共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatio-temporal variability of summer monsoon rainfall over Orissa in relation to low pressure systems 总被引:2,自引:0,他引:2
The summer monsoon rainfall over Orissa occurs mostly due to low pressure systems (LPS) developing over the Bay of Bengal
and moving along the monsoon trough. A study is hence undertaken to find out characteristic features of the relationship between
LPS over different regions and rain-fall over Orissa during the summer monsoon season (June-September). For this purpose,
rainfall and rainy days over 31 selected stations in Orissa and LPS days over Orissa and adjoining land and sea regions during
different monsoon months and the season as a whole over a period of 20 years (1980-1999) are analysed. The principal objective
of this study is to find out the role of LPS on spatial and temporal variability of summer monsoon rainfall over Orissa.
The rainfall has been significantly less than normal over most parts of Orissa except the eastern side of Eastern Ghats during
July and hence during the season as a whole due to a significantly less number of LPS days over northwest Bay in July over
the period of 1980-1999. The seasonal rainfall shows higher interannual variation (increase in coefficient of variation by
about 5%) during 1980-1999 than that during 1901-1990 over most parts of Orissa except northeast Orissa. Most parts of Orissa,
especially the region extending from central part of coastal Orissa to western Orissa (central zone) and western side of the
Eastern Ghats get more seasonal monsoon rainfall with the development and persistence of LPS over northwest Bay and their
subsequent movement and persistence over Orissa. The north Orissa adjoining central zone also gets more seasonal rainfall
with development and persistence of LPS over northwest Bay. While the seasonal rainfall over the western side of the Eastern
Ghats is adversely affected due to increase in LPS days over west central Bay, Jharkhand and Bangladesh, that over the eastern
side of the Eastern Ghats is adversely affected due to increase in LPS days over all the regions to the north of Orissa. There
are significant decreasing trends in rainfall and number of rainy days over some parts of southwest Orissa during June and
decreasing trends in rainy days over some parts of north interior Orissa and central part of coastal Orissa during July over
the period of 1980-1999 相似文献
2.
B. Parthasarathy 《Journal of Earth System Science》1984,93(4):371-385
Analysis of summer monsoon (June to September) rainfall series of 29 subdivisions based on a fixed number of raingauges (306
stations) has been made for the 108-year period 1871–1978 for interannual and long-term variability of the rainfall. Statistical
tests show that the rainfall series of 29 sub-divisions are homogeneous, Gaussian-distributed and do not contain any persistence.
The highest and the lowest normal rainfall of 284 and 26 cm are observed over coastal Karnataka and west Rajasthan sub-divisions
respectively. The interannual variability (range) varies over different sub-divisions, the lowest being 55 and the highest
231% of the normal rainfall, for south Assam and Saurashtra and Kutch sub-divisions respectively. High spatial coherency is
observed between neighbouring sub-divisions; northeast region and northern west and peninsular Indian sub-divisions show oppositic
correlation tendency. Significant change in mean rainfall of six sub-divisions is noticed. Correlogram and spectrum analysis
show the presence of 14-year and QBO cycles in a few sub-divisional rainfall series. 相似文献
3.
G Nageswara Rao 《Journal of Earth System Science》2001,110(1):87-94
It is well known that heavy rainfall occurs in the southwestern sector of the monsoon depressions due to strong convergence
in that sector. By examining the rainfall distribution associated with the monsoon disturbances (lows and depressions) in
one of the central Indian river basins, ‘Godavari’, the author found that when the disturbance-centre is away from the basin,
heavy rainfall may also occur in the basin area close to the confluence line and cause severe floods in the river. The confluence
line is the zone of convergence between the northeasterlies to the west of the disturbance centre and the monsoon westerlies.
This study further reveals the importance of the position and movement of the confluence line with respect to the basin, on
which the intensity and the raising period of the resulting flood depend. 相似文献
4.
In this article, the interannual variability of certain dynamic and thermodynamic characteristics of various sectors in the
Asian summer monsoon domain was examined during the onset phase over the south Indian peninsula (Kerala Coast). Daily average
(0000 and 1200 UTC) reanalysis data sets of the National Centre for Environmental Prediction/National Centre for Atmospheric
Research (NCEP/NCAR) for the period 1948–1999 were used. Based on 52 years onset date of the Indian summer monsoon, we categorized
the pre-onset, onset, and post-onset periods (each an average of 5 days) to investigate the interannual variability of significant
budget terms over the Arabian Sea, Bay of Bengal, and the Indian peninsula. A higher difference was noticed in low-level kinetic
energy (850 hPa) and the vertically integrated generation of kinetic energy over the Arabian Sea from the pre-onset, onset,
and post-onset periods. Also, significant changes were noticed in the net tropospheric moisture and diabatic heating over
the Arabian Sea and Indian peninsula from the pre-onset to the post-onset period. It appears that attaining the magnitude
of 40 m2 s−2 and then a sharp rise in kinetic energy at 850 hPa is an appropriate time to declare the onset of the summer monsoon over
India. In addition to a sufficient level of net tropospheric moisture (40 mm), a minimum strength of low-level flow is needed
to trigger convective activity over the Arabian Sea and the Bay of Bengal. An attempt was also made to develop a location-specific
prediction of onset dates of the summer monsoon over India based on energetics and basic meteorological parameters using multivariate
statistical techniques. The regression technique was developed with the data of May and June for 42 years (1948–1989) and
validated with 10 years NCEP reanalysis from 1990 to 1999. It was found that the predicted onset dates from the regression
model are fairly in agreement with the observed onset dates obtained from the Indian Meteorology Department. 相似文献
5.
Some characteristics of very heavy rainfall over Orissa during summer monsoon season 总被引:1,自引:0,他引:1
Orissa is one of the most flood prone states of India. The floods in Orissa mostly occur during monsoon season due to very
heavy rainfall caused by synoptic scale monsoon disturbances. Hence a study is undertaken to find out the characteristic features
of very heavy rainfall (24 hours rainfall ≥125 mm) over Orissa during summer monsoon season (June–September) by analysing
20 years (1980–1999) daily rainfall data of different stations in Orissa. The principal objective of this study is to find
out the role of synoptic scale monsoon disturbances in spatial and temporal variability of very heavy rainfall over Orissa.
Most of the very heavy rainfall events occur in July and August. The region, extending from central part of coastal Orissa
in the southeast towards Sambalpur district in the northwest, experiences higher frequency and higher intensity of very heavy
rainfall with less interannual variability. It is due to the fact that most of the causative synoptic disturbances like low
pressure systems (LPS) develop over northwest (NW) Bay of Bengal with minimum interannual variation and the monsoon trough
extends in west-northwesterly direction from the centre of the system. The very heavy rainfall occurs more frequently with
less interannual variability on the western side of Eastern Ghat during all the months and the season except September. It
occurs more frequently with less interannual variability on the eastern side of Eastern Ghat during September. The NW Bay
followed by Gangetic West Bengal/Orissa is the most favourable region of LPS to cause very heavy rainfall over different parts
of Orissa except eastern side of Eastern Ghat. The NW Bay and west central (WC) Bay are equally favourable regions of LPS
to cause very heavy rainfall over eastern side of Eastern Ghat. The frequency of very heavy rainfall does not show any significant
trend in recent years over Orissa except some places in north-east Orissa which exhibit significant rising trend in all the
monsoon months and the season as a whole. 相似文献
6.
Sea-breeze-initiated rainfall over the east coast of India during the Indian southwest monsoon 总被引:1,自引:0,他引:1
Matthew Simpson Hari Warrior Sethu Raman P. A. Aswathanarayana U. C. Mohanty R. Suresh 《Natural Hazards》2007,42(2):401-413
Sea-breeze-initiated convection and precipitation have been investigated along the east coast of India during the Indian southwest
monsoon season. Sea-breeze circulation was observed on approximately 70–80% of days during the summer months (June–August)
along the Chennai coast. Average sea-breeze wind speeds are greater at rural locations than in the urban region of Chennai.
Sea-breeze circulation was shown to be the dominant mechanism initiating rainfall during the Indian southwest monsoon season.
Approximately 80% of the total rainfall observed during the southwest monsoon over Chennai is directly related to convection
initiated by sea-breeze circulation. 相似文献
7.
Temporal distribution of southwest monsoon (June –September) rainfall is very useful for the country’s agriculture and food
grain production. It contributes more than 75% of India’s annual rainfall. In view of this, an attempt has been made here
to understand the performance of the monthly rainfall for June, July, August and September when the seasonal rainfall is reported
as excess, deficient or normal. To know the dependence of seasonal rainfall on monthly rainfall, the probabilities of occurrence
of excess, deficient and normal monsoon when June, July, August and also June + July and August + September rainfall is reported
to be excess or deficient, are worked out using the long homogenous series of 124 years (1871-–1994) data of monthly and seasonal
rainfall of 29 meteorological sub-divisions of the plain regions of India.
In excess monsoon years, the average percentage contribution of each monsoon month to the long term mean (1871–1994) seasonal
rainfall (June –September) is more than that of the normal while in the deficient years it is less than normal. This is noticed
in all 29 meteorological sub-divisions. From the probability analysis, it is seen that there is a rare possibility of occurrence
of seasonal rainfall to be excess/deficient when the monthly rainfall of any month is deficient/excess. 相似文献
8.
Ankita Singh Nachiketa Acharya Uma Charan Mohanty Gopbandhu Mishra 《Comptes Rendus Geoscience》2013,345(2):62-72
The emerging advances in the field of dynamical prediction of monsoon using state-of-the-art General Circulation Models (GCMs) have led to the development of various multi model ensemble techniques (MMEs). In the present study, the concept of Canonical Correlation Analysis is used for making MME (referred as Multi Model Canonical Correlation Analysis or MMCCA) for the prediction of Indian summer monsoon rainfall (ISMR) during June-July-August-September (JJAS). This method has been employed on the rainfall outputs of six different GCMs for the period 1982 to 2008. The prediction skill of ISMR by MMCCA is compared with the simple composite method (SCM) (i.e. arithmetic mean of all GCMs), which is taken as a benchmark. After a rigorous analysis through different skill metrics such as correlation coefficient and index of agreement, the superiority of MMCCA over SCM is illustrated. Performance of both models is also evaluated during six typical monsoon years and the results indicate the potential of MMCCA over SCM in capturing the spatial pattern during extreme years. 相似文献
9.
Isotope ratios and elemental concentrations in otoliths are often used as natural tags to reconstruct migratory movements and connectivity patterns in marine and anadromous fishes. Although differences in otolith geochemistry have been documented among geographically separated populations, inter-annual variation within locations is less frequently examined. We compared otolith isotope (δ18O and 87Sr:86Sr) and elemental ratios (Sr:Ca and Ba:Ca) from several annual cohorts of juvenile American shad (Alosa sapidissima) in three rivers. These four geochemical signatures distinguished among river-specific populations of this species at both large and small geographic scales, with δ18O and 87Sr:86Sr generating the majority of multivariate variation. We found significant variation among years for all variables in two to three rivers. However, the magnitude of variability differed among ratios, with δ18O ratios showing substantial inter-annual shifts while 87Sr:86Sr ratios were relatively stable across years. Sr:Ca and Ba:Ca ratios also varied among years. These results imply that investigators using environmentally labile signatures must quantify geochemical signatures for each cohort of interest in order to confidently identify origins of migrants. 相似文献
10.
11.
Characteristics of certain surface meteorological parameters in relation to the interannual variability of Indian summer monsoon 总被引:1,自引:0,他引:1
With an objective to understand the influence of surface marine meteorological parameters in relation to the extreme monsoon activity over the Indian sub-continent leading to flood/drought, a detailed analysis of the sea level pressure over the Southern Hemisphere and various surface meteorological parameters over the Indian seas is carried out. The present study using the long term data sets (Southern Hemispheric Sea Level Pressure Analysis; Comprehensive Ocean Atmospheric Data Set over the Indian Seas; Surface Station Climatology Data) clearly indicates that the sea surface temperature changes over the south eastern Pacific (El Ninõ/La Niña) have only a moderate impact (not exceeding 50% reliability) on the Indian summer monsoon activity. On the other hand, the sea level pressure anomaly (SOI) over Australia and the south Pacific has a reasonably high degree of significance (more than 70%) with the monsoon activity over India. However, these two parameters (SLP and SST) do not show any significant variability over the Indian seas in relation to the summer monsoon activity. Over the Indian seas, the parameters which are mainly associated with the convective activity such as cloud cover, relative humidity and the surface wind were found to have a strong association with the extreme monsoon activity (flood/drought) and thus the net oceanic heat loss over the Indian seas provides a strong positive feed-back for the monsoon activity over India. 相似文献
12.
Having recognized that it is the tropospheric temperature (TT) gradient rather than the land–ocean surface temperature gradient that drives the Indian monsoon, a new mechanism of El Niño/Southern Oscillation (ENSO) monsoon teleconnection has been unveiled in which the ENSO influences the Indian monsoon by modifying the TT gradient over the region. Here we show that equatorial Pacific coralline oxygen isotopes reflect TT gradient variability over the Indian monsoon region and are strongly correlated to monsoon precipitation as well as to the length of the rainy season. Using these relationships we have been able to reconstruct past Indian monsoon rainfall variability of the first half of the 20th century in agreement with the instrumental record. Additionally, an older coral oxygen isotope record has been used to reconstruct seasonally resolved summer monsoon rainfall variability of the latter half of the 17th century, indicating that the average annual rainfall during this period was similar to that during the 20th century. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
13.
D R Sikka 《Journal of Earth System Science》1980,89(2):179-195
Year-to-year fluctuations of summer monsoon (June–September) rainfall of India are studied in relation to planetary and regional scale features. Anomalous epochs in the monsoon rainfall have been found to coincide with the epochs having anomalous patterns of temperature distribution in the northern hemispheric extratropics as well as with the spells of years having anomalous patterns of sea surface temperature distribution in the equatorial Pacific Ocean (EL-Nino phenomenon). Relationship between monsoonal rainfall and regional atmospheric circulation features is studied by compositing data of five good and five bad monsoon rainfall years over India. A comparison of the two data sets yields interesting relationships between the anomalous patterns of rainfall on the one hand and atmospheric parameters on the other. On the average parameters of monsoon depressions are more or less the same among the two types of composites. The most important distinguishing feature of good monsoon years is the greater frequency of cyclogenesis (monsoon lows included) on the regional scale which keeps the monsoon trough near its normal position and with concomitant higher cyclonic vorticity in the trough zone contributes to greater seasonal rainfall on the regional scale during good monsoon years. 相似文献
14.
D. R. Pattanaik 《Natural Hazards》2007,40(3):635-646
Between 1941 and 2002 there has been a decreasing trend in the frequency of monsoon disturbances (MDs) during the summer monsoon
season (June–September). This downwards trend is significant at the 99.9% level for the main monsoon phase (July–August) and
the withdrawal phase (September); however, it is not significant during the onset phase (June). The variability in rainfall
over the homogeneous regions of India on the sub-seasonal scale also shows a significant decreasing trend with respect to
the amount of rainfall over Northwest India (NWI) and Central India (CEI) during all three phases of the monsoon. Meteorological
observations reveal that there has been an eastward shift of the rainfall belt with time over the Indian region on the seasonal
scale and that this shift is more prominent during the withdrawal phase. This decreasing trend in MDs together with its restricted
westerly movement seem to be directly related to the decreasing trend in rainfall over CEI during both the main monsoon and
withdrawal phases and over NWI during the withdrawal phase. The low-level circulation anomalies observed during two periods
(period-I: 1951–1976; period-ii: 1977–2002) are in accordance with the changes in rainfall distribution, with comparatively
more (less) rainfall falling over NWI, CEI and Southern Peninsular India (SPI) during period-I (period-ii), and are accompanied
by a stronger (weaker) monsoon circulation embedded with an anomalous cyclonic (anti-cyclonic) circulation over CEI during
the main monsoon and withdrawal phases. During the onset phase, completely opposite circulation anomalies are observed during
both periods, and these are associated with more (less) rainfall over NWI, CEI and SPI during period-ii (period-I). 相似文献
15.
Global surface temperature in relation to northeast monsoon rainfall over Tamil Nadu 总被引:3,自引:0,他引:3
The local and teleconnective association between Northeast Monsoon Rainfall (NEMR) over Tamil Nadu and global Surface Temperature
Anomalies (STA) is examined using the monthly gridded STA data for the period 1901–2004. Various geographical regions which
have significant teleconnective signals associated with NEMR are identified. During excess (deficient) NEMR years, it is observed
that the meridional gradient in surface air temperature anomalies between Europe and north Africa, in the month of September
is directed from the subtropics (higher latitudes) to higher latitudes (subtropics). It is also observed that North Atlantic
Oscillation (NAO) during September influences the surface air temperature distribution over north Africa and Europe. Also,
the NAO index in January shows significant inverse relationship with NEMR since recent times. The central and eastern equatorial
Pacific oceanic regions have significant and consistent positive correlation with NEMR while the western equatorial region
has significant negative correlation with NEMR. A zonal temperature anomaly gradient index (ZTAGI) defined between eastern
equatorial Pacific and western equatorial Pacific shows stable significant inverse relationship with NEMR 相似文献
16.
R. N. Iyengar 《Journal of Earth System Science》1991,100(2):105-126
The usefulness of principal component analysis for understanding the temporal variability of monsoon rainfall is studied.
Monthly rainfall data of Karnataka, spread on 50 stations for a period of 82 years have been analysed for interseasonal and
interannual variabilities. A subset of the above data comprising 10 stations from the coherent west zone of Karnataka has
also been investigated to bring out statistically significant interannual signals in the southwest monsoon rainfall. Conditional
probabilities are proposed for a few above normal/below normal transitions. A sample prediction exercise for June–July using
such a transition probability has been found to be successful. 相似文献
17.
Deepak Jhajharia Brijesh K. Yadav Sunil Maske Surajit Chattopadhyay Anil K. Kar 《Comptes Rendus Geoscience》2012,344(1):1-13
Trends in rainfall, rainy days and 24 h maximum rainfall are investigated using the Mann-Kendall non-parametric test at twenty-four sites of subtropical Assam located in the northeastern region of India. The trends are statistically confirmed by both the parametric and non-parametric methods and the magnitudes of significant trends are obtained through the linear regression test. In Assam, the average monsoon rainfall (rainy days) during the monsoon months of June to September is about 1606 mm (70), which accounts for about 70% (64%) of the annual rainfall (rainy days). On monthly time scales, sixteen and seventeen sites (twenty-one sites each) witnessed decreasing trends in the total rainfall (rainy days), out of which one and three trends (seven trends each) were found to be statistically significant in June and July, respectively. On the other hand, seventeen sites witnessed increasing trends in rainfall in the month of September, but none were statistically significant. In December (February), eighteen (twenty-two) sites witnessed decreasing (increasing) trends in total rainfall, out of which five (three) trends were statistically significant. For the rainy days during the months of November to January, twenty-two or more sites witnessed decreasing trends in Assam, but for nine (November), twelve (January) and eighteen (December) sites, these trends were statistically significant. These observed changes in rainfall, although most time series are not convincing as they show predominantly no significance, along with the well-reported climatic warming in monsoon and post-monsoon seasons may have implications for human health and water resources management over bio-diversity rich Northeast India. 相似文献
18.
Nityanand Singh 《Journal of Earth System Science》1995,104(1):1-36
Large-scale interannual variability of the northern summer southwest monsoon over India is studied by examining its variation
in the dry area during the period 1871–1984. On the mean summer monsoon rainfall (June to September total) chart the 800 mm
isohyet divides the country into two nearly equal halves, named as dry area (monsoon rainfall less than 800 mm) and wet area
(monsoon rainfall greater than 800 mm). The dry area/wet area shows large variations from one year to another, and is considered
as an index for assessing the large-scale performance of the Indian summer monsoon. Statistical and fluctuation characteristics
of the summer monsoon dry area (SMDA) are reported.
To identify possible causes of variation in the Indian summer monsoon, the correlation between the summer monsoon dry area
and eleven regional/global circulation parameters is examined. The northern hemisphere surface air temperature, zonal/hemispheric/global
surface air and upper air temperatures, Southern Oscillation, Quasi-biennial oscillation of the equatorial lower stratosphere,
April 500-mb ridge along 75°E over India, the Indian surface air temperature and the Bombay sea level pressure showed significant
correlation.
A new predictor parameter that is preceding year mean monsoon rainfall of a few selected stations over India has been suggested
in the present study. The stations have been selected by applying the objective technique ‘selecting a subset of few gauges
whose mean monsoon rainfall of the preceding year has shown the highest correlation coefficient (CC) with the SMDA’. Bankura
(Gangetic West Bengal), Cuddalore (Tamil Nadu) and Anupgarh (West Rajasthan) entered the selection showing a CC of 0.724.
Using a dependent sample of 1951–1980 a predictive model (multiple CC = 0.745) has also been developed for the SMDA with preceding
year mean monsoon rainfall of the three selected stations and the sea level pressure tendency at Darwin from Jan–Feb to Mar–May
as independent parameters. 相似文献
19.
Field stratigraphy and optical and radiocarbon dating of lateral moraines in the monsoon dominated Dunagiri valley of the Central Himalaya provide evidence for three major glaciations during the last 12 ka. The oldest and most extensive glaciation, the Bangni Glacial Stage-I (BGS-I), is dated between 12 and 9 ka, followed by the BGS-II glaciation (7.5 and 4.5 ka) and the BGS-III glaciation (∼1 ka). In addition, discrete moraine mounds proximal to the present day glacier snout are attributed to the Little Ice Age (LIA). BGS-I started around the Younger Dryas (YD) cooling event and persisted till the early Holocene when the Indian Summer Monsoon (ISM) strengthened. The less extensive BGS-II glaciation, which occurred during the early to mid-Holocene, is ascribed to lower temperature and decreased precipitation. Further reduction in ice volume during BGS-III is attributed to a late Holocene warm and moist climate. Although the glaciers respond to a combination of temperature and precipitation changes, in the Dunagiri valley decreased temperature seems to be the major driver of glaciations during the Holocene. 相似文献
20.
Nicolas Fritier Nicolas MasseiBenoit Laignel Alain DurandBastien Dieppois Julien Deloffre 《Comptes Rendus Geoscience》2012,344(8):396-405
The inter-annual to multi-decadal winter variability (DJFM) of precipitation on the Seine River watershed (France) was analysed using continuous wavelet transform analysis and compared to the winter North Atlantic Oscillation Index (NAOI). Nine weather stations were used over the 1951 to 2004 period and confirmed the homogeneity of inter-annual fluctuations for all stations but one. Wavelet coherence between SLP over the Icelandic and Azores regions and precipitation highlighted coherence for different scales of variability according to the centre of action considered. Segmentation and wavelet analysis and coherence between precipitation and NAOI over a long period of time (1873–2004) showed: i) increasing variability across the last century at most time scales, especially for NAOI; ii) the existence of change points for the mean and variance of both signals; iii) overall discontinuity of the coherence whatever the scale considered, especially between ∼1910 and ∼1955 for inter-decennial to pluri-decennial scales. 相似文献