首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
《Applied Geochemistry》1998,13(7):905-916
Experiments measuring kaolinite and smectite dissolution rates were carried out using batch reactors at 35° and 80°C. No potential catalysts or inhibitors were present in solution. Each reactor was charged with 1 g of clay of the ≤2 μm fraction and 80, 160 or 240 ml of 0.1–4 M KOH solution. An untreated but sized kaolinite from St. Austell and two treated industrial smectites were used in the experiments. One smectite is a nearly pure montmorillonite, while the second has a significant component of beidellitic charge (35%). The change in solution composition and mineralogy was monitored as a function of time. Initially, the 3 clays dissolved congruently. No new formed phases were observed by XRD and SEM during the pure dissolution stage. The kaolinite dissolution is characterized by a linear release of silica and Al as a function of the log of time. This relationship can be explained by a reaction affinity effect which is controlled by the octahedral layer dissolution. Far from equilibrium, dissolution rates are proportional to a0.56±0.12OH at 35°C and to a0.81±0.12OH at 80°C. The activation energy of kaolinite dissolution increases from 33±8 kJ/mol in 0.1 M KOH solutions to 51±8 kJ/mol in 3 M KOH solutions. In contrast to kaolinite, the smectites dissolve at much lower rates and independently of the aqueous silica or Al concentrations. The proportionality of the smectite dissolution rate constant at 35 and 80°C was a0.15±0.06OH. The activation energy of dissolution appears to be independent of pH for smectite and is found to be 52±4 kJ/mol. The differences in behavior between the two kinds of minerals can be explained by structural differences. The hydrolysis of the tetrahedral and the octahedral layer appears as parallel reactions for kaolinite dissolution and as serial reactions for smectite dissolution. The rate limiting step is the dissolution of the octahedral layer in the case of kaolinite, and the tetrahedral layer in the case of smectite.  相似文献   

2.
The Dongping gold deposit hosted in syenites is one of the largest hydrothermal gold deposits in China and composed of ore veins in the upper parts and altered zones in the lower parts of the ore bodies. Pervasive potassic alteration and silicification overprint the wall rocks of the ore deposit. The alteration minerals include orthoclase, microcline, perthite, quartz, sericite, epidote, calcite, hematite and pyrite, with the quartz, pyrite and hematite assemblages closely associated with gold mineralization. The phases of hydrothermal alteration include: (i) potassic alteration, (ii) potassic alteration - silicification, (iii) silicification - epidotization - hematitization, (iv) silicification - sericitization - pyritization and (v) carbonation. Mass-balance calculations in potassic altered and silicified rocks reveal the gain of K2O, Na2O, SiO2, HFSEs and transition elements (TEs) and the loss of REEs. Most major elements were affected by intense mineral reactions, and the REE patterns of the ore are consistent with those of the syenites. Gold, silver and tellurium show positive correlation and close association with silicification. Fluid inclusion homogenization temperatures in quartz veins range from 154 °C to 382 °C (peak at 275 °C–325 °C), with salinities of 4–9 wt.% NaCl equiv. At temperatures of 325 °C the fluid is estimated to have pH = 3.70–5.86, log fO2 =  32.4 to − 28.1, with Au and Te transported as Au (HS)2 and Te22  complexes. The ore forming fluids evolved from high pH and fO2 at moderate temperatures into moderate-low pH, low fO2 and low temperature conditions. The fineness of the precipitated native gold and the contents of the oxide minerals (e.g., magnetite and hematite) decreased, followed by precipitation of Au- and Ag-bearing tellurides. The hydrothermal system was derived from an alkaline magma and the deposit is defined as an alkaline rock-hosted hydrothermal gold deposit.  相似文献   

3.
《Applied Geochemistry》2006,21(10):1760-1780
Sulfide-rich mine tailings in Adak that are exposed to weathering cause acid mine drainage characterized by low pH (2–4) and high SO4 (up to 800 mg L−1). Surface water, sediment and soil samples collected in this study contain higher concentrations of As, Cu, Fe and Zn, compared to the target and/or intervention limits set by international regulatory agencies. In particular, high As concentrations in water (up to 2900 μg L−1) and sediment (up to 900 mg kg−1) are of concern. There is large variability in trace element concentrations, implying that both physical (grain size) and chemical factors (pH, secondary phases as sulfides, Al-oxides or clay minerals) play an important role in their distribution. The low pH keeps the trace elements dissolved, and they are transported farther downstream. Trace element partition coefficients are low (log Kd = 0.3–4.3), and saturation indices calculated with PHREEQC are <0 for common oxide and sulfidic minerals. The sediment and soil samples indicate an enhanced pollution index (up to 17), and high enrichment factors for trace elements (As up to 38,300; Zn up to 800). Finally, leaves collected from different plant types indicate bioaccumulation of several elements (As, Al, Cu, Fe and Zn). However, some of the plants growing in this area (e.g., Salix, Equisétum) are generally resistant to metal toxicity, and hence, liming and phytoremediation could be considered as potential on-site remediation methods.  相似文献   

4.
Three large-scale experimental waste rock piles (test piles) were constructed and instrumented at the Diavik Diamond Mine in the Northwest Territories, Canada, as part of an integrated field and laboratory study to measure and compare physical and geochemical characteristics of experimental, low sulfide waste rock piles at various scales. This paper describes the geochemical response during the first season from a test pile containing 0.053 wt.% S. Bulk drainage chemistry was measured at two sampling points for pH, Eh, alkalinity, dissolved cations and anions, and nutrients. The geochemical equilibrium model MINTEQA2 was used to interpret potential mineral solubility controls on water chemistry. The geochemical response characterizes the initial flushing response of blasting residues and oxidation products derived from sulfides in waste rock exposed to the atmosphere for less than 1 year. Sulfate concentrations reached 2000 mg L−1 when ambient temperatures were >10 °C, and decreased as ambient temperatures declined to <0 °C. The pH decreased to <5, concomitant with an alkalinity minimum of <1 mg L−1 (as total CaCO3), suggesting all available alkalinity is consumed by acid-neutralizing reactions. Concentrations of Al and Fe were <0.36 and <0.11 mg L−1, respectively. Trends of pH and alkalinity and the calculated saturation indices for Al and Fe (oxy)hydroxides suggest that dissolution of Al and Fe (oxy)hydroxide phases buffers the pH. The effluent water showed increased concentrations of dissolved Mn (<13 mg L−1), Ni (<7.0 mg L−1), Co (<1.5 mg L−1), Zn (<0.5 mg L−1), Cd (<0.008 mg L−1) and Cu (<0.05 mg L−1) as ambient temperatures increased. Manganese is released by aluminosilicate weathering, Ni and Co by pyrrhotite [Fe1−xS] oxidation, Zn and Cd by sphalerite oxidation, and Cu by chalcopyrite [CuFeS2] oxidation. No dissolved metals appear to have discrete secondary mineral controls. Changes in SO4, pH and metal concentrations indicate sulfide oxidation is occurring and effluent concentrations are influenced by ambient temperatures and, possibly, increasing flow path lengths that transport reaction products from previously unflushed waste rock.  相似文献   

5.
Dissolution rates of sediments obtained from the Oued Cherf reservoir were measured in closed-system batch reactors at 25 °C in fluids sampled concurrently from the same locations as the sediments. The BET surface areas of the sediments ranged from 16 to 45 m2/g and consisted primarily of quartz, calcite, and clay minerals. After a brief initial period, release rates of Si, Mg, Ca, Cl, SO4, and NO3 from these sediments are approximately linear with time over the course of the experiments, which lasted from 3 to 5 months. BET surface area normalized Si release rates ranged from 10–17.4 to 10–18.4 mol/cm2/s. These release rates match closely Si release rates from quartz and clay minerals determined from laboratory dissolution rates reported in the literature. This coherence suggests that laboratory measured silicate dissolution rates can be used with confidence to predict the dissolution behavior of sediments in natural surface waters.  相似文献   

6.
The effect of citrate and oxalate on tremolite dissolution rate was measured at 37 °C in non-stirred flow-through reactors, using modified Gamble’s solutions at pH 4 (macrophages), 7.4 (interstitial fluids) and 5.5 (intermediate check point) containing 0, 0.15, 1.5 and 15 mmol L−1 of citrate or oxalate. The dissolution rates calculated from Si concentration in the output solutions without organic ligands depend on pH, decreasing when the pH increases from −13.00 (pH 4) to −13.35 (pH 7.4) mol g−1 s−1 and following a proton-promoted mechanism. The presence of both ligands enhances dissolution rates at every pH, increasing this effect when the ligand concentration increases. Citrate produces a stronger effect as a catalyst than oxalate, mainly at more acidic pHs and enhances dissolution rates until 20 times for solutions with 15 mmol L−1 citrate. However, at pH 7.4 the effect is lighter and oxalate solutions (15 mmol L−1) only enhances dissolution rates eight times respect to free organic ligand solutions. Dissolution is promoted by the attack to protons and organic ligands to the tremolite surface. Magnesium speciation in oxalate and citrate solutions shows that Mg citrate complexes are more effective than oxalate ones during the alteration of tremolite in magrophages, but this tendency is the opposite for interstitial fluids, being oxalate magnesium complexes stronger. The biodurability estimations show that the destruction of the fibers is faster in acidic conditions (macrophages) than in the neutral solutions (interstitial fluid). At pH 4, both ligands oxalate and citrate reduce the residence time of the fibers with respect to that calculated in absence of ligands. Nevertheless, at pH 7.4 the presence of ligands does not reduce significantly the lifetime of the fibers.  相似文献   

7.
The Carris orebody consists of two partially exploited W–Mo–Sn quartz veins formed during successive shear stages and multipulse fluid fillings. They cut the Variscan post-D3 Gerês I-type granite. The most important ore minerals are wolframite, scheelite, molybdenite and cassiterite. There are two generations of wolframite. The earlier generation of wolframite is rare and has the highest WO4Mn content (91 mol%) and the most common wolframite contains 26–57 mol% WO4Mn. Re–Os dating of molybdenite from the ore quartz veins and surrounding granite yields ages of 279 ± 1.2 Ma and 280.3 ± 1.2 Ma, respectively which are in very good agreement with the previous ID-TIMS U–Pb zircon age for the Carris granite (280 ± 5 Ma).3He/4He ratio of pyrite ranging between 0.73 and 2.71 Ra (1 Ra = 1.39 × 10 6) and high 3He/36Ar (0.8–5 × 10 3) indicate a mixture of a crustal radiogenic helium fluid with a mantle derived-fluid.The fluid inclusion studies on quartz intergrown with wolframite and scheelite, beryl and fluorite reveal that two distinct fluid types were involved in the genesis of this deposit. The first was a low to medium salinity aqueous carbonic fluid (CO2 between 4 and 14 mol%) with less than 1.95 mol% N2, which was only found in quartz associated with wolframite. The other was a low salinity aqueous fluid found in all the four minerals. The homogenization temperatures indicate minimum entrapment temperatures of 226–310 °C (average 280 °C) for the H2O–CO2–N2–NaCl fluid and average temperatures of 266 °C for scheelite and 242 °C, 190 °C and 160 °C for the last generations of beryl, fluorite and quartz, respectively. It was estimated that wolframite was deposited ~ 7 km depth, assuming a lithostatic pressure, probably due to strong pressure fluctuation caused by seismic events triggered by brittle tectonics during the exhumation event. Precipitation of scheelite and sulphides took place later, at the same depth, but under a hydrostatic or suprahydrostatic pressure regime, and probably caused by mixing between the magmatic–hydrothermal fluid and meteoric waters that deeply penetrated the basement during post-Variscan decompression.  相似文献   

8.
《Applied Geochemistry》2004,19(8):1217-1232
Laboratory experiments were conducted with volcanic ash soils from Mammoth Mountain, California to examine the dependence of soil dissolution rates on pH and CO2 (in batch experiments) and on oxalate (in flow-through experiments). In all experiments, an initial period of rapid dissolution was observed followed by steady-state dissolution. A decrease in the specific surface area of the soil samples, ranging from 50% to 80%, was observed; this decrease occurred during the period of rapid, initial dissolution. Steady-state dissolution rates, normalized to specific surface areas determined at the conclusion of the batch experiments, ranged from 0.03 μmol Si m−2 h−1 at pH 2.78 in the batch experiments to 0.009 μmol Si m−2 h−1 at pH 4 in the flow-through experiments. Over the pH range of 2.78–4.0, the dissolution rates exhibited a fractional order dependence on pH of 0.47 for rates determined from H+ consumption data and 0.27 for rates determined from Si release data. Experiments at ambient and 1 atm CO2 demonstrated that dissolution rates were independent of CO2 within experimental error at both pH 2.78 and 4.0. Dissolution at pH 4.0 was enhanced by addition of 1 mM oxalate. These observations provide insight into how the rates of soil weathering may be changing in areas on the flanks of Mammoth Mountain where concentrations of soil CO2 have been elevated over the last decade. This release of magmatic CO2 has depressed the soil pH and killed all vegetation (thus possibly changing the organic acid composition). These indirect effects of CO2 may be enhancing the weathering of these volcanic ash soils but a strong direct effect of CO2 can be excluded.  相似文献   

9.
Dissolution rates of pressure solution (PS) for quartz aggregates in 0.002 M NaHCO3 solution were experimentally determined under low effective stress conditions of 0.42–0.61 MPa, and low temperatures of 25–45 °C. At temperatures of 25 °C, 35 °C, and 45 °C, the resultant silicon dissolution rates are 4.2 ± 1.2 × 10−15, 6.0 ± 1.0 × 10−15 and 7.8 ± 1.9 × 10−15 mol/cm2/s, respectively. Ratios between these dissolution rates and those of quartz sand at zero effective stress are 4.1 ± 1.2 at 25 °C, 3.0 ± 0.5 at 35 °C, and 2.4 ± 0.6 at 45 °C. As the uniaxial pressure was increased, the dissolution rate of PS also increased, though gradually decreased when the effective stress was kept constant. After the removal of stress, the dissolution rate was observed to increase once again. The activation energy of our PS experiments was determined to be approximately 24 kJ/mol, lower than the amount required for quartz sand dissolution to commence at zero effective stress. Our results clearly show that, even at such low temperature and effective stress, Si released into solution as a result of PS can be detected. This implies that experimental compaction of quartz aggregates can be measured even under such condition.  相似文献   

10.
《Applied Geochemistry》2005,20(3):639-659
The oxidation of sulfide minerals from mine wastes results in the release of oxidation products to groundwater and surface water. The abandoned high-sulfide Camp tailings impoundment at Sherridon, Manitoba, wherein the tailings have undergone oxidation for more than 70 a, was investigated by hydrogeological, geochemical, and mineralogical techniques. Mineralogical analysis indicates that the unoxidized tailings contain nearly equal proportions of pyrite and pyrrhotite, which make up to 60 wt% of the total tailings, and which are accompanied by minor amounts of chalcopyrite and sphalerite, and minute amounts of galena and arsenopyrite. Extensive oxidation in the upper 50 cm of the tailings has resulted in extremely high concentrations of dissolved SO4 and metals and As in the tailings pore water (pH < 1, 129,000 mg L−1 Fe, 280,000 mg L−1 SO4, 55,000 mg L−1 Zn, 7200 mg L−1 Al, 1600 mg L−1 Cu, 260 mg L−1 Mn, 110 mg L−1 Co, 97 mg L−1 Cd, 40 mg L−1 As, 15 mg L−1 Ni, 8 mg L−1 Pb, and 3 mg L−1 Cr). The acid released from sulfide oxidation has been extensive enough to deplete carbonate minerals to 6 m depth and to partly deplete Al-silicate minerals to a 1 m depth. Below 1 m, sulfide oxidation has resulted in the formation of a continuous hardpan layer that is >1 m thick. Geochemical modeling and mineralogical analysis indicate that the hardpan layer consists of secondary melanterite, rozenite, gypsum, jarosite, and goethite. The minerals indicated mainly control the dissolved concentrations of SO4, Fe, Ca and K. The highest concentrations of dissolved metals are observed directly above and within the massive hardpan layer. Near the water table at a depth of 4 m, most metals and SO4 sharply decline in concentration. Although dissolved concentrations of metals and SO4 decrease below the water table, these concentrations remain elevated throughout the tailings, with up to 60,600 mg L−1 Fe and 91,600 mg L−1 SO4 observed in the deeper groundwater. During precipitation events, surface seeps develop along the flanks of the impoundment and discharge pore water with a geochemical composition that is similar to the composition of water directly above the hardpan. These results suggest that shallow lateral flow of water from a transient perched water table is resulting in higher contaminant loadings than would be predicted if it were assumed that discharge is derived solely from the deeper primary water table. The abundance of residual sulfide minerals, the depletion of aluminosilicate minerals in the upper meter of the tailings and the presence of a significant mass of residual sulfide minerals in this zone after 70 a of oxidation suggest that sulfide oxidation will continue to release acid, metals, and SO4 to the environment for decades to centuries.  相似文献   

11.
The dissolution kinetics of carbonate rocks sampled from the Keg River Formation in Northeast British Columbia were measured at 50 bar pCO2 and 105 °C, in both natural and synthetic brines of 0.4 M ionic strength. Natural brines yielded reaction rates of −12.16 ± 0.11 mol cm−2 s−1 for Log RCa, and −12.64 ± 0.05 for Log RMg. Synthetic brine yielded faster rates of reaction than natural brines. Experiments performed on synthetic brines, spiked with 10 mmol of either Sr or Zn, suggest that enhanced reaction rates observed in synthetic brines are due to a lack of trace ion interaction with mineral surfaces. Results were interpreted within the surface complexation model framework, allowing for the discrimination of reactive surface sites, most importantly the hydration of the >MgOH surface site. Dissolution rates extrapolated from experiments predict that CO2 injected into the Keg River Formation will dissolve a very minor portion of rock in contact with affected formation waters.  相似文献   

12.
We present an approach for determining source terms for modeling trace element release from minerals, using arsenic (As) as an example. The source term function uses laboratory-measured mineral dissolution rates to predict the time rate of change of As concentrations (mol/L s) released to water by the dissolving mineral. Application of this function to As-bearing minerals (realgar, orpiment, arsenopyrite, scorodite, pyrite, and jarosite) in air saturated water at 25 °C shows that mineralogy, grain size and pH are important factors affecting the As source term while DO concentration and temperature are relatively unimportant for conditions found in typical aquifers. The derived function shows that the source term decreases as a function of (1  t/tL)2, where tL is the grain lifetime, due to the shrinkage of the mineral grains as they dissolve. For some models, either a constant or an instantaneous term might be used, provided that certain time constraints are met. The methods outlined in this paper are intended to help bridge the gap between laboratory measurements and field-based models. Although this paper uses As as an example, the methods are general and can be used to predict source terms for other mineral-derived trace elements to groundwater.  相似文献   

13.
《Applied Geochemistry》2006,21(4):580-613
To quantify and explain the contributions by pollution and chemical weathering to their composition, we studied the chemistries of springs and surface waters in the mountainous part of the Vouga River basin. Water samples were collected during a number of consecutive summer campaigns. Recharge rates were derived from monitored discharge rates within the basin. Very large contributions by meteoric, agricultural and domestic sources to the water chemistries were found, identified by the chloride, sulfate and nitrate concentrations: on average only 1/4 to 1/3 of the solutes could be attributed to chemical weathering. Two petrologic units characterize the river basin: granites and metasediments. The waters collected within metasediment units are distinct from those in granite terrain by a higher magnesium concentration. On that basis, it could be estimated that the Rio Vouga, when leaving the mountainous part of the basin, has for some 2/5 a signature determined by chemical weathering in the metasediments. The dominant primary minerals subject to chemical weathering are plagioclase (Pl) and biotite (in granite) or Pl and chlorite (in metasediment). Kaolinite, gibbsite and vermiculite are the major weathering products where annual precipitation (P) > 1000 mm y−1, and kaolinite, vermiculite and smectite where P was lower. Using an algorithm based on the ratio of dissolved silica to bicarbonate, the contributions of chemical weathering of primary minerals could be unraveled. The results show that in granite the export rate (as mol ha−1 y−1 wt%mineral−1) of oligoclase (Pl with An10–30) was 5.0 ± 2.6 and of biotite 3.2 ± 2.6, while in metasediment these rates for albite (Pl with An0–10) are 16.5 ± 8.9 and for chlorite are 0.5 ± 0.5. The observed decrease of dissolved silica in surface waters relative to springs was ascribed to (summer) uptake by aquatic biota.  相似文献   

14.
The polymetallic Mykonos vein system in the Cyclades, Greece, consists of 15 tension-gashes filled with barite, quartz, pyrite, sphalerite, chalcopyrite and galena in ca. 13.5 Ma, I-type, Mykonos monzogranite. Zones of silica and chlorite–muscovite alteration are associated with the veins and overprint pervasive silicification, phyllic and argillic alteration that affected large parts of the monzogranite. The mineralization cements breccias and consists of an early barite–silica–pyrite–sphalerite–chalcopyrite assemblage followed by later argentiferous galena. A combination of fluid inclusion and stable isotope data suggests that the barite and associated mineralization were deposited from fluids containing 2 to 17 wt.% NaCl equivalent, at temperatures of ~ 225° to 370 °C, under a hydrostatic pressure of ≤ 100 bars. The mineralizing fluids boiled and were saturated in H2S and SO2.Calculated δ18OH2O and δDH2O, initial 87Sr/86Sr isotope compositions and the trace and REEs elements contents are consistent with a model in which the mineralizing fluids were derived during alteration of the Mykonos intrusion and subsequently mixed with Miocene seawater. Heterogeneities in the calculated δ34SSO4 2 and δ34SH2S compositions of the ore fluids indicate two distinct sources for sulfur, namely of magmatic and seawater origin, and precipitation due to reduction of the SO4 2 during fluid mixing. The physicochemical conditions of the fluids were pH = 5.0 to 6.2, logfS2 =  13.8 to − 12.5, logfO2 =  31.9 to − 30.9, logfH2S(g) =  1.9 to − 1.7, logfTe2 =  7.9 and logα(SO4 2(aq)/H2S(aq)) = + 2.6 to + 5.5. We propose that retrograde mesothermal hydrothermal alteration of the Mykonos monzogranite released barium and silica from the alkali feldspars. Barite was precipitated due to mixing of SO4 2-rich Miocene seawater with the ascending Ba-rich magmatic fluid venting upwards in the pluton.  相似文献   

15.
The solubility of synthetic ZnS(cr) was measured at 25–250 °C and P = 150 bars as a function of pH in aqueous sulfide solutions (~ 0.015–0.15 m of total reduced sulfur). The solubility determinations were performed using a Ti flow-through hydrothermal reactor. The solubility of ZnS(cr) was found to increase slowly with temperature over the whole pH range from 2 to ~ 10. The values of the Zn–S–HS complex stability constant, β, were determined for Zn(HS)20(aq), Zn(HS)3?, Zn(HS)42?, and ZnS(HS)?. Based on the experimental values the Ryzhenko–Bryzgalin electrostatic model parameters for these stability constants were calculated, and the ZnS(cr) solubility and the speciation of Zn in sulfide-containing hydrothermal solutions were evaluated. The most pronounced solubility increase, about 3 log units at m(Stotal) = 0.1 for the temperatures from 25 to 250 °C, was found in acidic solutions (pH ~ 3 to 4) in the Zn(HS)20(aq) predominance field. In weakly alkaline solutions, where Zn(HS)3? and Zn(HS)42? are the dominant Zn–S–HS complexes, the ZnS(cr) solubility increases by 1 log unit at the same conditions. It was found that ZnS(HS)? and especially Zn(HS)42? become less important in high temperature solutions. At 25 °C and m(Stotal) = 0.1, these species dominate Zn speciation at pH > 7. At 100 °C and m(Stotal) = 0.1, the maximum fraction of Zn(HS)42? is only 20% of the total Zn concentration (i.e. at pHt ~ 7.5), whereas at 350 °C and 3 <pHt <10, the fraction of Zn(HS)42? and ZnS(HS)? is less than 0.05% and 2.5% respectively, of the total Zn concentration and Zn(HS)20 and Zn(HS)3? predominate. The measured equilibrium formation constants were combined with the literature data on the stability of Zn–Cl complexes in order to evaluate the concentration and speciation of Zn in chloride solutions. It was found that at acidic pH, and in more saline fluids having total chloride > 0.05 m, Zn–Cl complexes are responsible for hydrothermal Zn transport with no significant contribution of Zn–S–HS complexes. The hydrosulfide/sulfide complexes will play a more important role in lower salinity (< 0.05 m chloride) hydrothermal solutions which are characteristic of many epithermal ore depositing environments. The value of ΔfG° (β-ZnS(cr)) = ? 198.6 ± 0.2 kJ/mol at 25 °C was determined via solubility measurements of natural low-iron Santander (Spain) sphalerite.  相似文献   

16.
Orogenic gold mineralization in the Amalia greenstone belt is hosted by oxide facies banded iron-formation (BIF). Hydrothermal alteration of the BIF layers is characterized by chloritization, carbonatization, hematization and pyritization, and quartz-carbonate veins that cut across the layers. The alteration mineral assemblages consist of ankerite-ferroan dolomite minerals, siderite, chlorite, hematite, pyrite and subordinate amounts of arsenopyrite and chalcopyrite. Information on the physico-chemical properties of the ore-forming fluids and ambient conditions that promoted gold mineralization at Amalia were deduced from sulfur, oxygen and carbon isotopic ratios, and fluid inclusions from quartz-carbonate samples associated with the gold mineralization.Microthermometric and laser Raman analyses indicated that the ore-forming fluid was composed of low salinity H2O-CO2 composition (~3 wt% NaCl equiv.). The combination of microthermometric data and arsenopyrite-pyrite geothermometry suggest that quartz-carbonate vein formation, gold mineralization and associated alteration of the proximal BIF wall rock occurred at temperature-pressure conditions of 300 ± 30 °C and ∼2 kbar. Thermodynamic calculations at 300 °C suggest an increase in fO2 (10−32–10−30 bars) and corresponding decrease in total sulfur concentration (0.002–0.001 m) that overlapped the pyrite-hematite-magnetite boundary during gold mineralization. Although hematite in the alteration assemblage indicate oxidizing conditions at the deposit site, the calculated low fO2 values are consistent with previously determined high Fe/Fe + Mg ratios (>0.7) in associated chlorite, absence of sulfates and restricted positive δ34S values in associated pyrite. Based on the fluid composition, metal association and physico-chemical conditions reported in the current study, it is confirmed that gold in the Amalia fluid was transported as reduced bisulfide complexes (e.g., Au(HS)2). At Amalia, gold deposition was most likely a combined effect of increase in fO2 corresponding to the magnetite-hematite buffer, and reduction in total sulfur contents due to sulfide precipitation during progressive fluid-rock interaction.The epigenetic features coupled with the isotopic compositions of the ore-forming fluid (δ34SΣS = +1.8 to +2.3‰, δ18OH2O = +6.6 to +7.9‰, and δ13CΣC = −6.0 to −7.7‰ at 300–330 °C) are consistent with an externally deep-sourced fluid of igneous signature or/and prograde metamorphism of mantle-derived rocks.  相似文献   

17.
The linkage between the iron and the carbon cycles is of paramount importance to understand and quantify the effect of increased CO2 concentrations in natural waters on the mobility of iron and associated trace elements. In this context, we have quantified the thermodynamic stability of mixed Fe(III) hydroxo-carbonate complexes and their effect on the solubility of Fe(III) oxihydroxides. We present the results of carefully performed solubility measurements of 2-line ferrihydrite in the slightly acidic to neutral–alkaline pH ranges (3.8–8.7) under constant pCO2 varying between (0.982–98.154 kPa) at 25 °C.The outcome of the work indicates the predominance of two Fe(III) hydroxo carbonate complexes FeOHCO3 and Fe(CO3)33−, with formation constants log*β°1,1,1 = 10.76 ± 0.38 and log β°1,0,3 = 24.24 ± 0.42, respectively.The solubility constant for the ferrihydrite used in this study was determined in acid conditions (pH: 1.8–3.2) in the absence of CO2 and at T = (25 ± 1) °C, as log*Ks,0 = 1.19 ± 0.41.The relative stability of the Fe(III)-carbonate complexes in alkaline pH conditions has implications for the solubility of Fe(III) in CO2-rich environments and the subsequent mobilisation of associated trace metals that will be explored in subsequent papers.  相似文献   

18.
《Chemical Geology》2006,225(1-2):40-60
Fluorite is the most common fluoride mineral in magmatic silicic systems and its crystallization can moderate or buffer fluorine concentrations in these settings. We have experimentally determined fluorite solubility and speciation mechanisms in haplogranitic melts at 800–950 °C, 100 MPa and aqueous-fluid saturation. The starting haplogranite compositions: peraluminous (alumina saturation index, ASI = 1.2), subaluminous (ASI = 1.0) and peralkaline (ASI = 0.8) were variably doped with CaO or F2O−1 in the form of stoichiometric mineral or glass mixtures. The solubility of fluorite along the fluorite–hydrous haplogranite binaries is low: 1.054 ± 0.085 wt.% CaF2 (peralkaline), 0.822 ± 0.076 wt.% (subaluminous) and 1.92 ± 0.15 wt.% (peraluminous) at 800 °C, 100 MPa and 10 wt.% H2O, and exhibits a minimum at ASI  1. Fluorite saturation isotherms are strongly hyperbolic in the CaO–F2O−1 space, suggesting that fluorite saturation is controlled by the activity product of CaO and F2O−1, i.e., these components are partially decoupled in the melt structure. The form of fluorite liquidus isotherms implies distinct roles of fluorite crystallization: in Ca-dominant systems, fluorite crystallization is controlled by the fluorine concentration in the melt only and remains nearly independent of calcium contents; in F-rich systems, the crystallization of fluorite is determined by CaO contents and it does not buffer fluorine concentration in the melt. The apparent equilibrium constant, K, for the equilibrium CaO + cF2O−1 = CaF2 (+ associates) is log K=  (2.449 ± 0.085)·Al2O3exc + (4.902 ± 0.066); the reaction-stoichiometry parameter varies as follows: c=  (0.92 ± 0.11)·Al2O3exc + (1.042 ± 0.084) at 800 °C, 100 MPa and fluid saturation where Al2O3exc are molar percent alumina in excess over alkali oxides. The reaction stoichiometry, c, changes at subaluminous composition: in peralkaline melts, competition of other network modifiers for excess fluorine anions leads to the preferential alkali–F short-range order, whereas in peraluminous compositions, excess alumina associates with calcium cations to form calcioaluminate tetrahedra. The temperature dependence of fluorite solubility is described by the binary symmetric Margules parameter, W = 36.0 ± 1.4 kJ (peralkaline), 39.7 ± 0.5 kJ (subaluminous) and 32.8 ± 0.7 kJ (peraluminous). The strong positive deviations from ideal mixing imply the occurrence of CaF2–granite liquid–liquid immiscibility at temperatures above 1258 °C, which is consistent with previous experimental data. These experimental results suggest very low solubilities of fluorite in Ca-rich melts, consistent with the lack of fluorine enrichment in peralkaline rhyolites and calc-alkaline batholiths. On the other hand, high CaO concentrations necessary to crystallize fluorite in F-rich peraluminous melts are not observed in nature and thus magmatic crystallization of fluorite in topaz-bearing silicic suites is suppressed. A procedure for calculating fluorite solubility and the liquidus isotherms for a whole-rock composition and temperature of interest is provided.  相似文献   

19.
《Applied Geochemistry》2006,21(9):1522-1538
Factors controlling the chemical composition of water interacting with finely-crushed kimberlite have been investigated by sampling pore waters from processed kimberlite fines stored in a containment facility. Discharge water from the diamond recovery plant and surface water from the containment facility, which acts as plant intake water, were also sampled. All waters sampled are pH-neutral, enriched in SO4, Mg, Ca, and K, and low in Fe. Pore-water samples, representing the most concentrated waters, are characterized by the highest SO4 (up to 4080 mg l−1), Mg (up to 870 mg l−1), and Ca (up to 473 mg l−1). The water discharged from the processing plant has higher concentrations of all major dissolved constituents than the intake water. The dominant minerals present in the processed fines and the kimberlite ore are serpentine and olivine, with small amounts of Ca sulphate and Fe sulphide restricted to mud xenoclasts. Reaction and inverse modeling suggest that much of the water-rock interaction takes place within the plant and involves the dissolution of chrysotile and Ca sulphate, and precipitation of silica and Mg carbonate. Evapoconcentration also appears to be a significant process affecting pore water composition in the containment facility. The reaction proposed to be occurring during ore processing involves the dissolution of CO2(g) and may represent an opportunity to sequester atmospheric CO2 through mineral carbonation.  相似文献   

20.
Chemical weathering of Mg, Ca-silicates and alumino-silicates contributes significantly to the drawdown of atmospheric CO2 over long time scales. The present work focuses on how this mode of weathering may change in the presence of free-living bacteria in oligotrophic waters, which compose most of the surface freshwaters of the Earth. Forsterite (Fo90) was reacted for 1 week with a stable Escherichia coli population in water maintained at 37 °C and neutral pH in a batch reactor. Control samples with suspensions of pure olivine powders and E. coli cells in pure water were also used for reference. Olivine controls reproduce the Mg, Si and Fe release in solutions predicted from rates published in the literature with pH shifts of less than 0.5 unit. After 1 week, under abiotic conditions, weathered surfaces are enriched in Fe and Fe3+ relative to the initial composition of the mineral. Bacterial controls (without minerals) show decreasing Eh with increasing cell concentrations (−50 mV with 7 × 107 cells/mL and −160 mV with 8 × 108 cells/mL). Magnesium concentrations in bacterial control solutions are in the μg/L range and can be accounted for by the release of Mg from dead cells. More than 80% of the cells were still alive after 1 week. The solutions obtained in the experiments in which olivine reacts in the presence of cells show Mg and Si concentrations a few tens of percent lower than in the mineral control samples, with a prominent depletion of Fe(III) content of the mineral surfaces. Magnesium mass balance discounts both significant bacterial uptake and inhibition of the Mg dissolution rates as a consequence of changing pH and Eh. Coating by bacterial cell layers is also negligible. E. coli reduces the chemical weathering of olivine. This study infers that the presence of free-living Proteobacteria, a prevalent group of subsurface bacteria, should decrease the amount of riverine Mg released by chemical weathering of mafic rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号