首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究马衔山多年冻土区和非多年冻土区土壤微生物碳氮、土壤酶活性的差异,选取多年冻土区、季节冻土区和交界区为对象,分析了0~30 cm土层微生物碳氮和转化酶、脲酶、中性磷酸酶、淀粉酶、过氧化氢酶、多酚氧化酶酶活性不同季节的变化特征。结果表明:全氮、总有机碳、微生物量碳氮与多数土壤酶之间呈显著相关关系。在不同区域,土壤微生物碳氮均在0~10 cm含量最高,10~20 cm次之,20~30 cm最低。土壤微生物碳氮在生长季表现为含量逐渐增加,但是多年冻土区与季节冻土区差异不大。土壤酶活性在深度方面表现与微生物碳氮含量变化一致。土壤酶并无的季节变化规律。在多年冻土区,转化酶、多酚氧化酶和磷酸酶活性明显高于非多年冻土区。本研究表明,尽管多年冻土区的植被和土壤总有机碳明显高于非多年冻土区,其土壤微生物碳氮含量相当,且一些土壤酶活性也相当。说明非多年冻土区土壤的生物地球化学相对强度较大。因此,多年冻土退化后可能会导致生态系统的退化。  相似文献   

2.
This study evaluated the efficiency of naturally occurring lime-based waste materials (oyster shells, eggshells, and mussel shells) on immobilization of selected heavy metals (Cd and Pb) and a metalloid (As) in a contaminated agricultural soil. A 30-day incubation experiment was performed using soil mixture with natural liming materials or calcite (CaCO3) at 0, 1, 3, 5, and 10 wt %. Soil biochemical properties including pH, electrical conductivity (EC), exchangeable cations, organic matter (OM), total nitrogen (TN), microbial populations, and enzyme activities were determined to ensure the changes in soil quality during incubation. The results showed that the application of natural liming materials led to an increase in soil pH similar to that of CaCO3. Soil concentrations of Cd, Pb, and As extracted with 0.1 or 1 M HCl, and diethylene triamine pentacetic acid (DTPA) were decreased significantly after adding liming materials, accompanied by increased microbial population and enzyme activities of dehydrogenase, phosphatase, β-glucosidase, and arylsulfatase. Additionally, eggshells and mussel shells induced significant increases in OM and TN in the soil. Application of natural liming materials offers a cost-effective way to immobilize heavy metals and metalloids in soils.  相似文献   

3.
Soil material sampled from a reclamation experiment established in a former “Jeziórko” Sulphur Mine was analysed. The reclamation was carried out on a soil-less substrate with a particle size distribution of slightly loamy sand characterised by high acidity and poor sorption capacity. The different variants of the experiment consisted in the addition of post-flotation lime, mineral fertilisation, sewage sludge, and mineral wool to the reclaimed soil-less substrate. Next, the plots prepared in this way were sown with a mixture of grasses. A plot without any reclamation treatments served as a control. The analyses consisted in the determination of soil enzymatic parameters. The results obtained revealed a positive effect of the reclamation treatments on the analysed properties. All wastes and combinations thereof introduced into the degraded substrate stimulated catalase, protease, and urease activity. The activity of the other enzymes, i.e. dehydrogenases and acid phosphatase, as well as the level of fluorescein diacetate hydrolysis increased only in objects treated with sewage sludge. In turn, in objects receiving mineral fertilisation, a decline in the acid phosphatase activity was noted. In objects treated with mineral wool, the level of stimulation was dependent on the mode of application of this additive. In general, a mixture of 500 m3 ha?1 of mineral wool with the substrate proved more beneficial (with the exception of the acid phosphatase activity and fluorescein diacetate hydrolysis). A higher increase in the analysed enzymatic parameters was also found in objects treated with sewage sludge combined with post-flotation lime than in objects where sewage sludge was used alone.  相似文献   

4.
The combined effects of cadmium (Cd, 10 mg/kg of soil) and butachlor (5, 10 and 50 mg/kg of soil) on enzyme activities and microbial community structure were assessed in phaeozem soil. The result showed that phosphatase activities were decreased in soils with Cd (10 mg/kg of soil) alone whereas urease acitivities were unaffected by Cd. Urease and phosphatase activities were significantly reduced by high butachlor concentration (50 mg/kg of soil). When Cd and butachlor concentrations in soils were added at milligram ratio of 2:1 or 1:2, urease and phosphatase activities were decreased, while enzyme activities were greatly improved at the ratio of 1:5. This study indicates that the combined effects of Cd and butachlor on soil urease and phosphatase activities depend largely on the addition concentration ratios to soils. The random amplified polymorphic DNA (RAPD) analysis showed that the changes occurring in RAPD profiles of different treated samples included variation in loss of normal bands and appearance of new bands compared with the control soil. The RAPD fingerprints showed substantial differences between the control and treated soil samples, with apparent changes in the number and size of amplified DNA fragments. The results showed that the addition of high concentration butachlor and the combined applied Cd and butachlor significantly affected the diversity of microbial community. The present results suggest that RAPD analysis in conjunction with other biomarkers such as soil enzyme parameter etc. would prove a powerful ecotoxicological tool.  相似文献   

5.
Drastically disturbed soils caused by opencast mining can result in the severe loss of soil structure and increase in soil compactness. To assess the effects of mining activities on reconstructed soils and to track the changes in reclaimed soil properties, the variability of soil properties (soil particle distribution, penetration resistance (PR), pH, and total dissolved salt (TDS)) in the Shanxi Pingshuo Antaibao opencast coal-mine inner dump after dumping and before reclamation was analyzed using a geostatistics method, and the number of soil monitoring points after mined land reclamation was determined. Soil samples were equally collected at 78 sampling sites in the study area with an area of 0.44 km2. Soil particle distribution had moderate variability, except for silt content at the depth of 0–20 cm with a low variability and sand content at the depth of 20–40 cm with a high variability. The pH showed a low variability, and TDS had moderate variability at all depths. The variability of PR was high at the depth of 0–20 cm and moderate at the depth of 20–40 cm. There was no clear trend in the variance with increasing depth for the soil properties. Interpolation using kriging displayed a high heterogeneity of the reconstructed soil properties, and the spatial structure of the original landform was partially or completely destroyed. The root-mean-square error (RMSE) can be used to determine the number of sampling points for soil properties, and 40 is the ideal sampling number for the study site based on cross-validation.  相似文献   

6.
对甘南玛曲沼泽湿地6个样地的微生物量与土壤酶活性及其土壤理化性质之间的关系进行了研究.结果表明:纤维素酶活性在冬季达到高峰,其余5种土壤酶活性分别在春季和秋季达到高峰;硝化细菌数量与过氧化氢酶、纤维素酶、脲酶、碱性磷酸酶有较显著的负相关关系;微生物量与酶活性之间存在极显著相关关系,其中微生物量因子中的放线菌、氨化细菌、硝化细菌和土壤酶活性因子中的酸性磷酸酶、碱性磷酸酶、中性磷酸酶是引起相关性的主要因素;酸性磷酸酶活性与土壤含水率、pH值、硝态氮含量、氨态氮含量都有密切的关系,过氧化氢酶活性可以通过有机质的含量来反映,脲酶活性可以通过土壤的含水率来反映,碱性磷酸酶活性可以通过电导率来反映.  相似文献   

7.
The majority of Alpine glaciers are currently receding because of global warming. Their forefields have become interesting sites to study primary microbial colonisation and microbial adaptation. Here, the structure and enzyme activity of microbial communities in exposed rock substrates and their changes in a gradient of temperature and soil moisture conditions within the forefield of the Damma glacier in the Swiss Central Alps are discussed. The temperature at the sites differed in the course of a day and also showed differing mean temperatures over the summer. Distinct bacterial communities inhabit the differing sites at the beginning of the experiment and even after transplantation they stay distinct. But a seasonal shift in the communities could be observed, which followed the same pattern for all the samples. Interestingly, microbial enzyme activity was highest at the site with the smallest temperature shifts.  相似文献   

8.
Soil quality indices provide a means of distilling large amounts of data into a single metric that evaluates the soil’s ability to carry out key ecosystem functions. Primarily developed in agroecosytems, then forested ecosystems, an index using the relation between soil organic matter and other key soil properties in more semi-arid systems of the Western US impacted by different geologic mineralization was developed. Three different sites in two different mineralization types, acid sulfate and Cu/Mo porphyry in California and Nevada, were studied. Soil samples were collected from undisturbed soils in both mineralized and nearby unmineralized terrane as well as waste rock and tailings. Eight different microbial parameters (carbon substrate utilization, microbial biomass-C, mineralized-C, mineralized-N and enzyme activities of acid phosphatase, alkaline phosphatase, arylsulfatase, and fluorescein diacetate) along with a number of physicochemical parameters were measured. Multiple linear regression models between these parameters and both total organic carbon and total nitrogen were developed, using the ratio of predicted to measured values as the soil quality index. In most instances, pooling unmineralized and mineralized soil data within a given study site resulted in lower model correlations. Enzyme activity was a consistent explanatory variable in the models across the study sites. Though similar indicators were significant in models across different mineralization types, pooling data across sites inhibited model differentiation of undisturbed and disturbed sites. This procedure could be used to monitor recovery of disturbed systems in mineralized terrane and help link scientific and management disciplines.  相似文献   

9.
Many coastal tideland areas in southern Hangzhou Gulf in Zhejiang Province of China have been successively enclosed and reclaimed for agricultural land uses under a series of reclamation projects over the past 30 years. The variability of soil salinity was considerably great and an understanding of the temporal and spatial components of soil salinity variability is essential before decisions can be made about the feasibility of site-specific management. In this paper, a 5.35-ha field reclaimed in 1996 was selected as the study site and 112 bulk electrical conductivity (ECb) measurements were performed in situ by a hand held device in the topsoil (0–20 cm) at regular 20-m intervals across the field over a two-year period. Conventional statistics and geostatistical techinques were used to assess the spatial variability and temporal stability of soil-salinity distribution. The results indicated high coefficients of variation in topsoil salinity over the three samplings. Simple mean ECb comparison revealed that soil salinity increased from winter to spring. Kriged contour maps showed the spatial trend of salinity distribution and revealed the consistently high and low salinity areas of the field. In percentage terms, the proportions of the moderately saline class, strongly saline class, and extremely saline class were 37, 39, and 24%, respectively. Temporal stability map indicated that more than 60% of the study field was determined as the stable class. Based on the spatial and temporal characteristics, a similarity assessment map was created, which presented 5 homogenous sub-zones, each with different characteristics that can have an impact on the way the field is managed. It was concluded that saline soil land might be managed in a site-specific way based on the clearly defined management sub-regions within the field.  相似文献   

10.
Soil column experiments showed that a surficial sodic soil is efficiently reclaimed using freshwater, after the addition of saturated gypsum solution. Gypsum application in the field was beneficial in terms of maintaining high soil permeability, increased water infiltration and neutral pH after a rainfall event. In the present paper, two different reclamation techniques for the plough layer of a sandy loam sodic soil were tested in laboratory columns, 25 cm long and 10 cm in diameter; the first using freshwater alone and the second using a saturated gypsum solution. The dynamics of salt removal were studied by continuous analysis of the water drained from the bottom of the columns. When freshwater was used, sodium presented the lower removal rate and adversely affected soil permeability. When gypsum solution was used, calcium was present in the flushing solution and the effect of sodium dominance on clay dispersion and soil clogging was limited. The results presented in this study are of practical importance with respect to the reclamation of sodic soils found in the coastal area of the east Nestos Delta, Greece, where freshwater is limited, due to seawater intrusion, and saline groundwater is used for irrigation.  相似文献   

11.
The re-establishment of natural species-rich heath lands on abandoned farmland is one of the main measures in soil erosion control in the Loess Plateau of China. So, it is important to understand how the vegetation and soil properties develop after land abandonment. The objective of this study was to determine how physico-chemical properties, microbial biomass, and enzyme activities changed for abandoned farmland with an age sequence of 0, 1, 5, 7, 10, 15, 20, 25, 30, 40 and 50 years in Zhifanggou watershed (8.27 km2), Shaanxi Province, NW China. The results of this study indicate that species succession after land abandonment in the Zhifanggou watershed on the Loess Plateau resulted in a significant improvement in soil chemical and microbiological properties. Soil organic C, total N, available N and K, soil microbial biomass C, N and P, as well as alkaline phosphatase, catalase, saccharase, and cellulase activity increased with time since plantation establishment increased. In contrast, soil bulk density, pH, and polyphenol oxidase activity decreased after farmland abandonment. Urease and α-amylase decreased until 15 years at the early phase of species succession, and then increased. However, there was no significant change in total P and available P during the restoration. Results only implied the tendency that the herbage was developing toward shrub. Although secondary succession plays an important role which improved soil properties after farmland abandonment, the values of these parameters were still much lower than native forest in 50 years. Thus, vegetation recovery after farmland abandonment in a semi-arid environment would be slow and the improvement of soil properties in the Loess Plateau is likely to require a considerably long period of time.  相似文献   

12.
祁乐  高明  杨来淑  王丹  邓炜 《中国岩溶》2015,34(1):86-94
文章以重庆市丰都县三坝乡土地整理项目为例,分别对土地整理前(2012年12月)52个采集点和土地整理后(2013年3月)28个采集点,采用野外采样和室内分析相结合的方法,研究了土地整理对岩溶区土壤微生物群落结构、土壤微生物生物量碳(SMBC)、氮(SMBN)及酶活性(过氧化氢酶、脲酶、蔗糖酶)的影响,结果表明:(1)土地整理对土壤微生物影响显著,土地整理后比整理前土壤中的放线菌数量降低,真菌数量增加。(2)在0~20 cm土层,整理前后SMBC和SMBN含量变化显著,SMBC含量整理后比整理前降低了20.33%,SMBN含量整理后比整理前减少了47.84%;土地整理改变了整理前SMBC、SMBN含量随土层深度变化递减的规律,使SMBC、SMBN含量分别在亚表层(20~40 cm)出现最小值68.34 mg/kg和最大值33.58 mg/kg。(3)整理前后土壤脲酶和过氧化氢酶均在0~20 cm和20~40 cm同一土层差异显著,蔗糖酶活性在各土层差异均显著。土地整理使土壤脲酶和过氧化氢酶活性降低,蔗糖酶活性提高。(4)有机质对表层SMBC、SMBN含量和脲酶活性呈显著正相关,pH值与土壤酶活性呈显著正相关。   相似文献   

13.
14.
以小兴安岭湿地土壤为研究对象,基于室内分析和冻融实验,分析了冻融作用下不同年代排水造林湿地土壤微生物量、酶活性以及有机碳密度的变化趋势,探讨了不同年代排水造林湿地土壤微生物活性与有机碳密度之间的相关关系,以期为深入认识冻融期间高寒高纬度地区土壤碳循环过程提供参考依据。结果表明:(1)冻融次数对土壤微生物量碳、氮含量影响显著(P<0.05),经历9次冻融循环后,土壤微生物量碳、氮含量比冻融前明显减少;在三种不同年代排水造林的湿地中,排水时间越短,土壤微生物量碳、氮含量下降幅度越大,表明长时间的反复冻融交替可能导致土壤微生物量的进一步减少。(2)冻融前后,土壤蔗糖酶和淀粉酶活性均表现为下降趋势,且多次冻融交替后,-25~5℃冻融处理比-5~5℃冻融处理酶活性更低,表明较大的冻融温差更能降低土壤酶的活性度。(3)随着冻融次数和冻融温度的变化,四种湿地的土壤有机碳密度基本保持稳定,但其与土壤微生物量、酶活性却存在着高度的正相关性,通过探究微生物活性所调控的土壤过程,可以直接或间接了解土壤有机碳密度的变化趋势,便于从本质上验证其响应机制。  相似文献   

15.
煤矸石复垦地土壤质量变化研究   总被引:1,自引:0,他引:1  
为检验煤矸石复垦地复垦效果,选取16个参数作为复垦土壤肥力质量评价的因子,建立考虑微量元素的肥力质量评价体系,应用相关系数法确定土壤肥力因子的权重大小,并结合模糊数学原理计算土壤肥力评价因子的隶属度值,运用模糊综合评价法对复垦土壤质量进行评价,结果表明:复垦地与正常农田土壤肥力综合指标值均随深度的增加而降低。复垦土壤的质量在3年内得到了逐步的提高,耕作制度、施肥对表层土壤质量的提高有很大影响。复垦区土壤肥力略低于正常农田,复垦3年时,各层次复垦土壤肥力由上到下分别为正常农田对应层次的91.9%、89.6%、84.6%,表明复垦土壤质量已达到正常农田的90%左右,复垦取得良好的效果。  相似文献   

16.
以天津盐碱荒地农垦过程为例 ,分析盐碱荒地农垦为水田种植水稻后土壤环境中微量元素的变化特征。结果表明 ,随着垦殖年限的增加 ,Cd、As、Hg元素大量富集在 0~ 2 0cm土壤中 ,其原因与污水泡田相关 ;Cu、、Zn、Mn、Ba等植物生长必需的元素在 2 0~ 4 0cm的土壤中的含量高于 0~ 2 0cm土壤中的含量 ,与 0~ 10cm土壤中这些元素有一部分已经被植物吸收有关 ,B的含量在 0~ 2 0cm中较高 ,与人工施肥有关。污水灌溉仍是农业生产中土壤微量元素变化的主要影响因素。  相似文献   

17.
As an important carbon pool and fragile eco-system of earth system, more and more coastal saltmarshes have been reclaimed for releasing population pressure and promoting food safety and economic development, especially in developing countries. During reclamation, original soil carbon cycling pattern and pathway in saltmarshs would be changed, which furthermore could change global carbon budget. In this study, a great amounts of literature and data were summerized to generalize the changes of soil organic carbon, carbon sequestration rate and carbon flux in three main kinds of saltmarshes (Mangrove saltmarsh, Estuary saltmarsh and coastal saltmarsh) during reclamation. The results are as shown: ①The conclusions collected from Europe and America are not suitable to eastern Asia’s coast and more attention should be paid to eastern Asia’s coastal reclamation; ②Mangrove saltmarshes have higher Soil Organic Carbon (SOC) and carbon sequestration rate, followed by estuary saltmarshes and coastal saltmarshes. Soil clay, aggregate, burial rate usually have positive effect on SOC sequestration in coastal areas. Flood frequency, salinity and underground water level generally have negative effect on it. After reclamation, coastal SOC first shows a decrease followed by an increase. Nearly 30 years of reclamation is the turning point where paddy fields can significantly promote SOC; ③CH4 and CO2 are the main ways of carbon emission in coastal areas of which CO2 flux usually is the largest. Mangrove saltmarshes’ carbon emissions are the highest. In natural sites, the carbon emissions in Spartina alterniflora Loisel. and Phragmites australis are higher than those in bare flat areas. Carbon fluxes in flood tide usually are lower than those in other periods. Otherwise, carbon fluxes in natural saltmarshes are far lower than those in reclamation zones, especially upland tillage zones. The results acquired from field monitoring, saltmarshes are the carbon sinks and become the carbon sources when reclamation activities happen. Finally, three main aspects of coastal study were given as follows: much more attention should be paid to carbon budget inventory in saltmarshes; the effect of reclamation activity (i.e., anthropogenic activity, tillage practice, land use, etc.) on carbon cycling in ocean-inland system; the study of land use and reclamation process simulation and its impact on carbon cycling in coastal zone should be strengthened.  相似文献   

18.
The need of surface soil removal during reclamation of the former underground landfills makes environmental monitoring difficult to perform. Environmental quality assessment after reclamation is very important because it provides information about: (1) the efficiency of remediation, (2) the rate of biodegradation of contaminants which were not removed during reclamation works and (3) the possible migration of contaminants from soil and permeable host rocks to surface waters and groundwaters. The concept of geoindicators, which was introduced to facilitate the assessment of environmental changes, can help assess environmental quality at sites previously subjected to reclamation. The groundwater quality is usually used as a geoindicator of inorganic contaminants. This concept was applied to find changes in organochlorine pesticide concentrations in groundwaters after toxic pesticide burial ground reclamation. The aim of this study was to monitor the concentrations of organochlorine pesticides and their metabolites in groundwaters at the former pesticide landfill site after its remediation. The study showed that very high concentrations of organochlorine pesticides and their metabolites in a contaminated soil had a small influence on pesticide concentrations in groundwaters and that this influence decreased in time. It has been 2 years since reclamation of the landfill took place, and the concentrations of organochlorine pesticides in groundwaters dropped to acceptable levels within the current environmental quality standards.  相似文献   

19.
To increase soil productivity, ameliorate nutrient scarcity, and reduce metal toxicity in highly weathered acidic soils usually requires fertilizer and lime application. Effects of three biochars on soil acidity, Olsen-phosphorus (P), phosphatase activities, and heavy metal availability were investigated to test potential of these biochars as soil amendments in highly weathered acidic soils. Incubation experiments were conducted for 6 weeks with three acidic soils: Alfisol, Ultisol, and Oxisol. Three biochars were derived from chicken manure (CMB), pig manure (PMB), and peat moss (PB) at 400 °C and applied at 1 or 2% (wt/wt). The addition of the three biochars increased Olsen-P in the three acidic soils in the following order: CMB?>?PMB?>?PB. Application of 2% CMB increased Olsen-P contents by 2.41-, 7.4-, and 1.78-fold in the Ultisol, Oxisol, and Alfisol compared with controls, respectively. Moreover, CMB increased the soil pH, electrical conductivity (EC), cation exchange capacity (CEC), and alkaline phosphatase activity, but reduced exchangeable acidity, acid phosphatase activity, and the availability of heavy metals—more effectively than PMB and PB. Addition of CMB increased soil pH by 0.90, 0.90, and 0.92 units for the Alfisol, Ultisol, and Oxisol, respectively, correspondingly followed by 0.80, 0.84, and 0.87 units for PMB and 0.15, 0.28, and 0.25 for PM. Changes in EC, CEC, and exchangeable acidity followed the same order for the three soils: CMB?>?PMB?>?PB. The results suggested that the magnitude of changes in soil properties and Olsen-P contents depended on biochar type and application rate. Application of CMB increased nutrient availability and reduced the availability of heavy metals more than other amendments. Due to higher pH, EC, and CEC, and greater concentrations of carbon, nitrogen, and exchangeable calcium and potassium, incorporation of CMB should be a better cost-effective method to correct soil acidity and improve fertility and Olsen-P contents in Ultisols and Oxisols from tropical and subtropical regions of the world.  相似文献   

20.
外源氮输入对草地土壤微生物特性影响的研究进展   总被引:5,自引:0,他引:5  
大气氮沉降作为全球变化的重要现象之一,沉降量不断增加所带来的一系列生态问题日趋严重.草地作为陆地生态系统的主体类型之一,对大气氮沉降的响应不仅体现在地上植被生长和群落动态的变化,其地下各种生态过程的变化更加值得关注.此外,世界范围内的草地生态系统大部分面临不同程度的退化,草地施氮是寻求草地恢复的有益尝试.综述了大气氮沉降和人为施氮引起的外源氮输入变化对草地生态系统土壤微生物特性(微生物数量、微生物量、微生物呼吸、微生物多样性和土壤酶)影响的研究进展,研究表明:①施氮有利于细菌数量的增加,但对真菌数量的影响甚微或是降低真菌的数量.②长期施氮降低土壤微生物量,但短期施氮的影响效应具有不确定性.③施氮对草地土壤微生物呼吸的影响效应取决于微生物可获得的碳源的量.输入地下的植物碳量增加促进土壤微生物呼吸,输入地下的有机质减少则抑制微生物呼吸.④施氮改变了土壤微生物的群落结构组成和底物利用方式,对土壤微生物多样性的影响表现出负效应.⑤施氮提高了β-葡糖苷酶、磷酸酶和大部分糖苷酶的活性,降低了脲酶的活性.迄今为止,施氮对草地土壤微生物特性的影响效应仍存在很大的不确定性,今后的研究中应开展氮输入对草地生态系统影响的长期试验研究、加强对土壤微生物呼吸的影响研究以及合理确定我国草地生态系统可持续发展的氮饱和阈值,并进一步完善和发展测量土壤微生物多样性的新方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号