首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
This study investigates the concentration and spatial distribution of Cu, Zn, Hg and Pb in the surface (0–2 cm) soils of a regional city in Australia. Surface soils were collected from road sides and analysed for their total Cu, Zn, Hg and Pb concentrations in the <180 μm and <2 mm grain size fractions. The average metal concentration of surface soils, relative to local background soils at 40–50 cm depth, are twice as enriched in Hg, more than three times enriched in Cu and Zn, and nearly six times as enriched in Pb. Median surface soil metal concentration values were Cu – 39 mg/kg (682 mg/kg max), Zn – 120 mg/kg (4950 mg/kg max), Hg – 44 μg/kg (14,900 μg/kg max) and Pb – 46 mg/kg (3490 mg/kg max). Five sites exceeded the Australian NEPC (1999) 300 mg/kg guideline for Pb in residential soils. Strong positive correlations between Cu, Zn and Pb, coupled with the spatial distribution of elevated soil concentrations towards the city centre and main roads suggest traffic and older housing as major sources of contamination. No spatial relationships were identified between elevated metal loadings and locations of past or present industries.  相似文献   

2.
The present study investigates the bioavailability, soil to plant transfer and health risks of arsenic (As) in the coastal part of Chianan Plain in southwestern Taiwan. Groundwater used for irrigation, surface soils from agricultural lands and locally grown foodstuffs were collected from eight locations and analyzed for As to assess the risks associated with consuming these items. The concentration of As in groundwater ranged from 13.8 to 881 μg/L, whereas surface soil showed total As content in the range of 7.92–12.7 mg/kg. The available As content in surface soil accounted for 0.06–6.71% of the total As content, and was significantly correlated with it (R2 = 0.65, p < 0.05). Among the leachable fraction, the organic matter (3.23–54.8%) and exchangeable portions of oxides (6.03–38.4%) appear to be the major binding phases of As. The average As content in fourteen studied crops and vegetables varied from 10.3 to 151 μg/kg with maximum in mustard and minimum in radish. All the plants showed considerably higher As content (21.5 ± 3.64–262 ± 36.2 μg/kg) in their roots compared to the edible parts (9.15 ± 1.44–75.8 ± 22.9 μg/kg). The bioaccumulation factor (BAF) based on total As (ranging from 0.0009 to 0.144) and available As in soil (ranging from 0.039 to 0.571) indicate that mustard, rice, amaranth and spinach are the highest accumulators of As. Although the health risk index (HRI) of the studied crops and vegetables ranged from only 0.0068–0.454, with the maximum in rice, the combined HRI indicates an alarming value of 0.88. Therefore, the possible health risks due to long-term consumption of rice and other As-rich foodstuffs could be overcome by controlling the contamination pathways in the water–soil–plant system.  相似文献   

3.
Arsenic concentrations are reported for the <2 mm fraction of ca. 2200 soil samples each from agricultural (Ap horizon, 0–20 cm) and grazing land (Gr, 0–10 cm), covering western Europe at a sample density of 1 site/2500 km2. Median As concentrations in an aqua regia extraction determined by inductively coupled plasma emission mass spectrometer (ICP-MS) were 5.7 mg/kg for the Ap samples and 5.8 mg/kg for the Gr samples. The median for the total As concentration as determined by X-ray fluorescence spectrometry (XRF) was 7 mg/kg in both soil materials. Maps of the As distribution for both land-use types (Ap and Gr) show a very similar geographical distribution. The dominant feature in both maps is the southern margin of the former glacial cover seen in the form of a sharp boundary between northern and southern European As concentrations. In fact, the median As concentration in the agricultural soils of southern Europe was found to be more than 3-fold higher than in those of northern Europe (Ap: aqua regia: 2.5 vs. 8.0 mg/kg; total: 3 vs. 10 mg/kg). Most of the As anomalies on the maps can be directly linked to geology (ore occurrences, As-rich rock types). However, some features have an anthropogenic origin. The new data define the geochemical background of As in agricultural soils at the European scale.  相似文献   

4.
The estimation of potentially harmful element (PHE) availability in urban soil is essential for evaluating impending risks for human and ecosystem health. In the present study five single extraction procedures were evaluated based on the analysis of 45 urban top-soil samples from Athens, Greece. The pseudototal (aqua regia), potentially phytoavailable (0.05 M EDTA), mobilizable (0.43 M HAc), bioaccessible (0.4 M glycine) and reactive pools (0.43 M HNO3) of PHEs were determined. In general, geogenic elements in Athens soil (Ni, Cr, Co, As) are relatively less available than typical tracers of anthropogenic contamination (Pb, Zn, Cu, Cd). Results of principal component analysis (PCA) indicate an association between available fractions of Pb, Cu, Zn, Cd and amorphous Fe oxides, whereas amorphous Mn oxides account for the available concentrations of Mn, Ni and Co. Empirical multiple linear regression models demonstrate that pseudototal concentration is the predominant explanatory factor of variability for the available pools of the anthropogenic elements. Major elemental composition and total organic carbon (TOC) improve the predictions for the geogenic group of elements, although the explained variability remains low. Dilute HNO3 is a better predictor of Zn, Ni, As and Mn availability, whereas Pb and Cu available fractions are predicted more accurately by the classical aqua regia protocol. This study contributes to the international database on the environmental behavior of PHEs and provides additional knowledge that can be used toward the harmonization of chemical extraction methodology in urban soil.  相似文献   

5.
Agricultural (Ap, Ap-horizon, 0–20 cm) and grazing land soil samples (Gr, 0–10 cm) were collected from a large part of Europe (33 countries, 5.6 million km2) at an average density of 1 sample site/2500 km2. The resulting more than 2 × 2000 soil samples were air dried, sieved to <2 mm and analysed for their Hg concentrations following an aqua regia extraction. Median concentrations for Hg are 0.030 mg/kg (range: <0.003–1.56 mg/kg) for the Ap samples and 0.035 mg/kg (range: <0.003–3.12 mg/kg) for the Gr samples. Only 5 Ap and 10 Gr samples returned Hg concentrations above 1 mg/kg. In the geochemical maps the continental-scale distribution of the element is clearly dominated by geology. Climate exerts an important influence. Mercury accumulates in those areas of northern Europe where a wet and cold climate favours the build-up of soil organic material. Typical anthropogenic sources like coal-fired power plants, waste incinerators, chlor-alkali plants, metal smelters and urban agglomerations are hardly visible at continental scales but can have a major impact at the local-scale.  相似文献   

6.
The current study was designed to investigate the extent and severity of contamination as well as the fractionation of potentially toxic elements (As, Cd, Cr, Cu, Pb, Zn, Ni) in minesoils and agricultural soils around a Pb–Zn mine in central Iran. For this purpose, 20 agricultural soils and eight minesoils were geochemically characterized. Results showed that minesoils contained elevated concentrations of As (12.9–254 mg kg−1), Cd (1.2–55.1 mg kg−1), Pb (137–6239 mg kg−1) and Zn (516–48,889 mg kg−1). The agricultural soils were also polluted by As (5.5–57.1 mg kg−1), Cd (0.2–8.5 mg kg−1), Pb (22–3451 mg kg−1) and Zn (94–9907 mg kg−1). The highest recorded concentrations for these elements were in soils influenced directly by tailing ponds. Chromium, Cu and Ni content in agricultural soils (with average value of 74.1, 34.6 and 50.7 mg kg−1, respectively) were slightly higher than the minesoils (with average value of 54.5, 33.1 and 43.4 mg kg−1, respectively). Sequential extraction data indicated that there were some differences between the speciation of PTEs in soil samples. In the agricultural soils, Zn and Cd were mainly associated with carbonate bound fraction, As and Pb with reducible fraction, Cu with oxidisable fraction and Cr and Ni with residual phase. With respect to mobility factor values, Zn and Cd in the agricultural soils have been found to be the most mobile while As mobility is negligible. Also, the mobility factor of As, Cd and Pb in agricultural soils adjoining tailing ponds was high. In minesoil sample Cd was most abundant in the carbonate form, whereas other studied elements were mainly present in the reducible and residual fractions; therefore, despite the high total concentrations of As, Pb and Zn in the minesoils, the environmental risk of these elements was low. Based on the obtained data, a portion of Cu, Cr and Ni input was from agricultural activities.  相似文献   

7.
Branched glycerol dialkyl glycerol tetraethers (GDGTs) are membrane lipids of unknown bacteria that are ubiquitous in soil and peat. Two indices based on the distribution of these lipids in soils, the Cyclization of Branched Tetraethers (CBT) and the Methylation of Branched Tetraethers (MBT) indices have been shown to correlate with soil pH, and mean annual air temperature (MAT) and soil pH, respectively, and can be used to reconstruct MAT in palaeoenvironments. To verify the extent to which branched GDGTs in marine sediments reflect the distribution pattern on land and whether these proxies are applicable for palaeoclimate reconstruction in high latitude environments with a MAT of <0 °C, we compared the branched GDGT distribution in Svalbard soils and nearby fjord sediments. Although branched GDGT concentrations in the soil are relatively low (0.02–0.95 μg/g dry weight (dw)) because of the cold climate and the short growing season, reconstructed MATs based on the MBT/CBT proxy are ca. ?4 °C, close to the measured MAT (ca. ?6 °C). Concentrations of branched GDGTs (0.01–0.20 μg/g dw) in fjord sediments increased towards the open ocean and the distribution was strikingly different from that in soil, i.e. dominated by GDGTs with one cyclopentane moiety. This resulted in MBT/CBT-reconstructed MAT values of 11–19 °C, well above measured MAT. The results suggest that at least part of the branched GDGTs in marine sediments in settings with a low soil organic matter (OM) input may be produced in situ. In these cases, the application of the MBT/CBT palaeothermometer will generate unrealistic MAT reconstructions. The MBT/CBT proxy should therefore only be used at sites with a substantial input of soil OM relative to the amount of marine OM, i.e. at sites close to the mouth of rivers with a catchment area where sufficient soil formation takes place and the soil thus contains substantial amounts of branched GDGTs.  相似文献   

8.
《Applied Geochemistry》2006,21(11):2010-2022
This work focuses on two possible sources of Hg in tropical soils, (i) lithogenic Hg from in situ weathering of soil parental material, and (ii) exogenic Hg from natural long-term atmospheric inputs and anthropogenic input from past and present industrial activities. The concentration of lithogenic Hg [Hg]lithogenic was based on comparison of measured Hg concentration with those of elements resistant to weathering such as Nb, U, Zn, Fe. Exogenic Hg was quantified by subtracting [Hg]lithogenic from total Hg concentrations. This calculation was applied to 4 French Guiana soil profiles, 3 profiles on the same toposequence (ferralsol, acrisol, hydromorphic soil) and one acrisol close to a Au mine, where elemental Hg is used. In all profiles, [Hg]lithogenic varied slightly and was always below 40 μg kg−1, whereas [Hg]exogenic varied considerably and reached 500 μg kg−1. The highest [Hg]exogenic was calculated for the upper horizon of the acrisol close to Au mining activity, but also in the ferralsol. Concentrations of Hg were insignificant in the compact alterite in acrisols. It was concluded that pedogenesis processes that affect the natural Hg supply, combined with anthropogenic sources, explain the Hg concentrations in these tropical soils.  相似文献   

9.
This study was aimed at evaluating the mechanical and pH-dependent leaching performance of a mixed contaminated soil treated with a mixture of Portland cement (CEMI) and pulverised fuel ash (PFA). It also sought to develop operating envelopes, which define the range(s) of operating variables that result in acceptable performance. A real site soil with low contaminant concentrations, spiked with 3000 mg/kg each of Cd, Cu, Pb, Ni and Zn, and 10,000 mg/kg of diesel, was treated with one part CEMI and four parts PFA (CEMI:PFA = 1:4) using different binder and water contents. The performance was assessed over time using unconfined compressive strength (UCS), hydraulic conductivity, acid neutralisation capacity (ANC) and pH-dependent leachability of contaminants. With binder dosages ranging from 5% to 20% and water contents ranging from 14% to 21% dry weight, the 28-day UCS was up to 500 kPa and hydraulic conductivity was around 10−8 m/s. With leachant pH extremes of 7.2 and 0.85, leachability of the contaminants was in the range: 0.02–3500 mg/kg for Cd, 0.35–1550 mg/kg for Cu, 0.03–92 mg/kg for Pb, 0.01–3300 mg/kg for Ni, 0.02–4010 mg/kg for Zn, and 7–4884 mg/kg for total petroleum hydrocarbons (TPHs), over time. Design charts were produced from the results of the study, which show the water and/or binder proportions that could be used to achieve relevant performance criteria. The charts would be useful for the scale-up and design of stabilisation/solidification (S/S) treatment of similar soil types impacted with the same types of contaminants.  相似文献   

10.
《Applied Geochemistry》2004,19(10):1553-1565
Recent research has shown that phytoextraction approaches often require soil amendments, such as the application of EDTA, to increase the bioavailability of heavy metals in soils. However, EDTA and EDTA–heavy metal complexes can be toxic to plants and soil microorganisms and may leach into groundwater, causing further environmental pollution. In the present study, vetiver grass (Vetiveria zizanioides) was studied for its potential use in the phytoremediation of soils contaminated with heavy metals. In the pot experiment, the uptake and transport of Pb by vetiver from Pb-contaminated soils under EDTA application was investigated. The results showed that vetiver had the capacity to tolerate high Pb concentrations in soils. With the application of EDTA, the translocation ratio of Pb from vetiver roots to shoots was significantly increased. On the 14th day after 5.0 mmol EDTA kg−1 of soil application, the shoot Pb concentration reached 42, 160, 243 mg kg−1 DW and the root Pb concentrations were 266, 951, and 2280 mg kg−1 DW in the 500, 2500 and 5000 mg Pb kg−1 soils, respectively. In the short soil leaching column (9.0-cm diameter, 20-cm height) experiment, about 3.7%, 15.6%, 14.3% and 22.2% of the soil Pb, Cu, Zn and Cd were leached from the artificially contaminated soil profile after 5.0 mmol EDTA kg−1 of soil application and nearly 126 mm of rainfall irrigation. In the long soil leaching experiment, soil columns (9.0-cm diameter, 60-cm height) were packed with uncontaminated soils (mimicking the subsoil under contaminated upper layers) and planted with vetiver. Heavy metal leachate from the short column experiment was applied to the surface of the long soil column, the artificial rainwater was percolated, and the final leachate was collected at the bottom of the soil columns. The results showed that soil matrix with planted vetiver, could re-adsorb 98%, 54%, 41%, and 88% of the initially applied Pb, Cu, Zn, and Cd, respectively, which may reduce the risk of heavy metals flowing downwards and entering the groundwater.  相似文献   

11.
《Applied Geochemistry》2006,21(11):1955-1968
Elemental Hg–Au amalgamation mining practices are used widely in many developing countries resulting in significant Hg contamination of surrounding ecosystems. The authors examined for the first time Hg contamination in air, water, sediment, soil and crops in the Tongguan Au mining area, China, where elemental Hg has been used to extract Au for many years. Total gaseous Hg (TGM) concentrations in ambient air in the Tongguan area were significantly elevated compared to regional background concentrations. The average TGM concentrations in ambient air in a Au mill reached 18,000 ng m−3, which exceeds the maximum allowable occupational standard for TGM of 10,000 ng m−3 in China. Both total and methyl-Hg concentrations in stream water, stream sediment, and soil samples collected in the Tongguan area were elevated compared to methyl-Hg reported in artisanal Au mining areas in Suriname and the Amazon River basin. Total Hg concentrations in vegetable and wheat samples ranged from 42 to 640 μg kg−1, all of which significantly exceed the Chinese guidance limit for vegetables (10 μg kg−1) and foodstuffs other than fish (20 μg kg−1). Fortunately, methyl-Hg was not significantly accumulated in the crops sampled in this study, where concentrations varied from 0.2 to 7.7 μg kg−1.  相似文献   

12.
《Applied Geochemistry》2006,21(11):1855-1867
Methylmercury (MeHg) and total Hg (THg) concentrations in soil profiles were monitored in the Thur River basin (Alsace, France), where a chlor-alkali plant has been located in the city of Vieux-Thann since the 1930s. Three soil types were studied according to their characteristics and location in the catchment: industrial soil, grassland soil and alluvial soil. Contamination of MeHg and THg in soil was important in the vicinity of the plant, especially in industrial and alluvial soil. Concentrations of MeHg reached 27 ng g−1 and 29,000 ng g−1 for THg, exceeding the predictable no effect concentration. Significant ecotoxicological risk exists in this area and remedial actions on several soil types are suggested. In each type of soil, MeHg concentrations were highest in topsoil, which decreased with depth. Concentrations of MeHg were negatively correlated with soil organic matter and total S, particularly when MeHg concentrations exceeded 8 ng g−1. Under these conditions, MeHg concentrations in soil seemed to be influenced by THg, soil organic matter and total S concentrations. It was found that high MeHg/THg ratios (near 2%) in soil were mainly related to the combined soil environmental conditions such as low THg concentrations, low organic C/N ratios (<11) and relatively low pH (5–5.5). Nevertheless, even when the MeHg/THg ratio was low (∼0.04%), MeHg and THg concentrations were elevated, up to 13 ng g−1 and to 29,000 ng g−1, respectively. Thus, both THg and MeHg concentrations should be taken into account to assess potential environmental risks of Hg.  相似文献   

13.
《Applied Geochemistry》2006,21(11):1969-1985
Gossan Creek, a headwater stream in the SE Upsalquitch River watershed in New Brunswick, Canada, contains elevated concentrations of total Hg (HgT up to 60 μg/L). Aqueous geochemical investigations of the shallow groundwater at the headwaters of the creek confirm that the source of Hg is a contaminated groundwater plume (neutral pH with Hg and Cl concentrations up to 150 μg/L and 20 mg/L, respectively), originating from the Murray Brook mine tailings, that discharges at the headwaters of the creek. The discharge area of the contaminant plume was partially delineated based on elevated pH and Cl concentrations in the groundwater. The local groundwater outside of the plume contains much lower concentrations of Hg and Cl (<0.1 μg/L and 3.8 mg/L, respectively) and displays the chemical characteristics of an acid-sulfate weathering system, with low pH (4.1–5.5) and elevated concentrations of Cu, Zn, Pb and SO4 (up to 5400 μg Cu/L, 8700 μg Zn/L, 70 μg Pb/L and 330 mg SO4/L), derived from oxidation of sulfide minerals in the Murray Brook volcanogenic massive sulfide deposit and surrounding bedrock. The HgT mass loads measured at various hydrologic control points along the stream system indicate that 95–99% of the dissolved HgT is attenuated in the first 3–4 km from the source. Analyses of creek bed sediments for Au, Ag, Cu, Zn, Pb and Hg indicate that these metals have partitioned strongly to the sediments. Mineralogical investigations of the contaminated sediments using analytical scanning electron microscopy (SEM), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM), reveal discrete particles (<1–2 μm) of metacinnabar (HgS), mixed Au–Ag–Hg amalgam, Cu sulfide and Ag sulfide.  相似文献   

14.
《Applied Geochemistry》2005,20(3):627-638
Concentrations of total Hg and methylmercury (MMHg) in riparian soil, mine-waste calcine, sediment, and moss samples collected from abandoned Hg mines in Wanshan district, Guizhou province, China, were measured to show regional dispersion of Hg-contamination. High total Hg and MMHg concentrations obtained in riparian soils from mined areas, ranged from 5.1 to 790 mg kg−1 and 0.13 to 15 ng g−1, respectively. However, total Hg and MMHg concentrations in the soils collected from control sites were significantly lower varying from 0.1 to 1.2 mg kg−1 and 0.10 to 1.6 ng g−1, respectively. Total Hg and MMHg concentrations in sediments varied from 90 to 930 mg kg−1 and 3.0 to 20 ng g−1, respectively. Total Hg concentrations in mine-waste calcines were highly elevated ranging from 5.7 to 4400 mg kg−1, but MMHg concentrations were generally low ranging from 0.17 to 1.1 ng g−1. Similar to the high Hg concentrations in soil and sediments, moss samples collected from rocks ranged from 1.0 to 95 mg kg−1 in total Hg and from 0.21 to 20 ng g−1 in MMHg. Elevated Hg concentrations in mosses suggest that atmospheric deposition might be an important pathway of Hg to the local terrestrial system. Moreover, the spatial distribution patterns of Hg contamination in the local environment suggest derivation from historic Hg mining sites in the Wanshan area.  相似文献   

15.
《Applied Geochemistry》2006,21(10):1760-1780
Sulfide-rich mine tailings in Adak that are exposed to weathering cause acid mine drainage characterized by low pH (2–4) and high SO4 (up to 800 mg L−1). Surface water, sediment and soil samples collected in this study contain higher concentrations of As, Cu, Fe and Zn, compared to the target and/or intervention limits set by international regulatory agencies. In particular, high As concentrations in water (up to 2900 μg L−1) and sediment (up to 900 mg kg−1) are of concern. There is large variability in trace element concentrations, implying that both physical (grain size) and chemical factors (pH, secondary phases as sulfides, Al-oxides or clay minerals) play an important role in their distribution. The low pH keeps the trace elements dissolved, and they are transported farther downstream. Trace element partition coefficients are low (log Kd = 0.3–4.3), and saturation indices calculated with PHREEQC are <0 for common oxide and sulfidic minerals. The sediment and soil samples indicate an enhanced pollution index (up to 17), and high enrichment factors for trace elements (As up to 38,300; Zn up to 800). Finally, leaves collected from different plant types indicate bioaccumulation of several elements (As, Al, Cu, Fe and Zn). However, some of the plants growing in this area (e.g., Salix, Equisétum) are generally resistant to metal toxicity, and hence, liming and phytoremediation could be considered as potential on-site remediation methods.  相似文献   

16.
《Applied Geochemistry》2006,21(11):1986-1998
Elevated concentrations of Hg are present (averaging 36 μg/g), mainly as cinnabar, in the Murray Brook Au deposit, located in northern New Brunswick, Canada. After the mined ore was subjected to CN leaching, the tailings were deposited in an unsaturated pile, and 10 a after mine closure an estimated 4.7 × 103 kg of CN and 1.1 × 104 kg of Hg remain in the pile. Elevated Hg concentrations have been measured in the groundwater (up to 11,500 μg/L) and surface water (up to 32 μg/L) down-gradient of the tailings. To investigate the controls on Hg mobility and leaching persistence, laboratory experiments were conducted using unsaturated columns filled with tailings. Within the first 0.2 pore volumes (PV) eluted, the concentrations of Hg and CN increased to peak concentrations of 12,900 μg Hg/L and 16 mg CN/L, respectively. In the subsequent 0.9 PV, concentrations decreased to approximately 1300 μg Hg/L and 2.8 mg CN/L. Thermodynamic calculations demonstrate that >99.8% of the mobilized Hg in the tailings pore water is in the form of Hg–CN complexes, indicating that Hg mobility to the surrounding aquatic environment is directly dependent on the rate of CN leaching. One-dimensional transport simulations suggest that leached CN can be partitioned into conservative (24%) and non-conservative (76%) fractions. Extrapolation of simulation results to the field scale suggests that CN, and by extension Hg, will continue to elute from the tailings for at least an additional 130 a.  相似文献   

17.
《Applied Geochemistry》2006,21(9):1613-1624
Ingestion of soil is a common behaviour in young children as a means of exploring their surroundings. Much attention has been given to remediation of point-source polluted sites with regard to potential health risks for children. However, because of diffuse pollution and long-range atmospheric deposition, soil contaminant levels are generally increased in urban areas compared to their rural counterparts, even in areas located away from any point sources of pollution. Intake of urban soil can thereby result in significant amounts of the child’s daily metal intake. In the present study, soil samples were collected from 25 playgrounds around urban Uppsala, Sweden and analysed for contents of Al, As, Fe, Cr, Cu, Cd, Hg, Mn, Ni, Pb, W and Zn. Prior to aqua regia digestion, the samples were wet-sieved in order to separate soil particle fractions representing deliberate (<4 mm) and involuntary (<50 μm) soil ingestion by children, as well as a third size fraction of 50–100 μm representing soil that is easily transported by suspension. While the metal and As contents in the 50–100 μm fraction were similar to those of the <4 mm fraction, the <50 μm fraction had metal and As contents on average one and a half times higher than those of the <4 mm fraction. The metal and As contents correlated negatively with the sand content in both particle size fractions <4 mm and 50–100 μm, suggesting a general decrease in metal and As content with increasing sand content. However, a positive correlation was found between sand content and the metal and As contents of the finest fraction (<50 μm), suggesting that when the sand content is high, the bulk of the sorbed elements are on the finest particles. The difference between metal and As contents in the different size fractions was greater in the soil sample with the highest sand content than in the sample with the lowest sand content. This implies that texture is a significant factor in metal and As distribution in soils with moderate metal and As contents, when the number of binding sites associated with small particles is low. Tolerable daily intake (TDI) values for Pb and As were exceeded at all sites, and at two sites for Cd, for children with pica behaviour. A high ingestion rate of mainly small particles could also result in the TDI value for Pb being exceeded at 10 sites and that for As at one site. This study also found that soil analysis by the procedure recommended by Swedish authorities accurately represents the metal intake from deliberate soil ingestion, whereas involuntary soil ingestion of mainly small particles could result in metal intakes which are up to twice as high.  相似文献   

18.
Dissolved and particulate Zn and Ni concentrations were determined at 76 locations along the Yangtze River basin from the headwaters to the estuary during flood and dry seasons. Spatial and temporal variations of Zn and Ni were investigated and six major source zones were identified. The Three Gorges Dam (TGD) blocked most of the suspended loads and extremely low concentration of Zn and Ni were observed downstream of the dam. Dissolved (ranging from 0.062 to 8.0 μg L−1) and particulate (ranging from 12 to 110 mg kg−1) Ni showed similar levels of concentrations during flood and dry seasons, whereas dissolved (ranging from 0.43 to 49 μg L−1) and particulate (ranging from 54 to 1100 mg kg−1) Zn were slightly and much lower in the flood season than dry season, respectively. This was attributed to the increased water discharge during the flood season causing a dilution effect and sediment resuspension. In the flood season, average concentrations of Zn and Ni were higher in the main channel than in tributaries, due to soil erosion and mining activities providing the dominant inputs. The situation was opposite in the dry season, attributed to the contribution of municipal sewage, industrial activities, and waste disposal. During the flood season, dissolved Zn and Ni concentrations were negatively correlated with pH. Water and suspended particulate matter (SPM) from the upper reaches, middle reaches, and lower reaches of the Yangtze River were characterized by their Zn and Ni concentrations. The Panzhihua, Nanling and Tongling mining areas were considered as the most important source zones of particulate Zn and Ni. The Chongqing region, Wuhan region and the Yangtze River Delta provided most of the dissolved Zn and Ni inputs into the river. Annual net flux of Zn (10–72 × 105 kg a−1) and Ni (5.0–19 × 105 kg a−1) in each source zone were estimated according to their respective influent and effluent fluxes. Contributions of the source zones to Zn and Ni transport decreased from the upper reaches to the lower reaches.  相似文献   

19.
Lead has been exploited by man over thousands of years for a variety of metallurgical, medicinal, and industrial purposes. The cumulative output of Pb from mining is estimated to be 260 million metric tonnes and 85% of this has occurred over the last two centuries. Global annual production of Pb from mining was about 3 million tonnes at the turn of the millenium. Terrestrial ecosystems all over Norway have been contaminated moderately to strongly by Pb and other trace elements from atmospheric deposition. With the aim of developing a method for mapping the accumulated content of anthropogenic Pb and how deep in the soil profile the atmospherically deposited Pb has penetrated, the concentration of Pb and the 206Pb/207Pb ratio has been studied in podzolic forest soils at four locations with different lithology, i.e. age and type of bedrock, in the Oslo area. The concentrations of Pb in the soil profiles are 6.6–38.1 mg/kg (median 10.3). The 206Pb/207Pb ratio ranges between 1.168 and 1.314 (median 1.267) over the entire profile. In the upper 5 cm the range is 1.168–1.191, similar to ratios determined in recent atmospheric deposition. Applying three different methods, the amount of anthropogenically deposited Pb is estimated at 1–6 t/km2.  相似文献   

20.
Heavy-metals (Cu, Pb and Zn) in tree-ring sequences of Prosopis juliflora, a tree species native to arid environments, were analyzed by ICP-MS. The tree-ring sequences were obtained from three specimens growing in an urban area previously reported as contaminated by the activity of a Cu smelter facility. The metal found in highest concentration in the wood was Zn, with concentrations up to 120 mg/kg and an enrichment factor up to 26; followed by Cu (up to 9.6 mg/kg, enrichment factor up to 8.6) and Pb (up to 1.4 mg/kg, enrichment factor up to 3). By assessing the correlation between different metal concentration trends, it was possible to infer two main pollution sources: vehicle traffic and Cu smelter emissions. Vehicle traffic is indicated by a correlation between Pb and Zn over time within individual trees, whereas contamination from the Cu-smelting facility is indicated by a correlation of Cu over time between trees. In tree A there was a significant within-tree correlation between Pb and Zn concentration trends (r = 0.856, P < 0.001), whereas Cu showed no correlation with the other metals. For tree B, there were no within-tree correlations between these metals, but when comparing the concentration–time trends between trees A and B, there was a significant correlation for Cu (r = 0.768, P < 0.01). The tree-ring sequence from tree C showed significant within-tree correlation for Cu:Zn (r = 0.430, P < 0.01) and for Pb:Zn (r = 0.753, P < 0.001). The highest enrichment values were found in tree A, located along the path of the growing-season dominant wind direction from the smelter facility, and not in the tree growing closer to the smelter (tree C), suggesting that the smelter’s emissions are dispersed to longer distances through the tall chimneys, attenuating the impact to the area directly closest to the smelter facility. It is concluded that Prosopis juliflora appears as a good bioindicator based on its metal accumulation capacity and lack of metal mobility among tree rings, thus providing information on the chronology and sources of heavy-metal pollution in urban and industrial areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号