首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Microbial carbonate mud in the modern (<4 kyr) palustrine environment of the Florida Everglades is surprisingly susceptible to early diagenetic alteration. The low‐Mg calcite crystals show an open, trellis‐like crystal structure that yields a high surface area to volume ratio. This textural complexity, likely to be a result of organic influence, leads to abundant reaction sites vulnerable to both dissolution and subsequent precipitation. Rapid degradation of organics is attributed to both aerobic and anaerobic metabolisms. Geochemical signatures suggest increased denitrification within the freshwater environment and increased sulphate reduction at the (slightly) brackish mangrove transition zone. A transition from a freshwater to brackish depositional environment is likely to follow the Holocene sea‐level transgression. The textural complexity in these microbial carbonates causes an unexpectedly low preservation potential of original textural and geochemical signatures, even in low‐Mg calcite. Given the potential for early diagenesis of palustrine and perhaps other microbial carbonates, they should be used cautiously as archives for palaeoenvironmental proxies.  相似文献   

2.
We explored environmental factors influencing soil pyrite formation within different wetland regions of Everglades National Park. Within the Shark River Slough (SRS) region, soils had higher organic matter (62.65 ± 1.88 %) and lower bulk density (0.19 ± 0.01 g cm?3) than soils within Taylor Slough (TS; 14.35 ± 0.82 % and 0.45 ± 0.01 g cm?3, respectively), Panhandle (Ph; 15.82 ± 1.37 % and 0.34 ± 0.009 g cm?3, respectively), and Florida Bay (FB; 5.63 ± 0.19 % and 0.73 ± 0.02 g cm?3, respectively) regions. Total reactive sulfide and extractable iron (Fe) generally were greatest in soils from the SRS region, and the degree of pyritization (DOP) was higher in soils from both SRS (0.62 ± 0.02) and FB (0.52 ± 0.03) regions relative to TS and Ph regions (0.30 ± 0.02 and 0.31 ± 0.02, respectively). Each region, however, had different potential limits to pyrite formation, with SRS being Fe and sulfide limited and FB being Fe and organic matter limited. Due to the calcium-rich soils of TS and Ph regions, DOP was relatively suppressed. Annual water flow volume was positively correlated with soil DOP. Soil DOP also varied in relation to distance from water management features and soil percent organic matter. We demonstrate the potential use of soil DOP as a proxy for soil oxidation state, thereby facilitating comparisons of wetland soils under different flooding regimes, e.g., spatially or between wet years versus dry years. Despite its low total abundance, Fe plays an important role in sulfur dynamics and other biogeochemical cycles that characterize wetland soils of the Florida coastal Everglades.  相似文献   

3.
Hurricane Andrew, one of the strongest storms of the century, crossed the southern part of the Florida peninsula on 24 August 1992. Its path crossed the Florida Everglades and exited in the national park across a mangrove-dominated coast onto the shallow, low-energy, inner shelf. The storm caused extensive breakage and defoliation in the mangrove community; full recovery will take decades. It produced no extensive sedimentation unit; only local and ephemeral ebb-surge deposits. The discontinuous shelly storm beach ridge was breached at multiple locations, and it moved landward a few meters. After seven months, there was little geologic indication that the storm had passed. It is likely that the stratigraphic record in this area will not contain any recognizable features of the passage of Hurricane Andrew.  相似文献   

4.
5.
The effects of nutrient availability and litter quality on litter decomposition were measured in two oligotrophic phosphorus (P)-limited Florida Everglades esturies, United States. The two estuaries differ, in that one (Shark River estuary) is directly connected to the Gulf of Mexico and receives marine P, while the other (Taylor Slough estuary) does not receive marine P because Florida Bay separates it from the Gulf of Mexico. Decomposition of three macrophytes.Cladium jamaicense, Eleochaaris spp., andJuncus roemerianus, was studied using a litter bag technique over 18 mo. Litter was exposed to three treatments: soil surface+macroinvertebrates (=macro), soil surface without macroinvertebrates (=wet), and above the soil and water (=aerial). The third treatment replicated the decomposition of standing dead leaves. Decomposition rates showed that litter exposed to the wet and macro treatments decomposed significantly faster than the aerial treatment, where atmospheric deposition was the only source of nutrients. Macroinvertebrates had no influence on litter decompostion rates.C. jamaicense decomposed faster at sites, with higher P, andEleocharis spp. decomposed significantly faster at sites with higher nitrogen (N). Initial tissue C:N and C:P molar ratios revealed that the nutrient quality of litter of bothEleocharis spp. andJ. roemerianus was higher thanC. jamaicense, but onlyEleocharis spp. decomposed faster thanC. jamaicense. C. jamaicense litter tended to immobilize P, whileEleocharis spp. litter showed net remineralization of N and P. A comparison with other estuarine and wetland systems revealed the dependence of litter decomposition on nutrient availability and litter quality. The results from this experiment suggest that Everglades restoration may have an important effect on key ecosystem processes in the estuarine ecotone of this landscape.  相似文献   

6.
Although there is published information on the mechanism of sedimentary pyrite formation resulting from bacterial reduction of sulfate, little is known about the distribution of forms of sulfur, including organic, in peats. In order to increase understanding of the geochemistry of sulfur in coals, we have determined distributions of forms of sulfur in five cores of saline peat and one of brackish peat, all from areas near the Shark River and Whitewater Bay in the coastal swamps of south Florida. All concentrations vary widely with depth. Total sulfur concentrations range up to 6% of dry solids. Minor amounts of sulfur are present as H2S, S0, SO42−, and acid-soluble sulfide, but the principal forms are usually pyritic and organic. The ratio, organic/pyritic, is highly variable, but at a majority of levels in a profile is considerably greater than unity. It is inferred that topochemical factors are important in determining the distribution of sulfur forms in any element of volume.  相似文献   

7.
《Applied Geochemistry》1999,14(3):395-407
An ultrafiltration procedure has been developed to study the interaction between organic C and Hg species in natural waters, and a pilot study was conducted in the surface waters of the Florida Everglades. Compared to total Hg, CH3Hg shows different distribution patterns in the suspended particulate, colloidal, and truly dissolved phases. Colloidal forms (0.22 μm, 3 kDa) contain the majority of the total dissolved Hg, while the amount found in the truly dissolved fraction (<3 kDa) is small (about 10%). However, CH3Hg, which shows strong binding capability with low molecular-weight dissolved organic C, is present almost entirely in the lower molecular-weight fraction of the colloids and in the truly dissolved fraction. Quantitative CH3Hg data correlate well with those for dissolved organic C, an indication that the organic matter present in the system plays an important role in the fate and transport of organomercury. Distribution coefficients between water and the different-sized fractions of the dissolved organic C were determined for both total Hg and CH3Hg. Results for total Hg were in general agreement with other reports resulting from studies of molecular size distributions of total Hg in freshwater systems. This is, to the best of our knowledge, the first report of such distribution profiles for CH3Hg between different-sized fractions of dissolved organic C in natural waters.  相似文献   

8.
The composition and distribution of diatom algae inhabiting estuaries and coasts of the subtropical Americas are poorly documented, especially relative to the central role diatoms play in coastal food webs and to their potential utility as sentinels of environmental change in these threatened ecosystems. Here, we document the distribution of diatoms among the diverse habitat types and long environmental gradients represented by the shallow topographic relief of the South Florida, USA, coastline. A total of 592 species were encountered from 38 freshwater, mangrove, and marine locations in the Everglades wetland and Florida Bay during two seasonal collections, with the highest diversity occurring at sites of high salinity and low water column organic carbon concentration (WTOC). Freshwater, mangrove, and estuarine assemblages were compositionally distinct, but seasonal differences were only detected in mangrove and estuarine sites where solute concentration differed greatly between wet and dry seasons. Epiphytic, planktonic, and sediment assemblages were compositionally similar, implying a high degree of mixing along the shallow, tidal, and storm-prone coast. The relationships between diatom taxa and salinity, water total phosphorus (WTP), water total nitrogen (WTN), and WTOC concentrations were determined and incorporated into weighted averaging partial least squares regression models. Salinity was the most influential variable, resulting in a highly predictive model (r apparent2 = 0.97, r jackknife2 = 0.95) that can be used in the future to infer changes in coastal freshwater delivery or sea-level rise in South Florida and compositionally similar environments. Models predicting WTN (r apparent2 = 0.75, r jackknife2 = 0.46), WTP (r apparent2 = 0.75, r jackknife2 = 0.49), and WTOC (r apparent2 = 0.79, r jackknife2 = 0.57) were also strong, suggesting that diatoms can provide reliable inferences of changes in solute delivery to the coastal ecosystem.  相似文献   

9.
Low-relief environments like the Florida Coastal Everglades (FCE) have complicated hydrologic systems where surface water and groundwater processes are intimately linked yet hard to separate. Fluid exchange within these low-hydraulic-gradient systems can occur across broad spatial and temporal scales, with variable contributions to material transport and transformation. Identifying and assessing the scales at which these processes operate is essential for accurate evaluations of how these systems contribute to global biogeochemical cycles. The distribution of 222Rn and 223,224,226Ra have complex spatial patterns along the Shark River Slough estuary (SRSE), Everglades, FL. High-resolution time-series measurements of 222Rn activity, salinity, and water level were used to quantify processes affecting radon fluxes out of the mangrove forest over a tidal cycle. Based on field data, tidal pumping through an extensive network of crab burrows in the lower FCE provides the best explanation for the high radon and fluid fluxes. Burrows are irrigated during rising tides when radon and other dissolved constituents are released from the mangrove soil. Flushing efficiency of the burrows—defined as the tidal volume divided by the volume of burrows—estimated for the creek drainage area vary seasonally from 25 (wet season) to 100 % (dry season) in this study. The tidal pumping of the mangrove forest soil acts as a significant vector for exchange between the forest and the estuary. Processes that enhance exchange of O2 and other materials across the sediment-water interface could have a profound impact on the environmental response to larger scale processes such as sea level rise and climate change. Compounding the material budgets of the SRSE are additional inputs from groundwater from the Biscayne Aquifer, which were identified using radium isotopes. Quantification of the deep groundwater component is not obtainable, but isotopic data suggest a more prevalent signal in the dry season. These findings highlight the important role that both tidal- and seasonal-scale forcings play on groundwater movement in low-gradient hydrologic systems.  相似文献   

10.
The unique geography of the Florida Keys presents both high risk of hurricane landfall and exceptional vulnerability to the effects of a hurricane strike. Inadequate hurricane shelters in the Keys make evacuation the only option for most residents, but the sole access road can become impassable well in advance of a major storm. These extraordinary conditions create challenges for emergency managers who must ensure that appropriate emergency plans are in place and to ensure that an orderly exodus can occur without stranding large numbers of people along an evacuation route with inadequate shelter capacity. This study attempts to answer two questions: (1) What is the minimum clearance time needed to evacuate all residents participating in an evacuation of the Florida Keys in advance of a major hurricane for 92,596 people – a population size calculated based on the 2000 US Census population data, census undercounts, and the number of tourists estimated to be in the area? (2) If a hurricane makes landfall in the Keys while the evacuation is in progress, how many residents will need to be accommodated if the evacuation route becomes impassable? The authors conducted agent-based microsimulations to answer the questions. Simulation results suggest that it takes 20 h and 11 min to 20 h and 14 min to evacuate the 92,596 people. This clearance time is less than the Florida state mandated 24-h clearance time limit. If one assumes that people evacuate in a 48-h period and the traffic flow from the Keys would follow that observed in the evacuation from Hurricane Georges, then a total of 460 people may be stranded if the evacuation route becomes impassable 48 h after an evacuation order is issued. If the evacuation route becomes impassable 40 h after an evacuation order is issued, then 14,000 people may be stranded.  相似文献   

11.
There is a net discharge of water and nutrients through Long Key Channel from Florida Bay to the Florida Keys National Marine Sanctuary (FKNMS). There has been speculation that this water and its constituents may be contributing to the loss of coral cover on the Florida Keys Reef tract over the past few decades, as well as speculation that changes in freshwater flow in the upstream Everglades ecosystem associated with the Comprehensive Everglades Restoration Plan may exacerbate this phenomenon. The results of this study indicate that although there is a net export of approximately 3,850 (±404) ton N year?1 and 63 (±7) ton P year?1, the concentrations of these nutrients flowing out of Florida Bay are the same as those flowing in. This implies that no significant nutrient enrichment is occurring in the waters of the FKNMS in the vicinity of Long Key Channel. Because of the effect of restricted southwestward water flow through Florida Bay by shallow banks and small islands, the volume of relatively high-nutrient water from central and eastern portions of the bay exiting through the channel is small compared to the average tidal exchange. Nutrient loading of relatively enriched bay waters is mediated by tidal exchange and mixing with more ambient concentrations of the western Florida Bay and Hawk Channel. System-wide budgets indicate that the contribution of Florida Bay waters to the inorganic nitrogen pool of the Keys coral reef is small relative to offshore inputs.  相似文献   

12.
《Applied Geochemistry》2000,15(3):369-383
Surface water and peat in the northern Everglades have very low natural concentrations of U and are therefore sensitive to the addition of small amounts of U from anthropogenic sources such as fertilizer. Peat samples collected along a nutrient gradient in the northern Everglades have unusually high concentrations of U (>1 μg/g, dry basis) and also have a distinctive 234U/238U activity ratio (AR). AR values for U-enriched peat fall in the narrow range of AR values for commercial phosphate fertilizer (1.00±0.05). In contrast, AR values for low-U peat from background sites exceed 1.05. The spatial distribution of anomalous U concentration, and of fertilizer-like AR values in peat, parallel a previously documented pattern of P enrichment. These results strongly suggest that some of the U in nutrient-impacted peatlands is fertilizer-derived. Agricultural drainage water sampled in the northern Everglades has high concentrations of dissolved U (0.3–2.4 μg/l) compared to surface water from background sites (<0.1 μg/l). Measured AR values in drainage water (0.949–0.990) are also permissive of a fertilizer origin for the U and are different from AR values in surface water or peat at background sites (AR>1.05). Synoptic sampling of surface water along drainage canals indicate that Lake Okeechobee, and some drainage from agricultural fields, are sources of dissolved U, whereas wetlands farther downstream act as sinks for U. Historically cultivated agricultural soil has only a marginally elevated (+0.2 μg/g) average concentration of U compared to nearby uncultivated soil and incorporates only 20% of the U from an aqueous solution that was slurried with the soil. In contrast, a similar experiment with fresh Everglades peat indicated uptake of 90% of the added U. These experiments support the proposed removal of U from agricultural fields and concentration of U in downstream peatlands. The methodology of this study can be used to describe the behavior of fertilizer-derived U in other low-U environments.  相似文献   

13.
Six sulfur forms were investigated in profiles of freshwater- and marine-derived peat-forming systems of the Okefenokee Swamp, Georgia and Everglades Swamp, Florida. Total sulfur levels of 0.1–10% were found, thus indicating a major incorporation of sulfur in the very early stages of coal formation. The quantities of hydrogen sulfide and elemental sulfur observed appeared to be indicative of whether marine or freshwater conditions prevailed at the site of deposition. Carbon-bonded sulfur accounted for 70% of the total sulfur in the freshwater peat and 50% of the total sulfur in the marine peat. Over 15% of the total sulfur was in pyritic combination in the marine environment, while levels of pyrite in the freshwater peats were an order of magnitude lower. An ester-sulfate fraction represented 25% of the total sulfur in both freshwater and marine peats. The levels of sulfur forms in the peat profiles are compared to those observed in living plants and to various coals; levels of pyrite and organic sulfur in the peat are similar to those found by other investigators in freshwater-derived and marine-derived coals.  相似文献   

14.
A record of the impacts of major hurricanes on sediment stratigraphy and composition in subtropical ecosystems has been preserved in the lower Everglades and Florida Bay. These impacts were observed in discontinuous layers of sediment that were identified from high-resolution, vertical profiles of excess 210Pb and 137Cs. Discontinuities were found at different geographic locations and at two to three different depths in the sediment column; however, the layers were each deposited within time periods that corresponded with the passing of category 3–5 hurricanes during 1960, 1948 and 1935. A simple mass balance model for excess 210Pb was used to show net changes of ±20–100% in excess 210Pb inventory that resulted from sediment disturbances of <1 to >22 cm. Abrupt shifts in sediment composition were often observed in hurricane-impacted layers. Ratios of organic (C/P) were four- to fivefold higher than normal in post-hurricane layers of sediment at open bay sites. These layers are phosphorus poor and seem to reflect preferential decomposition of organic P relative to organic C in association with hurricanes. The net effect is for major hurricanes to redistribute sediment, organic matter and nutrients.This revised version was published online in July 2003.  相似文献   

15.
Natural Hazards - University populations can sometimes be treated as homogenous by default, in the absence of intentional differentiation and targeted programs and services. Previous research has...  相似文献   

16.
Large-scale damage to the power infrastructure from hurricanes and high-wind events can have devastating ripple effects on infrastructure, the broader economy, households, communities, and regions. Using Hurricane Irma’s impact on Florida as a case study, we examined: (1) differences in electric power outages and restoration rates between urban and rural counties; (2) the duration of electric power outages in counties exposed to tropical storm force winds versus hurricane Category 1 force winds; and (3) the relationship between the duration of power outage and socioeconomic vulnerability. We used power outage data for the period September 9, 2017–September 29, 2017. At the peak of the power outages following Hurricane Irma, over 36% of all accounts in Florida were without electricity. We found that the rural counties, predominantly served by rural electric cooperatives and municipally owned utilities, experienced longer power outages and much slower and uneven restoration times. Results of three spatial lag models show that large percentages of customers served by rural electric cooperatives and municipally owned utilities were a strong predictor of the duration of extended power outages. There was also a strong positive association across all three models between power outage duration and urban/rural county designation. Finally, there is positive spatial dependence between power outages and several social vulnerability indicators. Three socioeconomic variables found to be statistically significant highlight three different aspects of vulnerability to power outages: minority groups, population with sensory, physical and mental disability, and economic vulnerability expressed as unemployment rate. The findings from our study have broader planning and policy relevance beyond our case study area, and highlight the need for additional research to deepen our understanding of how power restoration after hurricanes contributes to and is impacted by the socioeconomic vulnerabilities of communities.  相似文献   

17.
We examined heterotrophic bacterial nutrient limitation at four sites in Florida Bay, U. S. in summer 1994 and winter 1995. Bacterial growth and biomass production in this system were most limited by inorganic phosphorus (P) in the eastern and southern regions of the bay. Nutrient additions stimulated productivity and biomass accumulation mostly in summer. The magnitude of growth responses (thymidine incorporation) to nutrient additions was nearly an order of magnitude less in winter than summer. Biomass-normalized alkaline phosphatase activity in the northeast and south-central region was 5–20 times greater than in the northwest and north-central regions, suggesting that P is most limiting to planktonic growth in those areas. Chlorophyll levels were higher in the northwest and north-central regions and P-uptake into particles >1 μm, primarily phytoplankton, was also higher in these regions. Consistent with these observations, others have observed that P is advected into the bay primarily in the northwestern region. Abundant seagrasses in Florida Bay may promote heterotrophic bacterial production relative to phytoplankton production by releasing dissolved organic carbon that makes bacteria more competitive for limiting quantities of inorganic phosphate, especially in the eastern bay where turbidity is low, P is most limiting, and light levels reaching the benthic plants are high.  相似文献   

18.
Pensacola Bay, Florida, was in the strong northeast quadrant of Hurricane Ivan when it made landfall on September 16, 2004 as a category 3 hurricane on the Saffir-Simpson scale. We present data describing the timeline and maximum height of the storm surge, the extent of flooding of coastal land, and the magnitude of the freshwater inflow pulse that followed the storm. We computed the magnitude of tidal flushing associated with the surge using a tidal prism model. We also evaluated hurricane effects on water quality using water quality surveys conducted 20 and 50 d after the storm, which we compared with a survey 14 d before landfall. We evaluated the scale of hurricane effects relative to normal variability using a 5-yr monthly record. Ivan's 3.5 m storm surge inundated 165 km2 of land, increasing the surface area of Pensacola Bay by 50% and its volume by 230%. The model suggests that 60% of the Bay's volume was flushed, initially increasing the average salinity of Bay waters from 23 to 30 and lowering nutrient and chlorophylla concentrations. Additional computations suggest that wind forcing was sufficient to completely mix the water column during the storm. Freshwater discharge from the largest river increased twentyfold during the subsequent 4 d, stimulating a modest phytoplankton bloom (chlorophyll up to 18 μg l−1) and maintaining hypoxia for several months. Although the immediate physical perturbation was extreme, the water quality effects that persisted beyond the first several days were within the normal range of variability for this system. In terms of water quality and phytoplankton productivity effects, this ecosystem appears to be quite resilient in the face of a severe hurricane effect.  相似文献   

19.
Widespread use of septic tanks in the Florida Keys increase the nutrient concentrations of limestone groundwaters that discharge into shallow nearshore waters, resulting in coastal eutrophication. This study characterizes watershed nutrient inputs, transformations, and effects along a land-sea gradient stratified into four ecosystems that occur with increasing distance from land: manmade canal systems (receiving waters of nutrient inputs), seagrass meadows, patch reefs, and offshore bank reefs. Soluble reactive phosphorus (SRP), the primary limiting nutrient, was significantly elevated in canal systems compared to the other ecosystems, while dissolved inorganic nitrogen (DIN; NH4 + and NO3 ?) a secondary limiting nutrient, was elevated both in canal systems and seagrass meadows. SRP and NH4 + concentrations decreased to low concentrations within approximately 1 km and 3 km from land, respectively. DIN and SRP accounted for their greatest contribution (up to 30%) of total N and P pools in canals, compared to dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) that dominated (up to 68%) the total N and P pools at the offshore bank reefs. Particulate N and P fractions were also elevated (up to 48%) in canals and nearshore seagrass meadows, indicating rapid biological uptake of DIN and SRP into organic particles. Chlorophylla and turbidity were also elevated in canal systems and seagrass meadows; chlorophylla was maximal during summer when maximum watershed nutrient input occurs, whereas turbidity was maximal during winter due to seasonally maximum wind conditions and sediment resuspension. DO was negatively correlated with NH4 + and SRP; hypoxia (DO<2.5 mg l?1) frequently occurred in nutrient-enriched canal systems and seagrass meadows, especially during the warm summer months. These findings correlate with recent (<5 years) observations of increasing algal blooms, seagrass epiphytization and die-off, and loss of coral cover on patch and bank reef ecosystems, suggesting that nearshore waters of the Florida Keys have entered a stage of critical eutrophication.  相似文献   

20.
Historic changes in water-use management in the Florida Everglades have caused the quantity of freshwater inflow to Florida Bay to decline by approximately 60% while altering its timing and spatial distribution. Two consequences have been (1) increased salinity throughout the bay, including occurrences of hypersalinity, coupled with a decrease in salinity variability, and (2) change in benthic habitat structure. Restoration goals have been proposed to return the salinity climates (salinity and its variability) of Florida Bay to more estuarine conditions through changes in upstream water management, thereby returning seagrass species cover to a more historic state. To assess the potential for meeting those goals, we used two modeling approaches and long-term monitoring data. First, we applied the hydrological mass balance model FATHOM to predict salinity climate changes in sub-basins throughout the bay in response to a broad range of freshwater inflow from the Everglades. Second, because seagrass species exhibit different sensitivities to salinity climates, we used the FATHOM-modeled salinity climates as input to a statistical discriminant function model that associates eight seagrass community types with water quality variables including salinity, salinity variability, total organic carbon, total phosphorus, nitrate, and ammonium, as well as sediment depth and light reaching the benthos. Salinity climates in the western sub-basins bordering the Gulf of Mexico were insensitive to even the largest (5-fold) modeled increases in freshwater inflow. However, the north, northeastern, and eastern sub-basins were highly sensitive to freshwater inflow and responded to comparatively small increases with decreased salinity and increased salinity variability. The discriminant function model predicted increased occurrences of Halodule wrightii communities and decreased occurrences of Thalassia testudinum communities in response to the more estuarine salinity climates. The shift in community composition represents a return to the historically observed state and suggests that restoration goals for Florida Bay can be achieved through restoration of freshwater inflow from the Everglades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号