首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Modeling dispersion in homogeneous porous media with the convection–dispersion equation commonly requires computing effective transport coefficients. In this work, we investigate longitudinal and transverse dispersion coefficients arising from the method of volume averaging, for a variety of periodic, homogeneous porous media over a range of particle Péclet (Pep) numbers. Our objective is to validate the upscaled transverse dispersion coefficients and concentration profiles by comparison to experimental data reported in the literature, and to compare the upscaling approach to the more common approach of inverse modeling, which relies on fitting the dispersion coefficients to measured data. This work is unique in that the exact microscale geometry is available; thus, no simplifying assumptions regarding the geometry are required to predict the effective dispersion coefficients directly from theory. Transport of both an inert tracer and non-chemotactic bacteria is investigated for an experimental system that was designed to promote transverse dispersion. We highlight the occurrence of transverse dispersion coefficients that (1) depart from power-law behavior at relatively low Pep values and (2) are greater than their longitudinal counterparts for a specific range of Pep values. The upscaling theory provides values for the transverse dispersion coefficient that are within the 98% confidence interval of the values obtained from inverse modeling. The mean absolute error between experimental and upscaled concentration profiles was very similar to that between the experiments and inverse modeling. In all cases the mean absolute error did not exceed 12%. Overall, this work suggests that volume averaging can potentially be used as an alternative to inverse modeling for dispersion in homogeneous porous media.  相似文献   

2.
With most existing methods, transverse dispersion coefficients are difficult to determine. We present a new, simple, and robust approach based on steady-state transport of a reacting agent, introduced over a certain height into the porous medium of interest. The agent reacts with compounds in the ambient water. In our application, we use an alkaline solution injected into acidic ambient water. Threshold values of pH are visualized by adding standard pH indicators. Since aqueous-phase acid-base reactions can be considered practically instantaneous and the only process leading to mixing of the reactants is transverse dispersion, the length of the plume is controlled by the ratio of transverse dispersion to advection. We use existing closed-form expressions for multidimensional steady-state transport of conservative compounds in order to evaluate the concentration distributions of the reacting compounds. Based on these results, we derive an easy-to-use expression for the length of the reactive plume; it is proportional to the injection height squared, times the velocity, and inversely proportional to the transverse dispersion coefficient. Solving this expression for the transverse dispersion coefficient, we can estimate its value from the length of the alkaline plume. We apply the method to two experimental setups of different dimension. The computed transverse dispersion coefficients are rather small. We conclude that at slow but realistic ground water velocities, the contribution of effective molecular diffusion to transverse dispersion cannot be neglected. This results in plume lengths that increase with increasing velocity.  相似文献   

3.
We investigate effective solute transport in a chemically heterogeneous medium subject to temporal fluctuations of the flow conditions. Focusing on spatial variations in the equilibrium adsorption properties, the corresponding fluctuating retardation factor is modeled as a stationary random space function. The temporal variability of the flow is represented by a stationary temporal random process. Solute spreading is quantified by effective dispersion coefficients, which are derived from the ensemble average of the second centered moments of the normalized solute distribution in a single disorder realization. Using first-order expansions in the variances of the respective random fields, we derive explicit compact expressions for the time behavior of the disorder induced contributions to the effective dispersion coefficients. Focusing on the contributions due to chemical heterogeneity and temporal fluctuations, we find enhanced transverse spreading characterized by a transverse effective dispersion coefficient that, in contrast to transport in steady flow fields, evolves to a disorder-induced macroscopic value (i.e., independent of local dispersion). At the same time, the asymptotic longitudinal dispersion coefficient can decrease. Under certain conditions the contribution to the longitudinal effective dispersion coefficient shows superdiffusive behavior, similar to that observed for transport in s stratified porous medium, before it decreases to its asymptotic value. The presented compact and easy to use expressions for the longitudinal and transverse effective dispersion coefficients can be used for the quantification of effective spreading and mixing in the context of the groundwater remediation based on hydraulic manipulation and for the effective modeling of reactive transport in heterogeneous media in general.  相似文献   

4.
Existing numerical methods for the solution of the diffusion-convection equation are unsatisfactory for convection dominated flow problems. A new finite element method incorporating the method of characteristics for the solution of the diffusion-convection equation with constant coefficients in one spatial dimensions is derived. This method is capable of solving diffusion-convection equation without any of the difficulties encountered in the existing numerical methods for the whole spectrum of dispersion from pure diffusion, through mixed dispersion, to pure convection. Several examples for the one-dimensional case are solved and results are compared with the exact solutions. The generalization of the method to variable coefficients and to the diffusion-convection equation in two space dimensions are discussed.  相似文献   

5.
We study solute transport in a periodic channel with a sinusoidal wavy boundary when inertial flow effects are sufficiently large to be important, but do not give rise to turbulence. This configuration and setup are known to result in large recirculation zones that can act as traps for solutes; these traps can significantly affect dispersion of the solute as it moves through the domain. Previous studies have considered the effect of inertia on asymptotic dispersion in such geometries. Here we develop an effective spatial Markov model that aims to describe transport all the way from preasymptotic to asymptotic times. In particular we demonstrate that correlation effects must be included in such an effective model when Péclet numbers are larger than O(100) in order to reliably predict observed breakthrough curves and the temporal evolution of second centered moments. For smaller Péclet numbers correlation effects, while present, are weak and do not appear to play a significant role. For many systems of practical interest, if Reynolds numbers are large, it may be typical that Péclet numbers are large also given that Schmidt numbers for typical fluids and solutes can vary between 1 and 500. This suggests that when Reynolds numbers are large, any effective theories of transport should incorporate correlation as part of the upscaling procedure, which many conventional approaches currently do not do. We define a novel parameter to quantify the importance of this correlation. Next, using the theory of CTRWs we explain a to date unexplained phenomenon of why dispersion coefficients for a fixed Péclet number increase with increasing Reynolds number, but saturate above a certain value. Finally we also demonstrate that effective preasymptotic models that do not adequately account for velocity correlations will also not predict asymptotic dispersion coefficients correctly.  相似文献   

6.
This study presents a novel mathematical model for analysis of non-axisymmetrical solute transport in a radially convergent flow field with scale-dependent dispersion. A two-dimensional, scale-dependent advection–dispersion equation in cylindrical coordinates is derived based on assuming that the longitudinal and transverse dispersivities increase linearly with the distance of the solute transported from its injected source. The Laplace transform finite difference technique is applied to solve the two-dimensional, scale-dependent advection–dispersion equation with variable-dependent coefficients. Concentration contours for different times, breakthrough curves of average concentration over concentric circles with a fixed radial distance, and breakthrough curves of concentration at a fixed observation point obtained using the scale-dependent dispersivity model are compared with those from the constant dispersivity model. The salient features of scale-dependent dispersion are illustrated during the non-axisymmetrical transport from the injection well into extraction well in a convergent flow field. Numerical tests show that the scale-dependent dispersivity model predicts smaller spreading than the constant-dispersivity model near the source. The results also show that the constant dispersivity model can produce breakthrough curves of averaged concentration over concentric circles with the same shape as those from the proposed scale-dependent dispersivity model at observation point near the extraction well. Far from the extracting well, the two models predict concentration contours with significantly different shapes. The breakthrough curves at observation point near the injection well from constant dispersivity model always produce lesser overall transverse dispersion than those from scale-dependent dispersivity model. Erroneous dimensionless transverse/longitudinal dispersivity ratio may result from parametric techniques which assume a constant dispersivity if the dispersion process is characterized by a distance-dependent dispersivity relationship. A curve-fitting method with an example is proposed to evaluate longitudinal and transverse scale-proportional factors of a field with scale-dependent dispersion.  相似文献   

7.
We present a new streamline-based numerical method for simulating reactive solute transport in porous media. The key innovation of the method is that both longitudinal and transverse dispersion are incorporated accurately without numerical dispersion. Dispersion is approximated in a flow-oriented grid using a combination of a one-dimensional finite difference scheme and a meshless approximation. In contrast to previous hybrid alternatives to incorporate dispersion in streamline-based simulations, the proposed scheme does not require a grid and, hence, it does not introduce numerical dispersion. In addition, the proposed scheme eliminates numerical oscillations and negative concentration values even when the dispersion tensor includes the off-diagonal coefficients and the flow field is non-uniform. We demonstrate that for a set of two- and three-dimensional benchmark problems, the new proposed streamline-based formulation compares favorably to two state of the art finite volume and hybrid Eulerian–Lagrangian solvers.  相似文献   

8.
This study describes the development of a general model for reaction in and performance of spatially heterogeneous bioreactors such as treatment wetlands. The modeled domain possesses local-scale velocities, reaction rates and transverse dispersion coefficients that are functions of an underlying heterogeneity variate representing one or more controlling biophysical attributes, for example, reactive surface area (submerged plant) density. Reaction rate coefficients are treated as related to local velocities in an inverse square fashion via their mutual dependence upon the variate. The study focuses on the solution for the steady-state case with constant inlet concentration. Results compare well with exact solutions developed for laterally-bounded systems in which the heterogeneity is represented explicitly. Employing the bicontinuum analogue of a second-order model, an expression for an effective longitudinal dispersion coefficient as a function of travel distance is developed using the method of moments. The result provides insights into the behavior of concentration as transverse mixing drives the system asymptotically toward Fickian longitudinal dispersion. The model may represent an improvement over other approaches for characterizing treatment wetland performance because it accounts for evolving shear flow dispersion, and because parameters are few in number, physically based, and invariant with mean velocity.  相似文献   

9.
10.
The advection–dispersion equation with spatially variable coefficients does not have an exact analytical solution and is therefore solved numerically. However, solutions obtained with several of the traditional finite difference or finite element techniques typically exhibit spurious oscillation or numerical dispersion when advection is dominant. The mixing cell and semi-analytical solution methods proposed in this study avoid such oscillation or numerical dispersion when advection dominates. Both the mixing cell and semi-analytical solution methods calculate the spatial step size by equating numerical dispersion to physical dispersion. Because of the spatial variability of the coefficients the spatial step size varies in space. When the time step size Δt→0, the mixing cell method reduces to the semi-analytical solution method. The results of application to two cases show that the mixing cell and semi-analytical solution methods are better than a finite difference method used in the study. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
12.
We analyze the impact of conditioning to measurements of hydraulic transmissivity on the transport of a conservative solute. The effects of conditioning on solute transport are widely discussed in the literature, but most of the published works focuses on the reduction of the uncertainty in the prediction of the plume dispersion. In this study both ensemble and effective plume moments are considered for an instantaneous release of a solute through a linear source normal to the mean flow direction, by taking into account different sizes of the source. The analysis, involving a steady and spatially inhomogeneous velocity field, is developed by using the stochastic finite element method. Results show that conditioning reduces the ensemble moment in comparison with the unconditioned case, whereas the effective dispersion may increase because of the contribution of the spatial moments related to the lack of stationarity in the flow field. As the number of conditioning points increases, this effect increases and it is significant in both the longitudinal and transverse directions. Furthermore, we conclude that the moment derived from data collected in the field can be assessed by the conditioned second-order spatial moment only with a dense grid of measured data, and it is manifest for larger initial lengths of the plume. Nevertheless, it seems very likely that the actual dispersion of the plume may be underestimated in practical applications.  相似文献   

13.
Transverse dispersion, or tracer spreading orthogonal to the mean flow direction, which is relevant e.g, for quantifying bio-degradation of contaminant plumes or mixing of reactive solutes, has been studied in the literature less than the longitudinal one. Inferring transverse dispersion coefficients from field experiments is a difficult and error-prone task, requiring a spatial resolution of solute plumes which is not easily achievable in applications. In absence of field data, it is a questionable common practice to set transverse dispersivities as a fraction of the longitudinal one, with the ratio 1/10 being the most prevalent. We collected estimates of field-scale transverse dispersivities from existing publications and explored possible scale relationships as guidance criteria for applications. Our investigation showed that a large number of estimates available in the literature are of low reliability and should be discarded from further analysis. The remaining reliable estimates are formation-specific, span three orders of magnitude and do not show any clear scale-dependence on the plume traveled distance. The ratios with the longitudinal dispersivity are also site specific and vary widely. The reliability of transverse dispersivities depends significantly on the type of field experiment and method of data analysis. In applications where transverse dispersion plays a significant role, inference of transverse dispersivities should be part of site characterization with the transverse dispersivity estimated as an independent parameter rather than related heuristically to longitudinal dispersivity.  相似文献   

14.
This study deals with a method to solve the transport equations for a kinetically adsorbing solute in a porous medium with spatially varying velocity field and dispersion coefficients. Making use of the stochastic nature of a first-order kinetic process, we show that the advection-dispersion equation and the adsorption isotherm can be decoupled. Once the solution for a non-adsorbing solute is known, the method provides an exact solution for the kinetically adsorbing solute. The method is worked out in four examples. In particular we demonstrate how the method can be applied simultaneously with a numerical transport code: the advective-dispersive transport is computed numerically, whereas kinetic effects are incorporated analytically. The proposed approach may be useful in field scale applications with complex flow patterns.  相似文献   

15.
This paper addresses the question of how spatial variability in the hydraulic and chemical properties of groundwater systems affects the transport and sorption behavior of pollutants at the field scale. In this paper, we limit our investigations on pollutants that adsorb according to an equilibrium controlled nonlinear Freundlich sorption isotherm. The new contribution of this paper is take into account not only spatially variable Freundlich distribution coefficients KSKS but spatially variable Freundlich nonlinearity parameters p as well. Using a homogenization theory approach, we shortly review the impact of spatially variable hydraulic properties on the transport and extend the theory to spatially variable chemical properties. We show that spatially variable Freundlich exponents cause a very different field scale transport and sorption behavior than spatial variations in the distribution coefficients only since in the first case field scale Freundlich parameters and field scale dispersion coefficients become concentration dependent. In particular, field scale retardation is much larger than small-scale retardation.  相似文献   

16.
Under the assumption that local solute dispersion is negligible, a new general formula (in the form of a convolution integral) is found for the arbitrary k-point ensemble moment of the local concentration of a solute convected in arbitrary m spatial dimensions with general sure initial conditions. From this general formula new closed-form solutions in m=2 spatial dimensions are derived for 2-point ensemble moments of the local solute concentration for the impulse (Dirac delta) and Gaussian initial conditions. When integrated over an averaging window, these solutions lead to new closed-form expressions for the first two ensemble moments of thevolume-averaged solute concentration and to the corresponding concentration coefficients of variation (CV). Also, for the impulse (Dirac delta) solute concentration initial condition, the second ensemble moment of thesolute point concentration in two spatial dimensions and the corresponding CV are demonstrated to be unbound. For impulse initial conditions the CVs for volume-averaged concentrations axe compared with each other for a tracer from the Borden aquifer experiment. The point-concentration CV is unacceptably large in the whole domain, implying that the ensemble mean concentration is inappropriate for predicting the actual concentration values. The volume-averaged concentration CV decreases significantly with an increasing averaging volume. Since local dispersion is neglected, the new solutions should be interpreted as upper limits for the yet to be derived solutions that account for local dispersion; and so should the presented CVs for Borden tracers. The new analytical solutions may be used to test the accuracy of Monte Carlo simulations or other numerical algorithms that deal with the stochastic solute transport. They may also be used to determine the size of the averaging volume needed to make a quasi-sure statement about the solute mass contained in it.  相似文献   

17.
Routing procedures have been used for determining the observed values of the dispersion coefficient in river mixing studies. In order to overcome the shortcomings of the existing routing procedures, we developed a new routing procedure capable of being applied under a transient concentration situation while accounting for river irregularities. The proposed routing procedure is based on the exact solution of the depth-averaged, two-dimensional, mass transport equation combined with the stream-tube concept and was verified through the tracer data acquired from field tests conducted in natural rivers located in Korea. The observed dispersion coefficients evaluated by the routing procedure exhibited a stream-wise variation along the rivers, in that a minimum value was seen in the straight region and a maximum value downstream of the apex of the bend. This variation was attributed to the flow dynamics of secondary currents induced by the meandering of the rivers. The dispersion coefficients obtained by the new method over the reach were in the same range of those calculated by other methods.  相似文献   

18.
Analytical solutions for the water flow and solute transport equations in the unsaturated zone are presented. We use the Broadbridge and White nonlinear model to solve the Richards’ equation for vertical flow under a constant infiltration rate. Then we extend the water flow solution and develop an exact parametric solution for the advection-dispersion equation. The method of characteristics is adopted to determine the location of a solute front in the unsaturated zone. The dispersion component is incorporated into the final solution using a singular perturbation method. The formulation of the analytical solutions is simple, and a complete solution is generated without resorting to computationally demanding numerical schemes. Indeed, the simple analytical solutions can be used as tools to verify the accuracy of numerical models of water flow and solute transport. Comparison with a finite-element numerical solution indicates that a good match for the predicted water content is achieved when the mesh grid is one-fourth the capillary length scale of the porous medium. However, when numerically solving the solute transport equation at this level of discretization, numerical dispersion and spatial oscillations were significant.  相似文献   

19.
Understanding the transport of chemical components in porous media is fundamentally important to many reservoir processes such as contaminant transport and reactive flows involved in CO2 sequestration. Carbonate rocks in particular present difficulties for pore-scale simulations because they contain large amounts of sub-micron porosity. In this work, we introduce a new hybrid simulation model to calculate hydrodynamic dispersion in pore-scale images of real porous media and use this to elucidate the origins and behaviour of stagnant zones arising in transport simulations using micro-CT images of carbonates. For this purpose a stochastic particle model for simulating the transport of a solute is coupled to a Lattice-Boltzmann algorithm to calculate the flow field. The particle method incorporates second order spatial and temporal resolution to resolve finer features of the domain. We demonstrate how dispersion coefficients can be accurately obtained in capillaries, where corresponding analytical solutions are available, even when these are resolved to just a few lattice units. Then we compute molecular displacement distributions for pore-spaces of varying complexity: a pack of beads; a Bentheimer sandstone; and a Portland carbonate. Our calculated propagator distributions are compared directly with recent experimental PFG-NMR propagator distributions (Scheven et al., 2005; Mitchell et al., 2008), the latter excluding spin relaxation mechanisms. We observe that the calculated transport propagators can be quantitatively compared with the experimental distribution, provided that spin relaxations in the experiment are excluded, and good agreement is found for both the sandstone and the carbonate. However, due to the absence of explicit micro-porosity from the carbonate pore space image used for flow field simulations we note that there are fundamental differences in the physical origins of the stagnant zones for micro-porous rocks between simulation and experiment. We show that for a given micro-CT image of a carbonate, small variations in the parameters chosen for the segmentation process lead to different amounts of stagnancy which diffuse away at different rates. Finally, we use a filtering method to show that this is due to the presence of spurious isolated pores which arise from the segmentation process and suggest an approach to overcome this limitation.  相似文献   

20.
When a porous layer is permeated by mesoscale fractures, wave-induced fluid flow between pores and fractures can cause significant attenuation and dispersion of velocities and anisotropy parameters in the seismic frequency band. This intrinsic dispersion due to fracturing can create frequency-dependent reflection coefficients in the layered medium. In this study, we derive the frequency-dependent PP and PS reflection coefficients versus incidence angle in the fractured medium. We consider a two-layer vertical transverse isotropy model constituted by an elastic shale layer and an anelastic sand layer. Using Chapman's theory, we introduce the intrinsic dispersion due to fracturing in the sand layer. Based on the series coefficients that control the behaviour of velocity and anisotropy parameters in the fractured medium at low frequencies, we extend the conventional amplitude-versus-offset equations into frequency domain and derive frequency-dependent amplitude-versus-offset equations at the elastic–anelastic surface. Increase in fracture length or fracture density can enlarge the frequency dependence of amplitude-versus-offset attributes of PP and PS waves. Also, the frequency dependence of magnitude and phase angle of PP and PS reflection coefficients increases as fracture length or fracture density increases. Amplitude-versus-offset type of PP and PS reflection varies with fracture parameters and frequency. What is more, fracture length shows little impact on the frequency-dependent critical phase angle, while the frequency dependence of the critical phase angle increases with fracture density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号