首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
O. Bschorr 《Solar physics》1982,79(2):327-331
In addition to the heating the corona by sound waves, there exists a radiation pressure caused by the absorption of acoustic waves as well as plasma waves. Whereas in the hydrostatic balance of the solar atmosphere, the light pressure can be neglected, the radiation pressure due to acoustic waves and Alfvén waves is much higher and has to be taken into account.In the solar atmosphere, the acoustic radiation pressure is generated by (i) absorption of sound energy, (ii) reflection of sound energy, and (iii) change of the sound velocity.The radiation pressure caused by absorption is dominating within the solar corona. The radiation pressure caused by reflection and the wave velocity change probably produce a pressure inversion in the transition zone between chromosphere and corona. Furthermore, the spicule phenomena are due to instationary radiation pressure.  相似文献   

2.
The damping of MHD waves in solar coronal magnetic field is studied taking into account thermal conduction and compressive viscosity as dissipative mechanisms. We consider viscous homogeneous unbounded solar coronal plasma permeated by a uniform magnetic field. A general fifth-order dispersion relation for MHD waves has been derived and solved numerically for different solar coronal regimes. The dispersion relation results three wave modes: slow, fast, and thermal modes. Damping time and damping per periods for slow- and fast-mode waves determined from dispersion relation show that the slow-mode waves are heavily damped in comparison with fast-mode waves in prominences, prominence–corona transition regions (PCTR), and corona. In PCTRs and coronal active regions, wave instabilities appear for considered heating mechanisms. For same heating mechanisms in different prominences the behavior of damping time and damping per period changes significantly from small to large wavenumbers. In all PCTRs and corona, damping time always decreases linearly with increase in wavenumber indicate sharp damping of slow- and fast-mode waves.  相似文献   

3.
Two competing fundamental hypotheses are usually postulated in the solar coronal heating problem: heating by nanoflares and heating by waves. In the latter it is assumed that acoustic and magnetohydrodynamic disturbances whose amplitude grows as they propagate in a medium with a decreasing density come from the convection zone. The shock waves forming in the process heat up the corona. In this paper we draw attention to yet another very efficient shock wave generation process that can be realized under certain conditions typical for quiet regions on the Sun. In the approximation of stationary dissipative hydrodynamics we show that a shock wave can be generated in the quiet solar chromosphere–corona transition region by the fall of plasma from the corona into the chromosphere. This shock wave is directed upward, and its dissipation in the corona returns part of the kinetic energy of the falling plasma to the thermal energy of the corona. We discuss the prospects for developing a quantitative nonstationary model of the phenomenon.  相似文献   

4.
T. Takakura 《Solar physics》1979,62(2):375-382
On the basis of the previous numerical simulations, a new mechanism for the emission of the fundamental radio waves of solar radio type III bursts is presented. This hypothesis is to attribute the fundamental radio emission to the coalescence of the plasma waves with the low frequency turbulence, whistler or ion acoustic waves, pre-existing on the way of the electron beam which excite the plasma waves.It is estimated that ion acoustic waves could be occasionally unstable in the solar corona due to that drifting bi-Maxwellian distribution of electrons as observed in the solar wind, which is probably caused by collision-less heat conduction.It is also suggested that the reduced damping of the ion acoustic waves in such a distorted electron distribution in the corona may decrease the threshold electric current to cause the anomalous resistivity to be the onset of the solar flares.  相似文献   

5.
Initial studies of the Sun's corona using a solar radar were done in the 1960s and provided measurements of the Sun's radar cross-section at about 38 MHz. These initial measurements were done at a time when the large-scale phenomenon known as a coronal mass ejection was unknown; however, these data suggest that coronal mass ejections (CMEs) may have been detected but were unrecognized. That solar radar facility, which was located at El Campo, TX, no longer exists. New solar radar investigations are motivated by our modern understanding of CMEs and their effects on the Earth. A radar echo from an Earthward-directed coronal mass ejection may be expected to have a frequency shift proportional to velocity; thus providing a good estimate of arrival time at Earth and the possible occurrence of geomagnetic storms. Solar radar measurements may also provide new information on electron densities in the corona. The frequencies of interest for solar radars fall in the range of about 10–100 MHz, corresponding to the lower range planned for the low-frequency array. In combination with existing or new high-power transmitters, it is possible to use the low-frequency array to re-initiate radar studies of the Sun's corona. In this report, we review the basic requirements of solar radars, as developed in past studies and as proposed for future investigations.  相似文献   

6.
W. K. Yip 《Solar physics》1972,24(1):197-209
Combination scattering of the Cerenkov plasma waves generated by a fast electron beam on the electron density fluctuations in a magnetoactive plasma is assumed to be the cause of the emission of the drift pair (or the hook burst) from the solar corona. The features of the combination emission are studied numerically with parameters appropriate to the solar corona condition. It is found that the major properties of the drift pair and the hook burst can be accounted for.  相似文献   

7.
Dwivedi  B.N.  Pandey  V.S. 《Solar physics》2003,216(1-2):59-77
Heating of the solar corona by MHD waves has been investigated. Taking account of dissipation mechanisms self-consistently, a new general dispersion relation has been derived for waves propagating in a homogeneous plasma. Solution of this sixth-order dispersion relation provides information on how the damping of both slow and fast mode waves depends upon the plasma density, temperature, field strength, and angle of propagation relative to the background magnetic field. Wave quantities with and without dissipation are presented. In particular, we consider one of the most important clues from space observations that viscosity of coronal plasma may be orders of magnitude different from its classical value in heating of the corona by MHD waves.  相似文献   

8.
The physical properties of the quiet solar chromosphere–corona transition region are studied. Here the structure of the solar atmosphere is governed by the interaction of magnetic fields above the photosphere. Magnetic fields are concentrated into thin tubes inside which the field strength is great. We have studied how the plasma temperature, density, and velocity distributions change along a magnetic tube with one end in the chromosphere and the other one in the corona, depend on the plasma velocity at the chromospheric boundary of the transition region. Two limiting cases are considered: horizontally and vertically oriented magnetic tubes. For various plasma densities we have determined the ranges of plasma velocities at the chromospheric boundary of the transition region for which no shock waves arise in the transition region. The downward plasma flows at the base of the transition region are shown to be most favorable for the excitation of shock waves in it. For all the considered variants of the transition region we show that the thermal energy transfer along magnetic tubes can be well described in the approximation of classical collisional electron heat conduction up to very high velocities at its base. The calculated extreme ultraviolet (EUV) emission agrees well with the present-day space observations of the Sun.  相似文献   

9.
We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances of the elements, especially C, P, and S, show a crossover from low to high FIP at \({\approx}\,10~\mbox{eV}\) in the SEPs but \({\approx}\,14~\mbox{eV}\) for the solar wind. Naively, this seems to suggest cooler plasma from sunspots beneath active regions. More likely, if the ponderomotive force of Alfvén waves preferentially conveys low-FIP ions into the corona, the source plasma that eventually will be shock-accelerated as SEPs originates in magnetic structures where Alfvén waves resonate with the loop length on closed magnetic field lines. This concentrates FIP fractionation near the top of the chromosphere. Meanwhile, the source of the SSW may lie near the base of diverging open-field lines surrounding, but outside of, active regions, where such resonance does not exist, allowing fractionation throughout the chromosphere. We also find that energetic particles accelerated from the solar wind itself by shock waves at corotating interaction regions, generally beyond 1 AU, confirm the FIP pattern of the solar wind.  相似文献   

10.
Kontar  Eduard P. 《Solar physics》2001,202(1):131-149
Dynamics of a spatially-limited electron beam in the inhomogeneous solar corona plasma is considered in the framework of weak turbulence theory when the temperature of the beam significantly exceeds that of surrounding plasma. The numerical solution of kinetic equations manifests that generally the beam accompanied by Langmuir waves propagates as a beam-plasma structure with a decreasing velocity. Unlike the uniform plasma case the structure propagates with the energy losses in the form of Langmuir waves. The results obtained are compared with the results of observations of type III bursts. It is shown that the deceleration of type III sources can be explained by corona inhomogeneity. The frequency drift rates of the type III sources are found to be in good agreement with the numerical results of beam dynamics.  相似文献   

11.
The annual average values of the solar wind velocity over the period 1962–1972 were investigated on the basis of data obtained from different space probes. The comparison of the pattern of the annual average solar wind velocities observed by the Vela and Pioneer 6 satellites indicates that the pattern presented by Gosling et al. (1971) is realistic. The long-range trend in the solar wind velocity during the 11-year cycle is governed by the number and intensity of irregularities occurring in the corona. These irregularities may represent motions of mass or some types of MHD shock waves and they are responsible for the increased heating of the corona which then in turn causes an increase in the values of the solar radar cross-section and of the solar wind velocity. A close relation is demonstrated between the monthly and annual average values of the solar wind velocity and of the cross-section.  相似文献   

12.
The energy balance of open-field regions of the corona and solar wind and the influence of the flow geometry in the corona upon the density and temperature, are analyzed. It is found that the energy flux arriving at the corona is constant for the corona's open regions with different flow geometries. For the waves heating the corona and solar wind, the dependence of the absorption coefficient on the corona's plasma density is found to be within the range of distances r=1.05–1.5R . It is shown that the wave absorption is more dependent on electron density than the coronal emission. It is this difference that causes lower-density coronal holes to be colder than quiet regions. It is found that the additional energy flux necessary for providing energy balance of the corona and for producing solar wind is a flux of Alfvén waves, which can provide the energy needed for producing quasi-stationary high-speed solar wind streams. Theoretical models of coronal holes and the question of why the high-speed solar wind streams are precisely flowing out of coronal holes, are discussed.  相似文献   

13.
T. Takakura 《Solar physics》1977,52(2):429-461
Numerical analysis of quasi-linear relaxation has been made for four models of electron beam with a finite length travelling through the plasma. In Model 4, a model atmosphere of the corona is adopted and also an increase in the cross-section of the electron beam is taken into account. The electron velocity distribution generally becomes a quasi-plateau form in limited velocity and time ranges. If, however, collisional decay of the fast electrons is too strong and the initial beam density is not high enough, the plateau does not appear. Collisional damping of plasma waves cannot be neglected, since the growth rate of the waves is strongly suppressed by the appearance of the quasi-plateau.An approximate formula for the velocity distribution of the solar electrons passing through the corona has been derived analytically taking into account not only the interaction with plasma waves, but also the collisional damping of the plasma waves and collisions with thermal particles. By the use of this formula, we can easily compute the time profile of the plasma waves caused by these solar electrons at any given place in the interplanetary space. The validity of this semi-analytical approach is checked by the numerical analysis of Model 4, showing a satisfactory fit between the numerical and semi-analytical results.The direct application of this method to the problems of type III radio bursts is left to a later paper.  相似文献   

14.
Solar coronal heating by magnetohydrodynamic (MHD) waves is investigated. ultraviolet (UV) and X-ray emission lines of the corona show non-thermal broadenings. The wave rms velocities inferred from these observations are of the order of 25–60 km s−1 . Assuming that these values are not negligible, we solved MHD equations in a quasi-linear approximation, by retaining the lowest order non-linear term in rms velocity. Plasma density distribution in the solar corona is assumed to be inhomogeneous. This plasma is also assumed to be permeated by dipole-like magnetic loops. Wave propagation is considered along the magnetic field lines. As dissipative processes, only the viscosity and parallel (to the local magnetic field lines) heat conduction are assumed to be important. Two wave modes emerged from the solution of the dispersion relation. The fast mode magneto-acoustic wave, if originated from the coronal base can propagate upwards into the corona and dissipate its mechanical energy as heat. The damping length-scale of the fast mode is of the order of 500 km. The wave energy flux associated with these waves turned out to be of the order of 2.5×105 ergs cm−2 s−1 which is high enough to replace the energy lost by thermal conduction to the transition region and by optically thin coronal emission. The fast magneto-acoustic waves prove to be a likely candidate to heat the solar corona. The slow mode is absent, in other words cannot propagate in the solar corona.  相似文献   

15.
A fine structure consisting of three almost equidistant frequency bands was observed in the high frequency part of a solar burst on 1998 April 15 by the spectrometer of Beijing Astronomical Observatory in the range 2.6-3.8GHz. A model for this event based on beam-anisotropic instability in the solar corona is presented. Longitudinal plasma waves are excited at cyclotron resonance and then transformed into radio emission at their second harmonic.The model is in accordance with the observations if we suppose a magnetic field strength in the region of emission generation of about 200G.  相似文献   

16.
Plasma temperature observations in the solar wind at 1 AU show that very low temperatures of electrons and protons appear not only after interplanetary shock waves, but also after solar wind streams. It is generally believed that the region embedded by a fast preceding and a slower following solar wind is expanding. In this way, the plasma inside may become cooler. In this analysis, we use plasma measurements made aboard the VELA and IMP satellites. Due to the limitations of data, we only give a qualitative picture of the possibility that low temperature regions may be given to local expansions of the plasma. In addition, we assume that these regions are not magnetically closed and therefore not thermically isolated, but are open and connected with the hot corona along the interplanetary magnetic field lines. Therefore, these regions are heated from the corona due to the thermal conduction. In this analysis both the theoretically predicted and the experimentally measured conducted electron heat fluxes are considered.  相似文献   

17.
The electron distribution functions from the solar corona to the solar wind are determined in this paper by considering the effects of the external forces, of Coulomb collisions and of the wave – particle resonant interactions in the plasma wave turbulence. The electrons are assumed to be interacting with right-handed polarized waves in the whistler regime. The acceleration of electrons in the solar wind seems to be mainly due to the electrostatic potential. Wave turbulence determines the electron pitch-angle diffusion and some characteristics of the velocity distribution function (VDF) such as suprathermal tails. The role of parallel whistlers can also be extended to small altitudes in the solar wind (the acceleration region of the outer corona), where they may explain the energization and the presence of suprathermal electrons.  相似文献   

18.
Acceleration processes for fast particles in astrophysical and space plasmas are reviewed with emphasis on stochastic acceleration by MHD turbulence and on acceleration by shock waves. Radiation processes in astrophysical and space plasmas are reviewed with emphasis on plasma emission from the solar corona and electron cyclotron maser emission from planets and stars.  相似文献   

19.
David McConnell 《Solar physics》1983,84(1-2):361-369
Some interpretations of solar S burst spectra are presented. It is shown that the spectra provide evidence for small (~ 500 km) radio sources in the corona which radiate at the fundamental plasma frequency. The possibility of S burst fringes corresponding to coronal MHD waves of wavelength λ ~- 103 km is discussed.  相似文献   

20.
Roberts  B. 《Solar physics》2000,193(1-2):139-152
It has long been suggested on theoretical grounds that MHD waves must occur in the solar corona, and have important implications for coronal physics. An unequivocal identification of such waves has however proved elusive, though a number of events were consistent with an interpretation in terms of MHD waves. Recent detailed observations of waves in events observed by SOHO and TRACE removes that uncertainty, and raises the importance of MHD waves in the corona to a higher level. Here we review theoretical aspects of how MHD waves and oscillations may occur in a coronal medium. Detailed observations of waves and oscillations in coronal loops, plumes and prominences make feasible the development of coronal seismology, whereby parameters of the coronal plasma (notably the Alfvén speed and through this the magnetic field strength) may be determined from properties of the oscillations. MHD fast waves are refracted by regions of low Alfvén speed and slow waves are closely field-guided, making regions of dense coronal plasma (such as coronal loops and plumes) natural wave guides for MHD waves. There are analogies with sound waves in ocean layers and with elastic waves in the Earth's crust. Recent observations also indicate that coronal oscillations are damped. We consider the various ways this may be brought about, and its implications for coronal heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号