首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simulating groundwater flow in basin‐fill aquifers of the semiarid southwestern United States commonly requires decisions about how to distribute aquifer recharge. Precipitation can recharge basin‐fill aquifers by direct infiltration and transport through faults and fractures in the high‐elevation areas, by flowing overland through high‐elevation areas to infiltrate at basin‐fill margins along mountain fronts, by flowing overland to infiltrate along ephemeral channels that often traverse basins in the area, or by some combination of these processes. The importance of accurately simulating recharge distributions is a current topic of discussion among hydrologists and water managers in the region, but no comparative study has been performed to analyze the effects of different recharge distributions on groundwater simulations. This study investigates the importance of the distribution of aquifer recharge in simulating regional groundwater flow in basin‐fill aquifers by calibrating a groundwater‐flow model to four different recharge distributions, all with the same total amount of recharge. Similarities are seen in results from steady‐state models for optimized hydraulic conductivity values, fit of simulated to observed hydraulic heads, and composite scaled sensitivities of conductivity parameter zones. Transient simulations with hypothetical storage properties and pumping rates produce similar capture rates and storage change results, but differences are noted in the rate of drawdown at some well locations owing to the differences in optimized hydraulic conductivity. Depending on whether the purpose of the groundwater model is to simulate changes in groundwater levels or changes in storage and capture, the distribution of aquifer recharge may or may not be of primary importance.  相似文献   

2.
Environmental concerns regarding the potential for drinking water contamination in shallow aquifers have accompanied unconventional energy development in the northern Appalachian Basin. These activities have also raised several critical questions about the hydrogeological parameters that control the naturally occurring presence and migration of hydrocarbon gases in shallow aquifers within petroliferous basins. To interrogate these factors, we analyzed the noble gas, dissolved ion, and hydrocarbon gas (molecular and isotopic composition) geochemistry of 98 groundwater samples from south‐central New York. All samples were collected ?1km from unconventional drilling activities and sample locations were intentionally targeted based on their proximity to various types of documented fault systems. In agreement with studies from other petroliferous basins, our results show significant correlations between elevated levels of radiogenic [4He], thermogenic [CH4], and dissolved ions (e.g., Cl, Br, Sr, Ba). In combination, our data suggest that faults have facilitated the transport of exogenous hydrocarbon‐rich brines from Devonian source rocks into overlying Upper Devonian aquifer lithologies over geologic time. These data conflict with previous reports, which conclude that hydrodynamic focusing regulates the occurrence of methane and salt in shallow aquifers and leads to elevated levels of these species in restricted flow zones within valley bottoms. Instead, our data suggest that faults in Paleozoic rocks play a fundamental role in gas and brine transport from depth, regulate the distribution of their occurrence in shallow aquifers, and influence the geochemistry of shallow groundwater in this petroliferous basin.  相似文献   

3.
Groundwater in the Bengal Basin is badly polluted by arsenic (As) which adversely affects human health. To provide low‐As groundwater for As mitigation, it was sought across 235 km2 of central West Bengal, in the western part of the basin. By drilling 76 boreholes and chemical analysis of 535 water wells, groundwater with <10 µg/L As in shallow aquifers was found under one‐third of a study area. The groundwater is in late Pleistocene palaeo‐interfluvial aquifers of weathered brown sand that are capped by a palaeosol of red clay. The aquifers form two N‐S trending lineaments that are bounded on the east by an As‐polluted deep palaeo‐channel aquifer and separated by a shallower palaeo‐channel aquifer. The depth to the top of the palaeo‐interfluvial aquifers is mostly between 35 and 38 m below ground level (mbgl). The palaeo‐interfluvial aquifers are overlain by shallow palaeo‐channel aquifers of gray sand in which groundwater is usually As‐polluted. The palaeosol now protects the palaeo‐interfluvial aquifers from downward migration of As‐polluted groundwater in overlying shallow palaeo‐channel aquifers. The depth to the palaeo‐interfluvial aquifers of 35 to 38 mbgl makes the cost of their exploitation affordable to most of the rural poor of West Bengal, who can install a well cheaply to depths up to 60 mbgl. The protection against pollution afforded by the palaeosol means that the palaeo‐interfluvial aquifers will provide a long‐term source of low‐As groundwater to mitigate As pollution of groundwater in the shallower, heavily used, palaeo‐channel aquifers. This option for mitigation is cheap to employ and instantly available.  相似文献   

4.
The soil and water assessment tool (SWAT) has been widely used and thoroughly tested in many places in the world. The application of the SWAT model has pointed out that 2 of the major weaknesses of SWAT are related to the nonspatial reference of the hydrologic response unit concept and to the simplified groundwater concept, which contribute to its low performance in baseflow simulation and its inability to simulate regional groundwater flow. This study modified the groundwater module of SWAT to overcome the above limitations. The modified groundwater module has 2 aquifers. The local aquifer, which is the shallow aquifer in the original SWAT, represents a local groundwater flow system. The regional aquifer, which replaces the deep aquifer of the original SWAT, represents intermediate and regional groundwater flow systems. Groundwater recharge is partitioned into local and regional aquifer recharges. The regional aquifer is represented by a multicell aquifer (MCA) model. The regional aquifer is discretized into cells using the Thiessen polygon method, where centres of the cells are locations of groundwater observation wells. Groundwater flow between cells is modelled using Darcy's law. Return flow from cell to stream is conceptualized using a non‐linear storage–discharge relationship. The SWAT model with the modified aquifer module, the so‐called SWAT‐MCA, was tested in 2 basins (Wipperau and Neetze) with porous aquifers in a lowland area in Lower Saxony, Germany. Results from the Wipperau basin show that the SWAT‐MCA model is able (a) to simulate baseflow in a lowland area (where baseflow is a dominant source of streamflow) better than the original model and (b) to simulate regional groundwater flow, shown by the simulated groundwater levels in cells, quite well.  相似文献   

5.
Geochemical evaluation of the sources and movement of saline groundwater in coastal aquifers can aid in the initial mapping of the subsurface when geological information is unavailable. Chloride concentrations of groundwater in a coastal aquifer near San Diego, California, range from about 57 to 39,400 mg/L. On the basis of relative proportions of major‐ions, the chemical composition is classified as Na‐Ca‐Cl‐SO4, Na‐Cl, or Na‐Ca‐Cl type water. δ2H and δ18O values range from ?47.7‰ to ?12.8‰ and from ?7.0‰ to ?1.2‰, respectively. The isotopically depleted groundwater occurs in the deeper part of the coastal aquifer, and the isotopically enriched groundwater occurs in zones of sea water intrusion. 87Sr/86Sr ratios range from about 0.7050 to 0.7090, and differ between shallower and deeper flow paths in the coastal aquifer. 3H and 14C analyses indicate that most of the groundwater was recharged many thousands of years ago. The analysis of multiple chemical and isotopic tracers indicates that the sources and movement of saline groundwater in the San Diego coastal aquifer are dominated by: (1) recharge of local precipitation in relatively shallow parts of the flow system; (2) regional flow of recharge of higher‐elevation precipitation along deep flow paths that freshen a previously saline aquifer; and (3) intrusion of sea water that entered the aquifer primarily during premodern times. Two northwest‐to‐southeast trending sections show the spatial distribution of the different geochemical groups and suggest the subsurface in the coastal aquifer can be separated into two predominant hydrostratigraphic layers.  相似文献   

6.
Intermontane basin aquifers worldwide, particularly in the Himalayan region, are recharged largely by the adjoining mountains. Recharge in these basins can occur either by water infiltrating from streams near mountain fronts (MFs) as mountain front recharge (MFR) or by sub-surface mountain block infiltration as mountain block recharge (MBR). MFR and MBR recharge are challenging to distinguish and are least quantified, considering the lack of extensive understanding of the hydrological processes in the mountains. This study used oxygen and hydrogen isotopes (δ18O and δ2H), electrical conductivity (EC) data, hydraulic head, and groundwater level data to differentiate MFR and MBR. Groundwater level data provide information about the groundwater-surface water interactions and groundwater flow directions, whereas isotopes and EC data are used to distinguish and quantify different recharge sources. The present methodology is tested in an intermontane basin of the Himalayan region. The results suggest that karst springs (KS) and deep groundwater (DGW) recharge are dominated by snowmelt (47% ± 10% and 46% ± 9%) as MBR from adjacent mountains, insignificantly affected by evaporation. The hydraulic head data and isotopes indicate Quaternary shallow groundwater (SGW) aquifer system recharge as MFR of local meteoric water with significant evaporation. The results indicate several flow paths in the aquifer system, a local flow for KS, intermediate flow for SGW, and regional flow for DGW. The findings will significantly impact water resource management in the area and provide vital baseline knowledge for sustainable groundwater management in other Himalayan intermontane basins.  相似文献   

7.
Five years of hydrogeological monitoring and field activities performed in the complex hydrogeological system of the Acque Albule basin (AAB) were conducted to define the hydrogeological setting, the relationship between deep and shallow aquifers and a conceptual groundwater flow model of this exploited area using conventional quantitative techniques. The basin, which is located close to Rome (Italy) on the west side of the Apennine chain and just north of the Colli Albani volcano, subsided after development of a north–south fault system (about 115 000 y bp). The AAB experiences intense hydrothermal activity, which has produced a large travertine deposit (80‐m thick). The travertine deposit constitutes a fractured aquifer that is the final destination of more than 5 m3 s‐1 of water and is strongly dewatered by quarry activities. The complex hydrogeology of this basin was investigated, revealing two main hydraulically connected aquifers, one thermalised and partly confined into the limestone bedrock and one unconfined in the travertine. The two aquifers are separated by a non‐continuous clayey aquiclude. The hydrogeological survey and geological characterisation contributed to the development of the groundwater flow conceptual model. Analysis and comparison of the monitored levels highlighted the pattern of flow between the deep and shallow parts of the flow system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Karst aquifers are well known for their intricate stratigraphy and geologic structures, which make groundwater characterization challenging because flowpaths and recharge sources are complex and difficult to evaluate. Geochemical data, collected from ten closely spaced production wells constructed in two karst aquifers (Bangor Limestone (Mb) and Tuscumbia Limestone/Fort Payne Chert (Mftp)) in Trussville, north‐central Alabama, illustrate two distinctive groundwater end‐members: (1) higher major ion, dissolved inorganic carbon, conductivity, alkalinity concentrations, heavier δ13C ratios (max: −10.2 ± 0.2‰ Vienna Pee Dee Belemnite (PDB)) and lower residence times (mean: 19.5 ± 2 years, n = 2) of groundwater in the Mb aquifer and (2) lower constituent concentrations, lighter δ13C ratios (min: −13.4 ± 0.2‰ PDB) and longer residence times of groundwater (mean: 23.6 ± 2 years, n = 4) in the Mftp aquifer. Summer and fall data and the binary mixing model show aquifer inter‐flow mixing along solution fractures and confirms the distinctive groundwater geochemistry of the two aquifers. Lowering of static water levels over the summer (drawdown from 2 to 5.2 m) leads to more reducing groundwater conditions (lower Eh values) and slightly enriched δ18O and δD ratios during the fall [δ18O: −4.8 ± 0.1 to −5.4 ± 0.1‰ Vienna Standard Mean Oceanic Water (VSMOW), n = 9; δD: −25.4 ± 1 to −27.4 ± 1‰ VSMOW, n = 9] when compared with summer season samples (δ18O: −5.1 ± 0.1 to −5.7 ± 0.1‰ VSMOW, n = 11; δD: −25.0 ± 1 to −30.6 ± 1‰ VSMOW, n = 11). GIS analyses confirm the localized origin of recharge to the investigated aquifers. The combination of GIS, field parameters and geochemistry analyses can be successfully used to identify recharge sources, evaluate groundwater flow and transport pathways and to improve understanding of how groundwater withdrawals impact the sustainability and susceptibility to contamination of karst aquifers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Horizontal drilling and hydraulic fracturing have enhanced unconventional hydrocarbon recovery but raised environmental concerns related to water quality. Because most basins targeted for shale‐gas development in the USA have histories of both active and legacy petroleum extraction, confusion about the hydrogeological context of naturally occurring methane in shallow aquifers overlying shales remains. The Karoo Basin, located in South Africa, provides a near‐pristine setting to evaluate these processes, without a history of conventional or unconventional energy extraction. We conducted a comprehensive pre‐industrial evaluation of water quality and gas geochemistry in 22 groundwater samples across the Karoo Basin, including dissolved ions, water isotopes, hydrocarbon molecular and isotopic composition, and noble gases. Methane‐rich samples were associated with high‐salinity, NaCl‐type groundwater and elevated levels of ethane, 4He, and other noble gases produced by radioactive decay. This endmember displayed less negative δ13C‐CH4 and evidence of mixing between thermogenic natural gases and hydrogenotrophic methane. Atmospheric noble gases in the methane‐rich samples record a history of fractionation during gas‐phase migration from source rocks to shallow aquifers. Conversely, methane‐poor samples have a paucity of ethane and 4He, near saturation levels of atmospheric noble gases, and more negative δ13C‐CH4; methane in these samples is biogenic and produced by a mixture of hydrogenotrophic and acetoclastic sources. These geochemical observations are consistent with other basins targeted for unconventional energy extraction in the USA and contribute to a growing data base of naturally occurring methane in shallow aquifers globally, which provide a framework for evaluating environmental concerns related to unconventional energy development (e.g., stray gas).  相似文献   

10.
In the arid to semi-arid district of Chengcheng, Weinan City, in central Shaanxi Province, diminishing groundwater reserves in the shallow Quaternary (QLB) aquifer and elevated fluoride in the similarly shallow Permo-Triassic (PTF) aquifer, have promoted interest in the development of groundwater resources in the deep but poorly understood Cambrian-Ordovician carbonate aquifer system (COC). To investigate the origin of the COC groundwaters and the relationship between the deep and shallower systems, a hydrochemical study was undertaken involving 179 major and minor ion analyses, 39 stable isotope analyses (δD and δ18O), and 14 carbon isotope analyses (14C and δ13C). PHREEQC 3.0 was used to investigate mixing. Hydrochemical data support the presence of a well-connected regional flow system extending southwards from the more mountainous north. Stable isotope data indicate that the COC groundwaters originate as soil zone infiltration, under a much cooler regime than is found locally today. This is confirmed by 14C, which indicates the groundwater to be palaeowater recharged during the late Pleistocene (∼10–12 ka B.P.). The presence of nitrate in the COC groundwaters suggests leakage from overlying shallow aquifers currently provides an additional source of COC recharge, with major faults possibly providing the primary pathways for downward vertical flow.  相似文献   

11.
The use of reclaimed water and its impact on groundwater quality in the middle and southern parts of the Jordan Valley are investigated. The chemical analyses indicate that nitrate and bacteriological pollution is widespread, and thus, seriously affects groundwater use. During the study, 365 water samples were collected from wells and springs to determine the water chemistry and the extent of nitrate pollution. Three hydrochemical facies are identifed, i. e., (Ca–(Mg)–Na–HCO3), (Ca–Na–SO4–Cl) and (Ca–Na–Cl). The change of facies is accompanied by a gradual increase in the groundwater total dissolved solids (TDS), which is mainly controlled by evaporates and carbonates dissolution in the aquifer matrix. Water analyses indicate that the shallow aquifer in the study area is affected by non‐point pollution sources, primarily from natural (manure) and chemical nitrogen (N)‐fertilizers and treated wastewater used for agriculture. The concentration of nitrate in the groundwater ranges from 10 to 355 mg/L. Considerable seasonal fluctuations in groundwater quality are observed as a consequence of agricultural practices and other factors such as annual rainfall distribution and the Zarqa River flow. The noticeable levels of total coliform and Escherichia coli in the northern part of the study area may be attributed to contamination from the urban areas, intensive livestock production, and illegal dumping of sewage. Heavy metal concentrations in all samples were found to be significantly lower than the permissible limits for drinking water standards.  相似文献   

12.
Dramatic decreases in groundwater quality have raised widespread concerns about water supplies and ecological crises in China. In this study, hydrochemistry, stable isotopes, and graphical and multivariate statistical methods are integrated to identify hydrogeochemical processes controlling groundwater quality in the Yuncheng Basin, China. Our results show that groundwater with 21 variables (pH, temperature-T, total dissolved solid, major-trace elements, and stable isotopes) is chemically classified into three distinct clusters: fresh water [C1], brackish-saline water [C2], and saline water [C3]. Groundwater salinization is identified as the prime process in controlling groundwater quality for shallow groundwater and deep groundwater in the lowland areas. Large-scale As, F, or B contaminations found in groundwater are closely related to groundwater salinization, agricultural activity, and the exploration of geothermal water in the area. With respect to the risk of contamination, groundwater in the basin is spatially divided into the following: shallow groundwater with a high risk located in the north side of the Salt Lake, shallow groundwater with a moderate risk, and deep groundwater with a low to moderate risk. Nationally, the increasing demand on groundwater is threatened by a range of environmental and health pressures, including salinization and contaminations of nitrate, As, F, or B. Our study indicates that natural water-rock interactions and hydrogeological conditions are significant factors controlling these contaminations. Systematic management and regulation of existing groundwater resources are required to prevent further deterioration of groundwater resources. Policies should be made and implemented to ensure “green” exploitation of geothermal water.  相似文献   

13.
We introduce a simple correction to coastal heads for constant‐density groundwater flow models that contain a coastal boundary, based on previous analytical solutions for interface flow. The results demonstrate that accurate discharge to the sea in confined aquifers can be obtained by direct application of Darcy's law (for constant‐density flow) if the coastal heads are corrected to ((α + 1)/α)hs ? B/2α, in which hs is the mean sea level above the aquifer base, B is the aquifer thickness, and α is the density factor. For unconfined aquifers, the coastal head should be assigned the value . The accuracy of using these corrections is demonstrated by consistency between constant‐density Darcy's solution and variable‐density flow numerical simulations. The errors introduced by adopting two previous approaches (i.e., no correction and using the equivalent fresh water head at the middle position of the aquifer to represent the hydraulic head at the coastal boundary) are evaluated. Sensitivity analysis shows that errors in discharge to the sea could be larger than 100% for typical coastal aquifer parameter ranges. The location of observation wells relative to the toe is a key factor controlling the estimation error, as it determines the relative aquifer length of constant‐density flow relative to variable‐density flow. The coastal head correction method introduced in this study facilitates the rapid and accurate estimation of the fresh water flux from a given hydraulic head measurement and allows for an improved representation of the coastal boundary condition in regional constant‐density groundwater flow models.  相似文献   

14.
John Houston 《水文研究》2002,16(15):3019-3035
The Chacarilla fan in the Atacama Desert is one of several formed in the Late Miocene at the foot of the Pre‐Andean Cordillera overlying the large, complex, Pampa Tamarugal aquifer contained in the continental clastic sediments of the fore‐arc basin. The Pampa Tamarugal aquifer is a strategic source of water for northern Chile but there is continuing doubt over the resource magnitude and recharge. During January 2000 a 1 in 4 year storm in the Andes delivered a 34 million m3 flash flood to the fan apex where c. 70% percolated to the underlying aquifers. Groundwater recharge through the fan is calculated to be a minimum of 200 l/s or 6% of the long‐term catchment rainfall. These figures are supported by hydrochemical data that suggest that recharge may be 9% of long‐term rainfall. Isotopic data suggest groundwater less than 50 years old is transmitted westward through the permeable sheetflood sediments of the fan overlying the main aquifer. Analysis of this and other events shows that the hydrological system is non‐linear with positive feedback. The magnitude of groundwater recharge is dependent on climatic variations, antecedent soil moisture storage and changes in channel characteristics. Long‐term declines in groundwater level may partly result from climatic fluctuations and the causes of such fluctuations are discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
The role of lithology in influencing basin form and function is explored empirically by investigating correlations between a range of catchment variables, where the spatial unit of analysis is not surface catchments but lithologically coherent groundwater units. Using the Thames basin, UK, as a case study, nine groundwater units have been identified. Values for 11 hydrological and geomorphological variables, including rainfall, drainage density, Baseflow Index, aquifer porosity, storage coefficient and log‐hydraulic conductivity, aquifer and drainage elevation, river incision, and hypsometric integral have been estimated for each of the groundwater units in the basin, and Pearson correlation coefficients calculated for all pairs of variables. Seven of the correlation coefficients are found to be significant at a confidence level of > 99%. Negative correlations between drainage density and log aquifer hydraulic conductivity, and between drainage density and river incision, and positive correlations between log‐hydraulic conductivity and river incision, log‐hydraulic conductivity and Baseflow Index, and between Baseflow Index and river incision are inferred to have consistent causal explanations. For example, incision of rivers into aquifers leads to relative increases in hydraulic gradients in the vicinity of rivers which, in turn, promotes the development of secondary porosity increasing both aquifer hydraulic conductivity and, hence, Baseflow Index. The implication of this interpretation is that the geomorphological evolution of basins is intimately linked to the evolution of hydraulic conductivity of the underlying aquifers. This is consistent with, and supports the notion of a coupled complexly evolving surface water‐groundwater system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Spatial distribution (horizonal and vertical) of groundwater microbial communities and the hydrogeochemistry in confined aquifers were studied approximately along the groundwater flow path from coteau to plain in the Nomhon area, Qinghai‐Tibet plateau, China. The confined groundwater samples at different depths and locations were collected in three boreholes through a hydrogeological section in this arid and semi‐arid area. The phylogenetic analysis of 16S rRNA genes and multivariate statistical analysis were used to elucidate similarities and differences between groundwater microbial communities and hydrogeochemical properties. The integrated isotopic geochemical measurements were applied to estimate the source and recharge characteristics of groundwater. The results showed that groundwater varied from fresh to saline water, and modern water to ancient water following the flowpath. The recharge characteristics of the saline water was distinct with that of fresh water. Cell abundance did not vary greatly along the hydrogeochemical zonality; however, dissimilarities in habitat‐based microbial community structures were evident, changing from Betaproteobacteria in the apex of alluvial fan to Gammaproteobacteria and then to Epsilonproteobacteria in the core of the basin (alluvial‐lacustrine plain). Rhodoferax, Hydrogenophaga, Pseudomonas, and bacterium isolated from similar habitats unevenly thrived in the spatially distinct fresh water environments, while Sulfurimonas dominanted in the saline water environment. The microbial communities presented likely reflected to the hydrogeochemical similarities and zonalities along groundwater flowpath.  相似文献   

17.
Chahardouly basin is located in the western part of Iran and is characterized by semi‐arid climatic conditions and scarcity in water resources. The main aquifer systems are developed within alluvial deposits. The availability of groundwater is rather erratic owing to the occurrence of hard rock formation and a saline zone in some parts of the area. The aquifer systems of the area show signs of depletion, which have taken place in recent years due to a decline in water levels. Groundwater samples collected from shallow and deep wells were analysed to examine the quality characteristics of groundwater. The major ion chemistry of groundwater is dominated by Ca2+ and HCO3?, while higher values of total dissolved solids (TDS) in groundwater are associated with high concentrations of all major ions. An increase in salinity is recorded in the down‐gradient part of the basin. The occurrence of saline groundwater, as witnessed by the high electrical conductivity (EC), may be attributed to the long residence time of water and the dissolution of minerals, as well as evaporation of rainfall and irrigation return flow. Based on SAR values and sodium content (%Na), salinity appears to be responsible for the poor groundwater quality, rendering most of the samples not suitable for irrigation use. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Impacts of forest harvesting on groundwater properties, water flowpaths and streamflow response were examined 4 years after the harvest using a paired‐basin approach during the 2001 snowmelt in a northern hardwood landscape in central Ontario. The ability of two metrics of basin topography (Beven and Kirkby's ln(a/tan β) topographic index (TI) and distance to stream channel) to explain intra‐basin variations in groundwater dynamics was also evaluated. Significant relationships between TI and depth to potentiometric surface for shallow groundwater emerged, although the occurrence of these relationships during the melt differed between harvested and control basins, possibly as a result of interbasin differences in upslope area contributing to piezometers used to monitor groundwater behaviour. Transmissivity feedback (rapid streamflow increases as the water table approaches the soil surface) governed streamflow generation in both basins, and the mean threshold depths at which rapid streamflow increases corresponded to small rises in water level were similar for harvested (0·41 ± 0·05 m) and forested (0·38 ± 0·04 m) basins. However, topographic properties provided inconsistent explanations of spatial variations in the relationship between streamflow and depth to water at a given piezometer for both basins. Streamflow from the harvested basin exceeded that from the forested basin during the 2001 melt, and hydrometric and geochemical tracer results indicated greater runoff from the harvested basin via surface and near‐surface pathways. These differences are not solely attributable to harvesting, since the difference in spring runoff from the harvested basin relative to the forested control was not consistently larger than under pre‐harvest conditions. Nevertheless, greater melt rates following harvesting appear to have increased the proportion of water delivery to the stream channel via surface and near‐surface pathways. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
Jordan is classified as an arid to semi‐arid country with a population according to 1999 estimates of 4·8 millions inhabitants and a growth rate of 3·4%. Efficient use of Jordan's scarce water is becoming increasingly important as the urban population grows. This study was carried out within the framework of the joint European Research project ‘Groundwater recharge in the eastern Mediterranean’ and describes a combined methodology for groundwater recharge estimation in Jordan, the chloride method, as well as isotopic and hydrochemical approaches. Recharge estimations using the chloride method range from 14 mm year?1 (mean annual precipitation of 500 mm) for a shallow and stony soil to values of 3·7 mm year?1 for a thick desert soil (mean annual precipitation of 100 mm) and values of well below 1 mm year?1 for thick alluvial deposits (mean annual rainfall of 250 mm). Isotopically, most of the groundwater in the Hammad basin, east Jordan, falls below the global meteoric water line and far away from the Mediterranean meteoric water line, suggesting that the waters are ancient and were recharged in a climate different than Mediterranean. Tritium levels in the groundwater of the Hammad basin are less than the detection limit (<1·3 TU). However, three samples in east Hammad, where the aquifer is unconfined, present tritium values between 1 and 4 TU. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
It is important to understand the link between land surface/soil properties and shallow groundwater quality. To that end, soil properties and near‐water‐table groundwater chemistry of a shallow, unconfined aquifer were measured on a 100‐m grid on a 64‐ha irrigated field in southeastern North Dakota. Soil properties and hydrochemistry were compared via multivariate analysis that included product‐moment correlations and factor analysis/principal component analysis. Topographic low areas where the water table was in close proximity to the soil surface generally had higher apparent electrical conductivity (ECa) and higher percent silt and clay than higher positions on the landscape. The majority of the groundwater was characterized by Ca‐ and Mg‐HCO3 type water and was associated with topographic high areas with lower ECa and net groundwater recharge. Small topographic depressions were areas of higher ECa (net groundwater discharge) where salts that precipitated via evapotranspiration and evaporative discharge dissolved and leached to the groundwater during short‐term depression‐focused recharge events. At this site, groundwater quality and soil ECa were related to surface topography. High‐resolution topography and ECa measurements are necessary to characterize the land surface/soil properties and surficial groundwater quality at the field‐scale and to delineate areas where the shallow groundwater is most susceptible to contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号