axes. Tectonic rotation of the deformed crust occurs by bookshelf faulting, which generates teleseismically recorded strike-slip earthquakes. When reversals of migration direction occur, plateaus of rotated crust are shed onto the rise flanks.  相似文献   

11.
The morphological characteristics of the segmentation of the Central Indian Ridge (CIR) from the Indian Ocean Triple Junction (25°30S) to the Egeria Transform Fault system (20°30S) are analyzed. The compilation of Sea Beam data from R/VSonne cruises SO43 and SO52, and R/VCharcot cruises Rodriguez 1 and 2 provides an almost continuous bathymetric coverage of a 450-km-long section of the ridge axis. The bathymetric data are combined with a GLORIA side-scan sonar swath to visualize the fabric of the ridge and complement the coverage in some areas. This section of the CIR has a full spreading rate of about 50 mm yr–1, increasing slightly from north to south. The morphology of the CIR is generally similar to that of a slow-spreading center, despite an intermediate spreading rate at these latitudes. The axis is marked by an axial valley 5–35 km wide and 500–1800 m deep, sometimes exhibiting a 100–600 m-high neovolcanic ridge. It is offset by only one 40km offset transform fault (at 22°40S), and by nine second-order discontinuities, with offsets varying from 4 to 21 km, separating segments 28 to 85 km long. The bathymetry analysis and an empirical orthogonal function analysis performed on across-axis profiles reveal morphologic variations in the axis and the second-order discontinuities. The ridge axis deepens and the relief across the axial valley increases from north to south. The discontinuities observed south of 22°S all have morphologies similar to those of the slow-spreading Mid-Atlantic Ridge. North of 22°S, two discontinuities have map geometries that have not been observed previously on slow-spreading ridges. The axial valleys overlap, and their tips curve toward the adjacent segment. The overlap distance is 2 to 4 times greater than the offset. Based on these characteristics, these discontinuities resemble overlapping spreading centers (OSCs) described on the fast-spreading EPR. The evolution of one such discontinuity appears to decapitate a nearby segment, as observed for the evolution of some OSCs on the EPR. These morphological variations of the CIR axis may be explained by an increase in the crustal thickness in the north of the study area relative to the Triple Junction area. Variations in crustal thickness could be related to a broad bathymetric anomaly centered at 19°S, 65°E, which probably reflects the effect of the nearby Réunion hotspot, or an anomaly in the composition of the mantle beneath the ridge near 19°S. Other explanations for the morphological variations include the termination of the CIR at the Rodriguez Triple Junction or the kinematic evolution of the triple junction and its resultant lengthening of the CIR. These latter effects are more likely to account for the axial morphology near the Triple Junction than for the long-wavelength morphological variation.  相似文献   

12.
A widespread seamount province, the Rano Rahi Field, is located near the superfast spreading Southern East Pacific Rise (SEPR) between 15°–19° S. Particularly abundant volcanic edifices are found on Pacific Plate aged 0 to 6.5 Ma between 17°–19° S, an area greater than 100,000 km2. The numbers of seamounts and their volume are several times greater than those of a comparablysurveyed area near the Northern East Pacific Rise (NEPR), 8°–17° N. Most of the Rano Rahi seamounts belong to chains, which vary in length from 25 km to >240 km and which are very nearly collinear with the Pacific absolute and relative plate motion directions. Bends of 10°–15° occur along a few of the chains, and some adjacent chains converge or diverge slightly. Many seamount chains have fluctuations in volume along their length, and statistical tests suggest that some adjacent chains trade-off in volume. Several seamount chains split into two lines of volcanoes approaching the axis. In general, seamount chains composed of individual circular volcanoes are found near the axis; the chains consist of variably-overlapping edifices in the central part of the survey; to the west, volcanic ridges predominate. Near the SEPR, the volume of nearaxis seamount edifices is generally reduced near areas of deflated cross-sectional area of the axial ridge. Fresh lava flows, as imaged by sidescan sonar and sampled by dredging, exist around some seamounts throughout the entire survey area, in sharp contrast to the absence of fresh flows beyond 30 km from the NEPR. Also, the increases in seamount abundance and volume extend to much greater crustal ages than near the NEPR. Seamount magnetization analysis is also consistent with this wider zone of seamount growth, and it demonstrates the asynchronous formation of most of the seamount chains and volcanic ridges. The variety of observations of the SEPR seamounts suggests that a number of factors and mechanisms might bring about their formation, including the mantle upwelling associated with superfast spreading, off-axis mantle heterogeneities, miniplumes and local upwelling, and the vulnerability of the lithosphere to penetration by volumes of magma. In particular, we note the association of extensive, recent volcanism with intermediate wavelength gravity lineaments lows on crust aged 6 Ma. This suggests that the lineaments and some of the seamounts share a common cause which may be related to ridge-perpendicular asthenospheric convection and/or some manner of extension in the lithosphere.  相似文献   

13.
The Ninetyeast Ridge north of the equator in the eastern Indian Ocean is actively deforming as evidenced by seismicity and its eastward subduction below the Andaman Trench. Basement of the ridge is elevated nearly 2 km with respect to the Bengal Fan; seismic surveys demonstrate continuity of the ridge beneath sediment for 700 km north of 10° N where the ridge plunges below the Fan sediment. The ridge is characterised by a free-air gravity high of 50 mgal amplitude and 350 km wavelength, and along-strike continuity of 1500 km in a north-south direction, closely fringing (locally, even abutting) the Andaman arc-trench bipolar gravity field. Regression analysis between gravity and bathymetry indicates that the ridge gravity field cannot be explained solely by its elevation. The ridge gravity field becomes gradually subdued northwards where overlying Bengal Fan sediments have a smaller density contrast with the ridge material. Our gravity interpretation, partly constrained by seismic data, infers that the ridge overlies significant crustal mass anomalies consistent with the hot spot model for the ridge. The anomalous mass is less dense by about 0.27 g cm–3 than the surrounding oceanic upper mantle, and acts as a cushion for isostatic compensation of the ridge at the base of the crust. This cushion is up to 8 km thick and 400–600 km wide. Additional complexities are created by partial subduction of the ridge below the Andaman Trench that locally modifies the arc-trench gravity field.  相似文献   

14.
We have conducted the first detailed survey of the recording of a geomagnetic reversal at an ultra-fast spreading center. The survey straddles the Brunhes/Matuyama reversal boundary at 19°30 S on the east flank of the East Pacific Rise (EPR), which spreads at the half rate of 82 mm yr-1. In the vicinity of the reversal boundary, we performed a three-dimensional inversion of the surface magnetic field and two-dimensional inversions of several near-bottom profiles including the effects of bathymetry. The surface inversion solution shows that the polarity transition is sharp and linear, and less than 3–4 km wide. These values constitute an upper bound because the interpretation of marine magnetic anomalies observed at the sea surface is limited to wavelengths greater than 3–4 km. The polarity transition width, which represents the distance over which 90% of the change in polarity occurs, is narrow (1.5–2.1 km) as measured on individual 2-D inversion profiles of near-bottom data. This suggests a crustal zone of accretion only 3.0–4.2 km wide. Our method offers little control on accretionary processes below layer 2B because the pillow and the dike layers in young oceanic crust are by far the most significant contributors to the generation of marine magnetic anomalies. The Deep-Tow instrument package was used to determine in situ the polarity of individual volcanoes and fault scarps in the same area. We were able to make 96 in situ polarity determinations which allowed us to locate the scafloor transition boundary which separates positively and negatively magnetized lava flows. The shift between the inversion transition boundary and the seafloor transition boundary can be used to obtain an estimate of the width of the neovolcanic zone of 4–10 km. This width is significantly larger than the present width of the neovolcanic zone at 19°30 S as documented from near-bottom bathymetric and photographic data (Bicknell et al., 1987), and also larger than the width of the neovolcanic zone at 21° N on the EPR as inferred by the three-dimensional inversion of near-bottom magnetic data (Macdonald et al., 1983). The eruption of positively magnetized lava flows over negatively magnetized crust from the numerous volcanoes present in the survey area and episodic flooding of the flanks of the ridge axis by extensive outpourings of lava erupting from a particularly robust magma chamber may result in a widened neovolcanic zone. We studied the relationship between spreading rate and polarity transition widths obtained from 2-D inversions of the near-bottom magnetic field over various spreading centers. The mean transition width corrected for the time necessary for the reversal to occur decreases with increasing spreading rate but our data set is still too sparse to draw firm conclusions from these observations. Perhaps more interesting is the fact that the range of the measured transition widths also decreases with spreading rate. In the light of these results, we propose a new model for the spreading rate dependency of polarity transition widths. At slow spreading centers, the zone of dike injection is narrow but the locus of crustal accretion is prone to small lateral shifts depending on the availability of magmatic sources, and the resulting polarity transition widths can be narrow or wide. At intermediate spreading centers, the zone of crustal accretion is narrow and does not shift laterally, which leads to narrower transition widths on the average than at slow spreading centers. An intermediate, or even a slow spreading center, may behave like a fast or hot-spot dominated ridge for short periods of time when its magmatic budget is increased due to melting events in the upper mantle. At fast spreading centers, the zone of dike injection is narrow, but the large magmatic budget of fast spreading centers may result in occasional extensive flows less than a few tens of meters thick from the axis and off-axis volcanic cones. These thin flows will not significantly contribute to the polarity transition widths, which remain narrow, but they may greatly increase the width of the neovolcanic zone. Finally the gabbro layer in the lower section of oceanic crust may also contribute to the observed polarity transition widths but this contribution will only become significant in older oceanic crust (50–100 m.y.).  相似文献   

15.
The 1994 Tasmante swath-mapping and reflection seismic cruise covered 200 000 km2 of sea floor south and west of Tasmania. The survey provided a wealth of morphological, structural and sedimentological information, in an area of critical importance in reconstructing the break-up of East Gondwana.The west Tasmanian margin consists of a non-depositional continental shelf less than 50 km wide and a sedimented continental slope about 100 km wide. The adjacent 20 km of abyssal plain to the west is heavily sedimented, and beyond that is lightly sedimented Eocene oceanic crust formed as Australia and Antarctica separated. The swath data revealed systems of 100 m-deep downslope canyons and large lower-slope fault-blocks, striking 320° and dipping landward. These continental blocks lie adjacent to the continent ocean boundary (COB) and are up to 2500 m high and have 15°–20° scarps.The South Tasman Rise (STR) is bounded to the west by the Tasman Fracture Zone extending south to Antarctica. Adjacent to the STR, the fracture zone is represented by a scarp up to 2000 m high with slopes of 15–20°. The scarp consists of continental faultblocks dipping landward. Beyond the scarp to the west is a string of sheared parallel highs, and beyond that is lightly sedimented Oligocene oceanic crust 4200–4600 m deep with distinct E-W spreading fabric. The eastern margin of the bathymetric STR trends about 320° and is structurally controlled. The depression between it and the continental East Tasman Plateau (ETP) is heavily sedimented; its western part is underlain by thinned continental crust and its central part by oceanic crust of Late Cretaceous to Early Tertiary age. The southern margin of the STR is formed by N-S transform faults and south-dipping normal faults.The STR is cut into two major terrains by a N-S fracture zone at 146°15E. The western terrain is characterised by rotated basement blocks and intervening basins mostly trending 270°–290°. The eastern terrain is characterised by basement blocks and intervening strike-slip basins trending 300°–340°. Recent dredging of basement rocks suggests that the western terrain has Antarctic affinities, whereas the eastern terrain has Tasmanian affinities.Stretching and slow spreading between Australia and Antarctica was in a NW direction from 130–45 Ma, and fast spreading was in a N-S direction thereafter. The western STR terrain was attached to Antarctica during the early movement, and moved down the west coast of Tasmania along a 320° shear zone, forming the landward-dipping continental blocks along the present COB. The eastern terrain either moved with the western terrain, or was welded to it along the 146°15 E fracture zone in the Early Tertiary. At 45 Ma, fast spreading started in a N-S direction, and after some probable movement along the 146°15E fracture zone, the west and east STR terrains were welded together and became part of Australia.  相似文献   

16.
南沙微板块边界的动力学演化   总被引:5,自引:1,他引:5  
南沙微板块的四周为性质不同的超壳边界断裂所围限,北为长龙-黄岩扩张断裂带,南为八仙-巴兰-约克-库约推复断裂带,西为万安-纳土纳走滑拉张断裂带,东为马尼拉-班乃走滑挤压断裂带,它们共同以南沙软流圈顶面为拆离面.该微板块在新生代的动力学过程可分为四个阶段:K2-E21,南沙微板块沿北部的康泰-双子-雄南断裂带伸展,裂离华南-印支陆缘,古南海向南俯冲,西布增生楔形成;E22-E31,西南次海盆沿长龙扩张脊断裂带扩张,西布增生楔碰撞造山;E32-N11,中央次海盆沿黄岩扩张脊断裂带扩张,米里增生楔形成,北巴拉望南缘“A”型俯冲;N12至现在,南部边界断裂大规模向北逆冲推复造山,南海扩张停止.  相似文献   

17.
Four uniformly spaced regional gravity traverses and the available seismic data across the western continental margin of India, starting from the western Indian shield extending into the deep oceanic areas of the eastern Arabian Sea, have been utilized to delineate the lithospheric structure. The seismically constrained gravity models along these four traverses suggest that the crustal structure below the northern part of the margin within the Deccan Volcanic Province (DVP) is significantly different from the margin outside the DVP. The lithosphere thickness, in general, varies from 110–120 km in the central and southern part of the margin to as much as 85–90 km below the Deccan Plateau and Cambay rift basin in the north. The Eastern basin is characterised by thinned rift stage continental crust which extends as far as Laxmi basin in the north and the Laccadive ridge in the south. At the ocean–continent transition (OCT), crustal density differences between the Laxmi ridge and the Laxmi basin are not sufficient to distinguish continental as against an oceanic crust through gravity modeling. However, 5-6 km thick oceanic crust below the Laxmi basin is a consistent gravity option. Significantly, the models indicate the presence of a high density layer of 3.0 g/cm3 in the lower crust in almost whole of the northern part of the region between the Laxmi ridge and the pericontinental northwest shield region in the DVP, and also below Laccadive ridge in the southern part. The Laxmi ridge is underlain by continental crust upto a depth of 11 km and a thick high density material (3.0 g/cm3) between 11–26 km. The Pratap ridge is indicated as a shallow basement high in the upper part of the crust formed during rifting. The 15 –17 km thick oceanic crust below Laccadive ridge is seen further thickened by high density underplated material down to Moho depths of 24–25 km which indicate formation of the ridge along Reunion hotspot trace.  相似文献   

18.
Analysis in both the x—t and —p domains of high-quality Expanded Spread Profiles across the Møre Margin show that many arrivals may be enhanced be selective ray tracing and velocity filtering combined with conventional data reduction techniques. In terms of crustal structure the margin can be divided into four main areas: 1) a thicker than normal oceanic crust in the eastern Norway Basin; 2) expanded crust with a Moho depth of 22 km beneath the huge extrusive complex constructed during early Tertiary breakup; 3) the Møre Basin where up to 13–14 km of sediments overlie a strongly extended outer part with a Moho depth at 20 km west of the Ona High; and 4) a region with a 25–27 km Moho depth between the high and the Norwegian coast. The velocity data restricts the continent-ocean boundary to a 15–30 km wide zone beneath the seaward dipping reflector wedges. The crust west of the landward edge of the inner flow is classified as transitional. This region as well as the adjacent oceanic crust is soled by a 7.2–7.4 km s–1 lower crustal body which may extend beneath the entire region that experienced early Tertiary crustal extension. At the landward end of the transect a 8.5 km s–1 layer near the base of the crust is recognized. A possible relationship with large positive gravity anomalies and early Tertiary alkaline intrusions is noted.  相似文献   

19.
Analyses of about 6000 km of processed magnetic data in the central Bay of Bengal using Analytical Signal Processing and Werner Deconvolution techniques revealed that the depth to top of the magnetic basement varies between 5 and 12 km from the sea surface, where the water column thickness is about 3.4 km. These inferred depths are comparable to the reported acoustic basement depths. The basement map derived from magnetic interpretation defines the general configuration of the central Bay of Bengal. The N10–12° W trending subsurface 85° E Ridge buried under 2 to 3 km thick sediments is a prominent tectonic feature. Offshore basins characterised by deeper magnetic basement (9 km) and 100–200 km wide are present on either sides of the ridge. These basins were filled with 6–8 km thick lower Cretaceous to recent sediments. Integrated geophysical study depicts that the magnetic basement is characterised by NW-SE, NE-SW, NNE-SSW, N10-12° W and E-W trending structural features that are associated with the lower Cretaceous ocean floor. The Analytical Signal Processing and Werner Deconvolution techniques proved to be effective in determining the depth to the basement in areas covered by thick sediment overburden and characterized by a complex geologic/tectonic framework.  相似文献   

20.
The Siqueiros transform fault system, which offsets the East Pacific Rise between 8°20N–8°30N, has been mapped with the Sea MARC II sonar system and is found to consist of four intra-transform spreading centers and five strike-slip faults. The bathymetric and side-looking sonar data define the total width of the transform domain to be 20km. The transform domain includes prominent topographic features that are related to either seafloor spreading processes at the short spreading centers or shearing along the bounding faults. The spreading axes and the seafloor on the flanks of each small spreading center comprise morphological and structural features which suggest that the two western spreading centers are older than the eastern spreading centers. Structural data for the Clipperton, Orozco and Siqueiros transforms, indicate that the relative plate motion geometry of the Pacific-Cocos plate boundary has been stable for the past 1.5 Ma. Because the seafloor spreading fabric on the flanks of the western spreading centers is 500 000 years old and parallels the present EPR abyssal hill trend (350°) we conclude that a small change in plate motion was not the cause for intra-transform spreading center development in Siqueiros. We suggest that the impetus for the development of intra-transform spreading centers along the Siqueiros transform system was provided by the interaction of small melt anomalies in the mantle (SMAM) with deepseated, throughgoing lithospheric fractures within the shear zone. Initially, eruption sites may have been preferentially located along strike-slip faults and/or along cross-faults that eventually developed into pull-apart basins. Spreading centers C and D in the eastern portion of Siqueiros are in this initial pull-apart stage. Continued intrusion and volcanism along a short ridge within a pull-apart basin may lead to the formation of a stable, small intra-transform spreading center that creates a narrow swath of ridge-parallel structures within the transform domain. The morphology and structure of the axes and flanks of spreading centers A and B in the western and central portion of Siqueiros reflect this type of evolution and suggest that magmatism associated with these intra-transform spreading centers has been active for the past 0.5–1.0 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号