共查询到20条相似文献,搜索用时 15 毫秒
1.
J.GregoryShellnutt 《地学前缘(英文版)》2014,5(3):369-394
The late Permian Emeishan large igneous province(ELIP) covers ~0.3 x 106 km2 of the western margin of the Yangtze Block and Tibetan Plateau with displaced,correlative units in northern Vietnam(Song Da zone).The ELIP is of particular interest because it contains numerous world-class base metal deposits and is contemporaneous with the late Capitanian(~260 Ma) mass extinction.The flood basalts are the signature feature of the ELIP but there are also ultramafic and silicic volcanic rocks and layered maficultramafic and silicic plutonic rocks exposed.The ELIP is divided into three nearly concentric zones(i.e.inner,middle and outer) which correspond to progressively thicker crust from the inner to the outer zone.The eruptive age of the ELIP is constrained by geological,paleomagnetic and geochronological evidence to an interval of 3 Ma.The presence of picritic rocks and thick piles of flood basalts testifies to high temperature thermal regime however there is uncertainty as to whether these magmas were derived from the subcontinental lithospheric mantle or sub-lithospheric mantle(i.e.asthenosphere or mantle plume) sources or both.The range of Sr(I_(Sr) = 0.7040-0.7132),Nd(ε_(Nd)(t) ≈-14 to +8),Pb(~(206)Pb/~(204)Pb_1≈ 17.9-20.6) and Os(γ_(Os) =-5 to +11) isotope values of the ultramafic and mafic rocks does not permit a conclusive answer to ultimate source origin of the primitive rocks but it is clear that some rocks were affected by crustal contamination and the presence of near-depleted isotope compositions suggests that there is a sub-lithospheric mantle component in the system.The silicic rocks are derived by basaltic magmas/rocks through fractional crystallization or partial melting,crustal melting or by interactions between mafic and crustal melts.The formation of the Fe-Ti-V oxide-ore deposits is probably due to a combination of fractional crystallization of Ti-rich basalt and fluxing of C02-rich fluids whereas the Ni-Cu-(PGE) deposits are related to crystallization and crustal contamination of mafic or ultramafic magmas with subsequent segregation of a sulphide-rich portion.The ELIP is considered to be a mantle plume-derived LIP however the primary evidence for such a model is less convincing(e.g.uplift and geochemistry) and is far more complicated than previously suggested but is likely to be derived from a relatively short-lived,plume-like upwelling of mantle-derived magmas.The emplacement of the ELIP may have adversely affected the short-term environmental conditions and contributed to the decline in biota during the late Capitanian. 相似文献
2.
Two petrologically distinct alkali feldspar syenite bodies (AFS-1 and AFS-2) from Chhotaudepur area, Deccan Large Igneous Province are reported in the present work. AFS-1 is characterized by hypidio-morphic texture and consists of feldspar (Or55Ab43 to Or25Ab71), ferro-pargasite/ferro-pargasite horn-blende, hastingsite, pyroxene (Wo47, En5, Fs46), magnetite and biotite. AFS-2 exhibits panidiomorphic texture with euhedral pyroxene (Wo47-50, En22-39, Fs12e31) set in a groundmass matrix of alkali feldspar (Or99Ab0.77 to Or1.33Ab98), titanite and magnetite. In comparison to AFS-1, higher elemental concentra-tions of Ba, Sr and PREE are observed in AFS-2. The average peralkaline index of the alkali feldspar syenites is w1 indicating their alkaline nature. Variation discrimination diagrams involving major and trace elements and their ratios demonstrate that these alkali feldspar syenites have a shoshonite affinity but emplaced in a within-plate and rifting environment. No evidence of crustal contamination is perceptible in the multi-element primitive mantle normalized diagram as well as in terms of trace elemental ratios. The enrichment of incompatible elements in the alkali feldspar syenites suggests the involvement of mantle metasomatism in their genesis. 相似文献
3.
Mantle convection modeling of the supercontinent cycle: Introversion,extroversion, or a combination?
The periodic assembly and dispersal of continental fragments,referred to as the supercontinent cycle,bear close relation to the evolution of mantle convection and plate tectonics.Supercontinent formation involves complex processes of"introversion"(closure of interior oceans),"extroversion"(closure of exterior oceans),or a combination of these processes in uniting dispersed continental fragments.Recent developments in numerical modeling and advancements in computation techniques enable us to simulate Earth’s mantle convection with drifting continents under realistic convection vigor and rheology in Earth-like geometry(i.e.,3D spherical-shell).We report a numerical simulation of 3D mantle convection,incorporating drifting deformable continents,to evaluate supercontinent processes in a realistic mantle convection regime.Our results show that supercontinents are assembled by a combination of introversion and extroversion processes.Small-scale thermal heterogeneity dominates deep mantle convection during the supercontinent cycle,although large-scale upwelling plumes intermittently originate under the drifting continents and/or the supercontinent. 相似文献
4.
Four different varieties of charnockitic rocks,with different modes of formation,from the Mesoproterozoic Natal belt are described and new C isotope data presented.Excellent coastal exposures in a number of quarries and river sections make this part of the Natal belt a good location for observing charnockitic field relationships.Whereas there has been much debate on genesis of charnockites and the use of the term charnockite.it is generally recognized that the stabilization of orthopyroxene relative to biotite in granitoid rocks is a function of low aH2O(±high CO2),high temperature,and composition (especially Fe/(Fe +Mg)).From the Natal belt exposures,it is evident that syn-emplacement.magmatic crystallization of chamockite can arise from mantle-derived differentiated melts that are inherently hot and dry(as in the Oribi Gorge granites and Munster enderbite),as well as from wet granitic melts that have been affected through interaction with dry country rock to produce localized charnockitic marginal facies in plutons(as in the Portobello Granite).Two varieties of post-emplacement sub-solidus chamockites are also evident.These include charnockitic aureoles developed in leucocratic,biotite.garnet granite adjacent to cross-cutting enderbitic veins that are attributed to metamorphic-metasomatic processes(as in the Nicholson’s Point granite,a part of the Margate Granite Suite),as well as nebulous,patchy charnockitic veins in the Margate Granite that are attributed to anatectic metamorphic processes under low-aHO fluid conditions during a metamorphic event.These varieties of chamockite show that the required physical conditions of their genesis can be achieved through a number of geological processes,providing some important implications for the classification of charnockites,and for the interpretation of charnockite genesis in areas where poor exposure obscures field relationships. 相似文献
5.
Grant M.Young 《地学前缘(英文版)》2015,6(3):419-435
Recent geochronological investigations reinforce the early suggestion that the upper part of the Paleoproterozoic Huronian Supergroup of Ontario,Canada is present in the Animikie Basin on the south shore of Lake Superior.These rocks,beginning with the glaciogenic Gowganda Formation,are interpreted as passive margin deposits.The absence of the lower Huronian(rift succession) from the Animikie Basin may be explained by attributing the oldest Paleoroterozoic rocks in the Animikie Basin(Chocolay Group)to deposition on the upper plate of a north-dipping detachment fault,which lacks sediments of the rift phase.Following thermal uplift that led to opening of the Huronian Ocean on the south side of what is now the Superior province,renewed uplift(plume activity) caused large-scale gravitational folding of the Huronian Supergroup accompanied by intrusion of the Nipissing diabase suite and Senneterre dikes at about 2.2 Ga.Termination of passive margin sedimentation is normally followed by ocean closure but in the Huronian and Animikie basins there was a long hiatus- the Great Stratigraphic Gap- which lasted for about 350 Ma.This hiatus is attributed to a second prolonged thermal uplift of part of Kenorland that culminated in complete dismemberment of the supercontinent shortly before 2.0 Ga by opening of the Circum-Superior Ocean.These events caused regional uplift(the Great Stratigraphic Gap) and delayed completion of the Huronian Wilson Cycle until a regional compressional tectonic episode,including the Penokean orogeny,belatedly flooded the southern margin of the Superior province with foreland basin deposits,established the limits of the Superior structural province and played an important role in constructing Laurentia. 相似文献
6.
We present field, petrographic, major and trace element data for komatiites and komatiite basalts from Sargur Group Nagamangala greenstone belt, western Dharwar craton. Field evidences such as crude pillow structure indicate their eruption in a marine environment whilst spinifex texture reveals their komatiite nature. Petrographic data suggest that the primary mineralogy has been completely altered during post-magmatic processes associated with metamorphism corresponding to greenschist to lower amphibolite facies conditions. The studied komatiites contain serpentine, talc, tremolite, actinolite and chlorite whilst tremolite, actinolite with minor plagioclase in komatiitic basalts. Based on the published Sm-Nd whole rock isochron ages of adjoining Banasandra komatiites (northern extension of Nagamangala belt) and further northwest in Nuggihalli belt and Kalyadi belt we speculate ca. 3.2–3.15 Ga for komatiite eruption in Nagamangala belt. Trace element characteristics particularly HFSE and REE patterns suggest that most of the primary geochemical characteristics are preserved with minor influence of post-magmatic alteration and/or contamination. About 1/3 of studied komatiites show Al-depletion whilst remaining komatiites and komatiite basalts are Al-undepleted. Several samples despite high MgO, (Gd/Yb)N ratios show low CaO/Al2O3 ratios. Such anomalous values could be related to removal of CaO from komatiites during fluid-driven hydrothermal alteration, thus lowering CaO/Al2O3 ratios. The elemental characteristics of Al-depleted komatiites such as higher (Gd/Yb)N (>1.0), CaO/Al2O3 (>1.0), Al2O3/TiO2 (<18) together with lower HREE, Y, Zr and Hf indicate their derivation from deeper upper mantle with minor garnet (majorite?) involvement in residue whereas lower (Gd/Yb)N (<1.0), CaO/Al2O3 (<0.9), higher Al2O3/TiO2 (>18) together with higher HREE, Y, Zr suggest their derivation from shallower upper mantle without garnet involvement in residue. The observed chemical characteristics (CaO/Al2O3, Al2O3/TiO2, MgO, Ni, Cr, Nb, Zr, Y, Hf, and REE) indicate derivation of the komatiite and komatiite basalt magmas from heterogeneous mantle (depleted to primitive mantle) at different depths in hot spot environments possibly with a rising plume. The low content of incompatible elements in studied komatiites suggest existence of depleted mantle during ca. 3.2 Ga which in turn imply an earlier episode of mantle differentiation, greenstone volcanism and continental growth probably during ca. 3.6–3.3 Ga which is substantiated by Nd and Pb isotope data of gneisses and komatiites in western Dharwar craton (WDC). 相似文献
7.
Carlo Doglioni Eugenio Carminati Mattia Crespi Marco Cuffaro Mattia Penati Federica Riguzzi 《地学前缘(英文版)》2015,6(3):401-418
The possibility of a net rotation of the lithosphere with respect to the mantle is generally overlooked since it depends on the adopted mantle reference frames,which are arbitrary.We review the geological and geophysical signatures of plate boundaries,and show that they are markedly asymmetric worldwide.Then we compare available reference frames of plate motions relative to the mantle and discuss which is at best able to fit global tectonic data.Different assumptions about the depths of hotspot sources(below or within the asthenosphere,which decouples the lithosphere from the deep mantle) predict different rates of net rotation of the lithosphere relative to the mantle.The widely used no-net-rotation(NNR) reference frame,and low(0.2°-0.4° /Ma) net rotation rates(deep hotspots source) predict an average net rotation in which some plates move eastward relative to the mantle(e.g.,Nazca).With fast(1° /Ma) net rotation(shallow hotspots source),all plates,albeit at different velocity,move westerly along a curved trajectory,with a tectonic equator tilted about 30° relative to the geographic equator.This is consistent with the observed global tectonic asymmetries. 相似文献
8.
This study investigates the mechanism of formation of convection plumes of mushroom shape in sub-solidus mantle and their prediction.The seismic-tomographic images of columnar structures of several hundreds kilometers in diameter have been reported by several researchers,while the much cherished mushroom-shaped plume heads could only be found in computational geodynamics(CGD) models and simple small-scale laboratory analogue simulations.Our theory of transient instability shows that the formation of conv... 相似文献
9.
It has been thought that granitic crust,having been formed on the surface,must have survived through the Earth’s evolution because of its buoyancy.At subduction zones continental crust is predominantly created by arc magmatism and is returned to the mantle via sediment subduction,subduction erosion, and continental subduction.Granitic rocks,the major constituent of the continental crust,are lighter than the mantle at depths shallower than 270 km,but we show here,based on first principles calculations, that beneath 270 km they have negative buoyancy compared to the surrounding material in the upper mantle and transition zone,and thus can be subducted in the depth range of 270-660 km.This suggests that there can be two reservoirs of granitic material in the Earth,one on the surface and the other at the base of the mantle transition zone(MTZ).The accumulated volume of subducted granitic material at the base of the MTZ might amount to about six times the present volume of the continental crust.Our calculations also show that the seismic velocities of granitic material in the depth range from 270 to 660 km are faster than those of the surrounding mantle.This could explain the anomalous seismic-wave velocities observed around 660 km depth.The observed seismic scatterers and reported splitting of the 660 km discontinuity could be due to jadeite dissociation,chemical discontinuities between granitic material and the surrounding mantle,or a combination thereof. 相似文献
10.
This paper reviews the origin and evolution of fluid inclusions in ultramafic xenoliths,providing a framework for interpreting the chemistry of mantle fluids in the different geodynamic settings.Fluid inclusion data show that in the shallow mantle,at depths below about 100 km,the dominant fluid phase is CO_2±brines,changing to alkali-,carbonate-rich(silicate) melts at higher pressures.Major solutes in aqueous fluids are chlorides,silica and alkalis(saline brines;5-50 wt.%NaCl eq.).Fluid inclusions in peridotites record CO_2 fluxing from reacting metasomatic carbonate-rich melts at high pressures,and suggest significant upper-mantle carbon outgassing over time.Mantle-derived CO_2(±brines) may eventually reach upper-crustal levels,including the atmosphere,independently from,and additionally to magma degassing in active volcanoes. 相似文献
11.
<正>We synthesize significant recent results on the deep structure and origin of the active volcanoes in mainland China.Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge,whereas the intraplate magmatism in China has different origins.The active volcanoes in Northeast China(such as the Changbai and Wuda-lianchi) are caused by hot upwelling in the big mantle wedge(BMW) above the stagnant slab in the mantle transition zone and deep slab dehydration as well.The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate(or Indian plate). The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs' deep subduction in the east and the Indian slab's deep subduction in the west down to the lower mantle.The stagnant slab finally collapses down to the bottom of the mantle,which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab—plume interactions. 相似文献
12.
During the Late Mesozoic Middle Jurassic-Late Cretaceous,basin and range tectonics and associated magmatism representative of an extensional tectonic setting was widespread in southeastern China as a r... 相似文献
13.
The Xinjie layered intrusion in the Panxi region,SW China,hosts both Fe-Ti oxide and platinum-group element(PGE) sulfide mineralization.The intrusion can be divided,from the base upward,into UnitsⅠ,ⅡandⅢ,in terms of mineral assemblages.UnitsⅠandⅡare mainly composed of wehrlite and clino-pyroxenite, whereas UnitⅢis mainly composed of gabbro.PGE sulfide-rich layers mainly occur in Unit I, whereas thick Fe-Ti oxide-rich layers mainly occur in UnitⅢ.An ilmenite-rich layer occurs at the top of UnitⅠ.Fe-Ti oxides include magnetite and ilmenite.Small amounts of cumulus and intercumulus magnetite occur in UnitsⅠandⅡ.Cumulus magnetite grains are commonly euhedral and enclosed within olivine and clinopyroxene.They have high Cr2O3 contents ranging from 6.02 to 22.5 wt.%,indicating that they are likely an early crystallized phase from magmas.Intercumulus magnetite that usually displays ilmenite exsolution occupies the interstices between cumulus olivine crystals and coexists with interstitial clinopyroxene and plagioclase.Intercumulus magnetite has Cr2O3 ranging from 1.65 to 6.18 wt.%, lower than cumulus magnetite.The intercumulus magnetite may have crystallized from the trapped liquid.Large amounts of magnetite in UnitⅢcontains Cr2O3(<0.28 wt.%) much lower than magnetite in UnitsⅠandⅡ.The magnetite in UnitⅢis proposed to be accumulated from a Fe-Ti-rich melt.The Fe-Ti-rich melt is estimated to contain 35.9 wt.%of SiO2,26.9 wt.%of FeOt,8.2 wt.%of TiO2,13.2 wt.%of CaO, 8.3 wt.%of MgO,5.5 wt.%of Al2O3 and 1.0 wt.%of P2O5.The composition is comparable with the Fe-rich melts in the Skaergaard and Sept Iles intrusions.Paired non-reactive microstructures,granophyre pockets and ilmenite-rich intergrowths,are representative of Si-rich melt and Fe-Ti-rich melt,and are the direct evidence for the existence of an immiscible Fe-Ti-rich melt that formed from an evolved ferro-basaltic magma. 相似文献
14.
<正>Greenstone belts of the eastern Dharwar Craton,India are reinterpreted as composite tectonostratigraphic terranes of accreted plume-derived and convergent margin-derived magmatic sequences based on new high-precision elemental data.The former are dominated by a komatiile plus Mg-tholeiitic basalt volcanic association,with deep water siliciclastic and banded iron formation(BIF) sedimentary rocks.Plumes melted at90 km under thin rifted continental lithosphere to preserve inlraoceanic and continental margin aspects.Associated alkaline basalts record subduction-recycling of Mesoarchean oceanic crust,incubated in the asthenosphere.and erupted coevally with Mg basalts from a heterogeneous mantle plume.Together.komaliites-Mg basalts-alkaline basalts plot along the Phanerozoic mantle array in Th/Yb versus Nb/Yb coordinate space,representing zoned plumes,establishing that these reservoirs were present in the Neoarchean mantle. Convergent margin magmatic associations are dominated by tholeiitic to calc-alkaline basalts eompositionally similar to recent intraoceanic arcs.As well,boninitic flows sourced in extremely depleted mantle are present,and the association of arc basalts with Mg-andesites-Nb enriched basalts-adakites documented from Cenozoic arcs characterized by subduction of young(20 Ma),hot,oceanic lithosphere. Consequently.Cenozoic style "hot" subduction was operating in the Neoarchean.These diverse volcanic associations were assembled to give composite terranes in a subduction-accretion orogen at~2.1 Ga,coevally with a global accretionary orogen at ~2.7 Ga,and associated orogenic gold mineralization. Archean lithospheric mantle,distinctive in being thick,refractory,and buoyant,formed complementary to the accreted plume and convergent margin terranes.as migrating arcs captured thick plumeplateaus. and the refractory,low density.residue of plume melting coupled with accreted imbricated plume-arc crust. 相似文献
15.
The Earth was born from a giant impact at 4.56 Ga. It is generally thought that the Earth subsequently cooled, and hence shrunk, over geologic time. However, if the Earth's convection was double-layered, there must have been a peak of expansion during uni-directional cooling. We computed the expansion-contraction effect using first principles mineral physics data. The result shows a radius about 120 km larger than that of the present Earth immediately after the consolidation of the magma-ocean on the surface, and subsequent shrinkage of about 110 km in radius within about 10 m.y., followed by gradual expansion of 11 km in radius due to radiogenic heating in the lower mantle in spite of cooling in the upper mantle in the Archean. This was due to double-layered convection in the Archean with final collapse of overturn with contraction of about 8 km in radius, presumably by the end of the Archean. Since then, the Earth has gradually cooled down to reduce its radius by around 12 km. Geologic evidence supports the late Archean mantle overturn ca. 2.6 Ga, such as the global distribution of super-liquidus flood basalts on nearly all cratonic fragments (>35 examples). If our inference is correct, the surface environment of the Earth must have undergone extensive volcanism and emergence of local landmasses, because of the thin ocean cover (3–5 km thickness). Global unconformity appeared in cratonic fragments with stromatolite back to 2.9 Ga with a peak at 2.6 Ga. The global magmatism brought extensive crustal melting to yield explosive felsic volcanism to transport volcanic ash into the stratosphere during the catastrophic mantle overturn. This event seems to be recorded by sulfur mass-independent fractionation (SMIF) at 2.6 Ga. During the mantle overturn, a number of mantle plumes penetrated into the upper mantle and caused local upward doming of by ca. 2–3 km which raised local landmasses above sea-level. The consequent increase of atmospheric oxygen enabled life evolution from prokaryotes to eukaryotes by 2.1 Ga, or even earlier in the Earth history. 相似文献
16.
The Deccan Syneclise is considered to have significant hydrocarbon potential.However,significant hydrocarbon discoveries,particularly for Mesozoic sequences,have not been established through conventional exploration due to the thick basalt cover over Mesozoic sedimentary rocks.In this study,near-surface geochemical data are used to understand the petroleum system and also investigate type of source for hydrocarbons generation of the study area.Soil samples were collected from favorable areas identified by integrated geophysical studies.The compositional and isotopic signatures of adsorbed gaseous hydrocarbons(methane through butane) were used as surface indicators of petroleum micro-seepages.An analysis of 75 near-surface soil-gas samples was carried out for light hydrocarbons(C1-C4) and their carbon isotopes from the western part of Tapti graben,Deccan Syneclise,India.The geochemical results reveal sites or clusters of sites containing anomalously high concentrations of light hydrocarbon gases.High concentrations of adsorbed thermogenic methane(C_1 = 518 ppb) and ethane plus higher hydrocarbons(ΣC_(2+) = 977 ppb) were observed.Statistical analysis shows that samples from 13% of the samples contain anomalously high concentrations of light hydrocarbons in the soil-gas constituents.This seepage suggests largest magnitude of soil gas anomalies might be generated/source from Mesozoic sedimentary rocks,beneath Deccan Traps.The carbon isotopic composition of methane,ethane and propane ranges are from-22.5‰ to-30.2‰ PDB,-18.0‰to 27.1‰ PDB and 16.9‰-32.1‰ PDB respectively,which are in thermogenic source.Surface soil sample represents the intersection of a migration conduit from the deep subsurface to the surface connected to sub-trappean Mesozoic sedimentary rocks.Prominent hydrocarbon concentrations were associated with dykes,lineaments and presented on thinner basaltic cover in the study area,which probably acts as channel for the micro-seepage of hydrocarbons. 相似文献
17.
This study of the Paleocene–Eocene boundary within a foreland basin of southern Tibet, which was dominated by a carbonate ramp depositional environment, documents more complex environmental conditions than can be derived from studies of the deep oceanic environment. Extinction rates for larger foraminiferal species in the Zongpu-1 Section apply to up to 46% of the larger foraminiferal taxa. The extinction rate in southern Tibet is similar to rates elsewhere in the world, but it shows that the Paleocene fauna disappeared stepwise through the Late Paleocene, with Eocene taxa appearing abruptly above the boundary. A foraminifera turnover was identified between Members 3 and 4 of the Zongpu Formation—from the Miscellanea–Daviesina assemblage to an Orbitolites–Alveolina assemblage. The Paleocene and Eocene boundary is between the SBZ 4 and SBZ 5, where it is marked by the extinction of Miscellanea miscella and the first appearance of Alveolina ellipsodalis and a large number of Orbitolites. Chemostratigraphically, the δ13C values from both the Zongpu-1 and Zongpu-2 Sections show three negative excursions in the transitional strata, one in Late Paleocene, one at the boundary, and one in the early Eocene. The second negative excursion of δ13C, which is located at the P–E boundary, coincides with larger foraminifera overturn. These faunal changes and the observed δ13C negative excursions provide new evidence on environmental changes across the Paleocene–Eocene boundary in Tibet. 相似文献
18.
M. Santosh 《地学前缘(英文版)》2010,1(1):21-30
<正>The formation and disruption of supercontinents have significantly impacted mantle dynamics,solid earth processes,surface environments and the biogeochemical cycle.In the early history of the Earth,the collision of parallel intra-oceanic arcs was an important process in building embryonic continents.Superdownwelling along Y-shaped triple junctions might have been one of the important processes that aided in the rapid assembly of continental fragments into closely packed supercontinents. Various models have been proposed for the fragmentation of supercontinents including thermal blanket and superplume hypotheses.The reassembly of supercontinents after breakup and the ocean closure occurs through "introversion","extroversion" or a combination of both,and is characterized by either Pacific-type or Atlantic-type ocean closure.The breakup of supercontinents and development of hydrothermal system in rifts with granitic basement create anomalous chemical environments enriched in nutrients, which serve as the primary building blocks of the skeleton and bone of early modern life forms. A typical example is the rifting of the Rodinia supercontinent,which opened up an N—S oriented sea way along which nutrient enriched upwelling brought about a habitable geochemical environment.The assembly of supercontinents also had significant impact on life evolution.The role played by the Cambrian Gondwana assembly has been emphasized in many models,including the formation of 'Trans-gondwana Mountains' that might have provided an effective source of rich nutrients to the equatorial waters,thus aiding the rapid increase in biodiversity.The planet has witnessed several mass extinction events during its history,mostly connected with major climatic fluctuations including global cooling and warming events,major glaciations,fluctuations in sea level,global anoxia,volcanic eruptions, asteroid impacts and gamma radiation.Some recent models speculate a relationship between superplumes,supercontinent breakup and mass extinction.Upwelling plumes cause continental rifting and formation of large igneous provinces.Subsequent volcanic emissions and resultant plume-induced "winter" have catastrophic effect on the atmosphere that lead to mass extinctions and long term oceanic anoxia.The assembly and dispersal of continents appear to have influenced the biogeochemical cycle,but whether the individual stages of organic evolution and extinction on the planet are closely linked to Solid Earth processes remains to be investigated. 相似文献
19.
Yunbo Zhang Zongju Zhao Genhou Wang Zaixing Jiang Mingjian Wang Min Zheng Shiben Zhang 《地学前缘(英文版)》2014,5(2):289-298
Type division and controlling factor analysis of 3rd-order sequence are of practical significance to tec-tonic analysis, sedimentary environment identification, and other geological researches. Based on the comprehensive analysis of carbon and oxygen isotope trends, paleobathymetry and spectral-frequency of representative well logs, 3rd-order sequences can be divided into 3 types: (a) global sea level (GSL) sequence mainly controlled by GSL change;(b) tectonic sequence mainly controlled by regional tectonic activity;and (c) composite sequence jointly controlled by GSL change and regional tectonic activity. This study aims to identify the controlling factors of 3rd-order sequences and to illustrate a new method for classification of 3rd-order sequences of the middle Permian strata in the Sichuan Basin, China. The middle Permian strata in the Sichuan Basin consist of 3 basin-contrastive 3rd-order sequences, i.e., PSQ1, PSQ2 and PSQ3. Of these, PSQ1 is a GSL sequence while PSQ2 and PSQ3 are composite sequences. The results suggest that the depositional environment was stable during the deposition of PSQ1, but was activated by tectonic activity during the deposition of the middle Permian Maokou Formation. 相似文献
20.
Yong Zhang Xin Su Fang Chen Yuanyuan Wang Lu Jiao Hailiang Dong Yongyang Huang Hongchen Jiang 《地学前缘(英文版)》2012,3(3):301-316
South China Sea(SCS) is the largest Western Pacific marginal sea.However,microbial studies have never been performed in the cold seep sediments in the SCS.In 2004."SONNE" 177 cruise found two cold seep areas with different water depth in the northern SCS.Haiyang 4 area,where the water depth is around 3000 m.has already been confirmed for active seeping on the seafloor.such as microbial mats,authigenic carbonate crusts and bivalves.We investigated microbial abundance and diversity in a 5.55-111 sediment core collected from this cold seep area.An integrated approach was employed including geochemistry and 16S rRNA gene phylogenetic analyses.Here,we show that microbial abundance and diversity along with geochemistry profiles of the sediment core revealed a coupled reaction between sulphate reduction and methane oxidation.Acridine orange direct count results showed that microbial abundance ranges from 10~5 to 10~6 cells/g sediment(wet weight).The depth-related variation of the abundance showed the same trend as the methane concentration profile.Phylogenetic analysis indicated the presence of sulphate-reducing bacteria and anaerobic methane-oxidizing archaea.The diversity was much higher at the surface,but decreased sharply with depth in response to changes in the geochemical conditions of the sediments,such as methane,sulphate concentration and total organic carbon.Marine Benthic Group B.Chloroflexi and JSl were predominant phylotypes of the archaeal and bacterial libraries,respectively. 相似文献