首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beam-noise spectrum levels were measured with high-resolution horizontal arrays of 22 to 100 wavelengths long at frequencies between 50 and 320 Hz in the Mediterranean Sea. Results indicate that the low-frequency noise field has two major components one of which is due to the dynamic and temporally variable distant shipping. Beam noise level differences of 10 to 20 dB were observed between the resolved distant shipping and the uncorrelated background noise. The measured distributions of beam-noise-intensity fluctuations were found to be non-Gaussian. The beam-noise-intensity distribution was found to depend on aperture length, frequency, bandwidth, integration time, and steering angle. The shapes of the beam-noise-intensity cumulative distribution functions were variable and qualitatively described by nonhomogeneous compound Poisson process as shown with a simulation of the shipping-induced noise field. Temporal characteristics of beam-noise-intensity fluctuations were found to have noise level fades at 30% probability below the median noise level with durations of 1 h for observations over 10 h.  相似文献   

2.
A digital array of 120 acoustic channels 900 m in length has been constructed to study low-frequency (20-200 Hz) ambient noise in the ocean. The array may be deployed vertically or horizontally from the research platform FLIP and the array elements are localized with a high-frequency acoustic transponder network. The authors describe the instrumentation, telemetry, and navigation systems of the array during a vertical deployment in the northeast Pacific. Preliminary ambient noise spectra are presented for various array depths and local wind speeds. Ambient noise in the frequency band above 100 Hz or below 25 Hz increases with local wind speed. However, in the frequency band 25-100 Hz, ambient noise is independent of wind speed and may be dominated by shipping sources  相似文献   

3.
Accurate knowledge of array shape is essential for carrying out full wavefield (matched-field) processing. Direct approaches to array element localization (AEL) include both nonacoustic (tilt-heading sensors) and acoustic (high-frequency, transponder-based navigation) methods. The low-frequency signature emitted from a distant source also can be used in an inversion approach to determine array shape. The focus of this paper is on a comparison of the array shape results from these three different methods using data from a 120-m aperture vertical array deployed during SWellEx-3 (Shallow Water evaluation cell Experiment 3). Located 2 m above the shallowest array element was a self-recording package equipped with depth, tilt, and direction-of-tilt sensors, thereby permitting AEL to be performed non-acoustically. Direct AEL also was performed acoustically by making use of transponder pings (in the vicinity of 12 kHz) received by high-frequency hydrophones spaced every 7.5 m along the vertical array. In addition to these direct approaches, AEL was carried out using an inversion technique where matched-field processing was performed on a multitone (50-200 Hz), acoustic source at various ranges and azimuths from the array. As shown, the time-evolving array shape estimates generated by all three AEL methods provide a consistent picture of array motion throughout the 6-h period analyzed  相似文献   

4.
For pt.I see ibid., vol.22, no.3, p.425-33 (1997). Ambient noise measurements collected off the coast of Duck, NC, were used in conjunction with modeled transmission loss (TL) and estimated ambient noise due to wave-breaking to generate estimates of spectral source level densities (per meter of surf zone) of surf-generated ambient noise. Estimates of both continuous (local) and discrete (distant) components of noise intensity due to breaking waves were subtracted from the total measured noise field in order to determine the contribution of the noise from the surf zone. Data for two days, representing high sea-state conditions, are presented. Estimated noise source level densities for heavy surf at Duck, NC, varied from 120 to 125 dB re 1 μPa/Hz1/2/m at 200 Hz to 90-100 dB re 1 μPa/Hz1/2 /m at 900 Hz, with a slope of -5 dB per octave. Results compare well with previous surf noise studies conducted in Monterey Bay as reported in the companion paper by Wilson et al  相似文献   

5.
Simultaneous measurements of low-frequency sound generated by an explosive source and backscattered from the seafloor in the eastern Mediterranean were made with two receiver configurations: a towed horizontal array and a vertical array. Images of the scattering features on the beam-time data of the horizontal array were useful in the interpretation of the scattering process and in estimating areas of scatterers received by the vertical array, and permitted scattering strengths to be estimated for both configurations. Images of the vertical array data provided information about the vertical arrival angles at the array from specific scatterers. At long range, the sound from the scattering features was received at grazing angles less than13deg. The scattering strengths for three features varied from - 47 to - 25 dB. The mean frequency dependence over the band 125 to 700 Hz varied from 0 to 2.5 dB/octave with greater variations occurring within smaller bands.  相似文献   

6.
Ambient noise measurements were made at seven different locations during the first four months of 1977. The measurement systems included: two types of towed arrays, a bottomed array, and systems with sensors distributed throughout the water column. The noise in the frequency regime dominated by shipping was found to be extremely high with a spectrum level of 92 dB//1 /spl mu/Pa at 50 Hz. These high levels were attributed to the high-density shipping. Horizontal directionality of the noise varied from site to site, ranging from highly directional to nearly nondirectional. The character of the directionality was highly dependent on the site position relative to shipping lanes. The noise showed very little dependence on depth.  相似文献   

7.
Western Hong Kong is home to two species of marine mammals: Indo-Pacific humpbacked dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides). Both are threatened in many parts of their range in southeast Asia [for example, International Biological Research Institute Reports 9 (1997), 41; Asian Marine Biology 14 (1997) 111]. In 1998, when the new Hong Kong International Airport opened in western Hong Kong, small tankers (about 100 m long, cargo capacity about 6300 metric tons) began delivering fuel to the Aviation Fuel Receiving Facility (AFRF) just off Sha Chau Island, north of the airport. Calibrated sound recordings were taken over a 4-day period from a quiet, anchored boat at distances 80-2000 m from aviation fuel delivery activities at the AFRF. From the recordings, 143 sections were selected for analysis. Narrowband spectral densities on the sound pressures were computed, and one-third octave band levels were derived for center frequencies from 10 to 16,000 Hz. Broadband levels, viz. 10-20,000 Hz. were also computed. The results showed that the Sha Chau area is normally noisy underwater, with the lowest broadband levels measured corresponding to those expected during a storm at sea (sea state 6). This background noise is believed to come largely from heavy vessel traffic in the Urmston Road to the north and east of Sha Chau and from vessels in the Pearl River Estuary to the West. The sound levels from the AFRF tankers are comparable to the levels measured from similar- and smaller-sized supply vessels supporting offshore oil exploration. The strongest sounds recorded were from a tanker leaving the AFRF at distance 100 m from the hydrophone, for which the one-third octave band level at 100 Hz was 141 dB re 1 microPa (spectrum level 127 dB re 1 microPa2/Hz) and the 10-20,000 Hz broadband level was 146 dB. At distances of 100 m or more and frequencies above 300 Hz, the one-third octave band levels were less than 130 dB (spectrum level 111 dB re 1 microPa2/Hz) and decreased with increasing frequency and distance. At distances greater than about 500 m, AFRF-associated sounds were negligible, masked by the generally high noise level of the area and attenuated by poor transmission in the very shallow water (<10 m). Because it is believed that humpbacked dolphins and finless porpoises are not very sensitive to sounds below 300 Hz, the Airport Authority Hong Kong (AA) stipulated that dedicated terminal vessels not radiate underwater sounds at spectrum levels greater than 110 dB re 1 microPa2/Hz at frequencies above 300 Hz and distances greater than 300 m. The spectrum levels at 300 Hz and higher frequencies of sounds from the tankers arriving, departing, or off-loading at AFRF were less than 110 dB re 1 microPa2/Hz even at distances of 200 m or less. The AA stipulation was met. However, it is presently unknown whether the generally strong noise levels of western Hong Kong inhibit acoustically based feeding and communication, or result in increased stress or permanent shifts in hearing thresholds.  相似文献   

8.
The structure of beam noise measured at the output of a vertical array in a range dependent ocean basin was investigated using the modified wide-angle parabolic equation (PE). Noise sources were distributed throughout the basin, and the field due to each noise source at an array located in the midbasin was calculated. The response of the array to the superposition of the noise sources was found by beamforming. An efficient and direct approach that superimposes the noise sources on the PE field as the field is marched toward the array was developed. Downslope calculations of the midbasin vertical directionality were made between 50 and 400 Hz with this technique. Use of a geoacoustic model shows that the bottom behaves as a low-pass filter  相似文献   

9.
Depth dependence of noise resulting from ship traffic and wind   总被引:1,自引:0,他引:1  
Under conditions of distantly generated noise, the noise level is found to decrease with depth in the mid-northeastern Pacific. These data show a decrease in noise level greater than 25 dB between critical depth and the ocean bottom. A result of this decrease is that locally wind-generated noise can be detected on near-bottom receivers for wind speeds less than 10 kn. It is shown that the noise level generated form local sources such as wind and nearby shipping is almost independent of receiver depth. The differences in spectra shape between the distant shipping noise and wind-generated noise and the low noise levels detected near the ocean bottom allow the measurement in the frequency band at 200-500 Hz of local wind noise level for wind speeds less than 10 kn  相似文献   

10.
For a low-frequency active sonar (LFAS) with a triplet receiver array, it is not clear in advance which signal processing techniques optimize its performance. Here, several advanced beamformers are analyzed theoretically, and the results are compared to experimental data obtained in sea trials. Triplet arrays are single line arrays with three hydrophones on a circular section of the array. The triplet structure provides the ability to solve the notorious port-starboard (PS) ambiguity problem of ordinary single-array receivers. More importantly, the PS rejection can be so strong that it allows to unmask targets in the presence of strong coastal reverberation or traffic noise. The theoretical and experimental performance of triplet array beamformers is determined in terms of two performance indicators: array gain and PS rejection. Results are obtained under several typical acoustic environments: sea noise, flow noise, coastal reverberation, and mixtures of these. A new algorithm for (beam space) adaptive triplet beamforming is implemented and tuned. Its results are compared to those of other triplet beamforming techniques (optimum and cardioid beamforming). These beamformers optimize for only one performance indicator, whereas in theory, the adaptive beamformer gives the best overall performance (in any given environment). The different beamformers are applied to data obtained with an LFAS at sea. Analysis shows that adaptive triplet beamforming outperforms conventional beamforming algorithms. Adaptive triplet beamforming provides strong PS rejection, allowing the unmasking of targets in the presence of strong directional reverberation (e.g., from a coast) and at the same time provides positive array gain in most environments.  相似文献   

11.
The underwater acoustic noise of five representative whale-watching boats used in the waters of west Maui was measured in order to study the effects of boat noise on humpback whales. The first set of measurements were performed on 9 and 10 March, close to the peak of the whale season. The ambient noise was relatively high with the major contribution from many chorusing humpback whales. Measurements of boat sounds were contaminated by this high ambient background noise. A second set of measurements was performed on 28 and 29 April, towards the end of the humpback whale season. In both sets of measurements, two of the boats were inflatables with outboard engines, two were larger coastal boats with twin inboard diesel engines and the fifth was a small water plane area twin hull (SWATH) ship with inter-island cruise capabilities. The inflatable boats with outboard engines produced very complex sounds with many bands of tonal-like components. The boats with inboard engines produced less intense sounds with fewer tonal bands. One-third octave band measurements of ambient noise measured on 9 March indicated a maximum sound pressure level of about 123 dB re 1 microPa at 315 Hz. The maximum sound pressure level of 127 dB at 315 Hz was measured for the SWATH ship. One of the boats with outboard engines produced sounds between 2 and 4 kHz that were about 8-10 dB greater than the level of background humpback whale sounds at the peak of the whale season. We concluded that it is unlikely that the levels of sounds produced by the boats in our study would have any grave effects on the auditory system of humpback whales.  相似文献   

12.
以舷侧阵作为研究对象,首先介绍了常规波束形成器(CBF)和最佳波束形成器(OBF)的波束输出信号模型,然后推导了信号+噪声场合下的阵增益表达式,比较了在不同信号频率和不同信号源方向角下,CBF和OBF的阵增益,最后在增加了有指向性的CW干扰后,分析了此场合下的阵增益,并比较了不同的信号频率下,干扰源方向角的变化对两类波束形成器阵增益的影响。  相似文献   

13.
Oceanic noise is the background interference in sonar performance prediction and evaluation at high sea states. Statistics of underwater ambient noise during Typhoons Soulik and Nida were analyzed on the basis of experimental measurements conducted in a deep area of the Philippine Sea and the South China Sea. Generated linear regression, frequency correlation matrix (FCM), Burr distribution and Gumbel distribution were described for the analysis of correlation with environmental parameters including wind speed (WS), significant wave height (SWH), and the inter-frequency relationship and probability density function of noise levels (NLs). When the typhoons were quite close to the receivers, the increment of NLs exceeded 10 dB. Whilst ambient noise was completely dominated by wind agitation, NLs were proportional to the cubic and quintic functions of WS and SWH, respectively. The fitted results between NLs and oceanic parameters were different for “before typhoon” and “after typhoon”. The fitted slopes of linear regression showed a linear relationship with the logarithm of frequency. The average observed typhoon-generated NLs were 5 dB lower than the Wenz curve at the same wind force due to the insufficiently developed sea state or the delay between NLs and WS. The cross-correlation coefficient of FCM, which can be utilized in the identification of noise sources in different bands, exceeded 0.8 at frequencies higher than 250 Hz. Furthermore, standard deviation increased with frequency. The kurtosis was equal to 3 at >400 Hz approximately. The characteristics of NLs showed good agreement with the results of FCM.  相似文献   

14.
Solutions were computed for the vertical ambient sea noise field directionality at five sites in the Western North Atlantic Ocean using data from a 26-hydrophone element array with a 358.4-foot aperture at a center depth of 1,000 feet. Results show that the low-frequency noise below 100 Hz is concentrated near the horizontal (50 to 93 percent of the noise power between /spl plusmn/15/spl deg/ of horizontal) and is apparently dependent on bottom loss and shipping density. The results in the band 200 to 380 Hz are a combination of sea state and shipping noise dependent. A noise field solution technique was developed involving noise cross spectral matrix inversions. This technique overcomes some of the drawbacks of previous techniques such as least mean square estimation and successive approximations.  相似文献   

15.
针对影响拖曳线列阵声纳系统目标检测性能的两种典型近场强干扰源,由宽带近场阵列模型,提出了基于功率谱相关的干扰抵消方法,通过比较基元域频域信号与干扰波束信号功率谱之间的相似关系,找到与每路基元信号相匹配的干扰分量信号,最后通过频域块自适应滤波算法实现每路基元域信号中的干扰抵消。宽带仿真结果与海试表明,这种方法在强干噪比和低信噪比条件下,比最小方差无失真响应和传统基元域干扰抵消方法在阵增益方面提高约10dB。相比传统基元域干扰抵消方法,这种方法能够实现抵消拖船干扰的同时抵消邻近目标强干扰。  相似文献   

16.
A triaxial set of underwater receiving coils was developed and tested. The receiving system was used jointly with an underwater, calibrated, horizontal, electric dipole source in studies of extremely low-frequency electromagnetic propagation. This paper discusses the electromechanical design of the receiver and tethering system and addresses system sensitivity and noise levels. The receiving system was used successfully in a series of measurements, in spite of serious motion noise contamination. A stationary system sensitivity of5 times 10^{-4} gamma/sqrt{Hz}was achieved.  相似文献   

17.
The method of principal component beamforming described in this paper is an array data reduction method that allows one to observe the statistically uncorrelated components of wave energy arriving at an array of acoustic sensors. The method can be used to process array data so as to observe and identify the sources of noise, both environmental and self noise. After identifying the sources of noise, the method of principal components can be used to discriminate signal from noise. The method can be applied to active systems (subbottom profilers) as well as passive systems. A model of isotropic noise and incident bandlimited plane waves is used to study array resolution and bandwidth effects. Experimental data from a2 times 3planar acoustic array were used to identify sources of hydro-flow related noise in an underwater vehicle. In all cases studied, the technique provides a maximum spatial information analysis method to the observer.  相似文献   

18.
海上风电场建设期风机打桩会产生高强度的水下噪声,研究水下冲击打桩噪声的监测方法、特性分析及对海洋生物的影响是非常重要的。采用自容式水下声音记录仪,多点同步测量了福建省兴化湾海上风电场二期工程建设期单次完整的水下冲击打桩噪声,从时频域特性进行了分析,并利用最小二乘法拟合得到了打桩声源级和声暴露级。结果表明:水下冲击打桩噪声是典型的低频、高强度的脉冲信号,单个脉冲持续时间约90~100 ms,峰值声源级约209.4±2 dB,声暴露级约197.7±2 dB;主要能量分布在50 Hz~1 kHz频段,750 m测量点的该频段声压级相比海洋环境背景噪声,提高了约40~50 dB。水下冲击打桩噪声频域能量分布与大黄鱼的听觉敏感频段相重叠,对大黄鱼影响程度和范围较大,实际工程应用中宜采用声暴露级作为评价指标。  相似文献   

19.
刘宁  魏晓辉  王斌  董涛 《海洋科学》2020,44(9):146-153
针对基于MEMS加速度传感器的空投波浪浮标存在采样频率与测波精度低的问题,根据频域衰减积分算法,提出一种相应的波浪测量算法,为了验证该算法测波的准确性,开展了多功能水槽试验研究。该算法旨在将MEMS加速度传感器输出的加速度与姿态角转化为浮标运动的波形,首先将加速度与姿态角信号进行竖向处理获得竖直方向的加速度,再利用离散傅里叶变换将竖向加速度转化为频域内的加速度复数序列,然后引入控制函数减弱低频噪声,经过频域积分、离散傅里叶逆变换、时域积分获得竖直方向的位移,最后通过后处理得到最终的波形。多功能水槽试验采取10中不同波高和周期的工况,对比空投波浪测量浮标与波高仪的测量结果,试验结果表明,浮标的测量误差在10%以内,达到测波标准。  相似文献   

20.
Depth dependence of ambient noise   总被引:1,自引:0,他引:1  
Omnidirectional measurements of ambient noise versus depth in the Caribbean, Mediterranean, Arctic, Pacific, and Atlantic areas are presented. The shapes of the vertical ambient noise profiles spanning the water column at frequencies from 25 to 500 Hz are shown to be heavily influenced by passing ships. The qualitative features of average noise profiles measured by mid-water hydrophones can be explained with the aid of a straightforward model, and it is concluded that low-frequency omnidirectional ambient noise depth dependence is predictable. The sensitivity of the vertical noise profile to passing ships, coupled with noise predictability suggests that surveillance could be effected by a vertical string of hydrophones without coherent processing in areas of relatively light shipping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号