首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Columbite-group minerals (CGM) account for the majority of the production of tantalum, an important metal for high-technology applications. Along with other Ta–Nb oxides such as tapiolite, wodginite, ixiolite and pyrochlore supergroup minerals, CGM are recovered from rare-metal granites and granitic rare-element pegmatites. In this paper mineralogical and geochemical data with a focus on CGM, tapiolite, wodginite and ixiolite are presented for rare-element granites and pegmatites from worldwide occurrences except Africa that has been covered in a previous contribution (Melcher et al., 2015). Major and trace element data of the Ta–Nb oxides are presented and compared for a total of 25 granite/pegmatite provinces, and one carbonatite for comparison. Based on CGM compositions, the data allow to distinguish between various subgroups of Li–Cs–Ta (LCT)-family pegmatites, Nb–Y–F (NYF)-family pegmatites, mixed LCT–NYF pegmatites, and rare-element granites.Each period of Ta-ore formation in Earth history is characterised by peculiar mineralogical and geochemical features. Some of the largest and economically most important rare-element pegmatite bodies are located within Archean terrains and intruded ultramafic and mafic host rocks (e.g., Tanco/Canada, Wodgina and Greenbushes/Western Australia, Kolmozero/Kola). They are highly fractionated, of LCT affinity throughout and yield complex mineralogical compositions. The variety of minor and trace elements incorporated attests to a rather insignificant role of the immediate host rocks to their geochemical signature and rather points to the significance of the composition of the underlying crustal protoliths, internal fractionation and the processes of melt generation. Many of the Archean pegmatites carry significant Li mineralization as spodumene, petalite, and amblygonite, and all of them are also characterised by elevated Li in CGM. In addition, Sb and Bi are important trace elements, also reflected by the occasional presence of stibiotantalite and bismutotantalite. REEN patterns of CGM are dominated by the MREE or HREE, and range from very low to high total REE concentrations. Negative Eu anomalies are omnipresent. Scandium contents are also highly variable, from very high (Tanco) to very low concentrations (Wodgina, Kolmozero).A second period of worldwide pegmatite formation was in the Paleoproterozoic. All CGM analysed derive from LCT-family pegmatites except samples from the Amazonas region where Ta is mined from rare-metal granites at Pitinga. Pegmatites intruded highly variable lithologies including metasediments, metabasites, gneiss, granite and quartzite within a variety of structural and paleogeographic settings; however, most of them are syn- to post-orogenic with respect to major Paleoproterozoic orogenic events. Minor and trace element signatures are similar to CGM from Archean pegmatites. Some are characterised by considerable REE enrichment (São João del Rei/Brazil; Amapá/Brazil; Finnish Lapland/Finland), whereas others have normal to low total REE concentrations (Black Hills/USA, Bastar/India). Examples with high REE commonly are enriched in Sc and Y as well, and are often transitional to NYF-family pegmatites.The Mesoproterozoic period is comparatively poor in rare-element pegmatites and rare-metal granites. Mineralogical and chemical attributes of ixiolite–wodginite, tapiolite, CGM and rutile from placer material in Colombia point to an unusual pegmatite source of NYF affinity, yielding high total REE, Sc and Th at low Li and Bi. REE patterns have typical negative Eu and Y anomalies.A third major period of pegmatite formation was the Early Neoproterozoic at around 1 Ga, documented in the Grenvillian (North America), the Sveconorwegian (northern Europe) and the Kibaran in central Africa. CGM are present in numerous, mostly small pegmatites, although larger examples also occur (e.g., Manono in the D.R. Congo; Melcher et al., 2015). Pegmatite fields often display a zonal arrangement of mineralised pegmatites with respect to assumed “fertile” parent granites. They intrude metasediments, metabasites, gneiss and granite of middle to upper crustal levels and display a variety of mineralogical and chemical characteristics. Pegmatites of the Sveconorwegian and Grenville domains are usually of the NYF type and CGM are characterised by elevated Y, REE, Th and Sc. In contrast, the pegmatites of central (Kibara Belt) and southwestern Africa (Orange River Belt) are commonly of LCT affinity carrying spodumene, beryl and cassiterite (Melcher et al., 2015). These CGM have elevated conce ntrations of Li, Mg, Sn and Hf. Total REE concentrations are low except for the Sveconorwegian, and exhibit a variety of shapes in normalised diagrams.The fourth major pegmatite-forming event coincides with amalgamation of Gondwana at the Neoproterozoic/Paleozoic boundary around 550 Ma ago. This event is omnipresent in Africa (“Panafrican”) and South America (“Brasiliano event” documented in the Eastern Brazilian pegmatite and Borborema provinces). Pegmatites often intruded high-grade metamorphic terrains composed of metasediments including schist, marble, quartzite, as well as gneiss, amphibolite, ultramafic rocks, and granite. Within the Neoproterozoic, rare-metal granites of NYF affinity are locally abundant. Pegmatites show both LCT and NYF affinities, and mixed types occur in Mozambique. The Alto Ligonha and Madagascar provinces are characterised by abundant REE and Sc both within Ta–Nb-oxides and as separate mineral phases. Notably, some pegmatite provinces are almost devoid of cassiterite, whereas others carry cassiterite in economic amounts.In the Phanerozoic (younger than 542 Ma), pegmatites formed at all times in response to orogenetic processes involving various continents and terranes during the long-time amalgamation of Pangea and the Alpine orogenies. Whereas some activity is related to the Pampean, Acadian and Caledonian orogenies, the Variscan/Hercynian and Alleghanian orogenies are of utmost importance as manifested in pegmatite formation associated with Sn–W mineralised granites in central and western Europe as well as in the Appalachians. Most of the Variscan and Alleghanian pegmatites are of LCT affinity, although NYF and some mixed types have been described as well. Variscan pegmatite formation culminated at ca. 330 to 300 Ma, whereas Alleghanian pegmatites range in age from about 390 Ma to about 240 Ma. Most are syn- to post-orogenic and were emplaced at different crustal levels and into a variety of host rocks. Degree of fractionation as well as minor and trace element geochemistry of Ta–Nb oxides are rather variable and cover the complete field of CGM compositions. REE patterns are characterised by prominent negative Eu anomalies.Some Mesozoic and Cenozoic pegmatites and rare-metal granites from Southeast Asia and the Russian Far East are included in the compilation. Rare-metal granites of the Jos Plateau (Nigeria) were previously investigated (Melcher et al., 2015). The proportion of NYF pegmatites and rare-metal granites in the Mesozoic is striking, i.e. illustrated by Jos, Orlovka, Ulug Tanzek as well as the southeast Asian deposits related to tin granites. CGM from these areas are invariably rich in REE, Sc, Y and Th. In all rare-metal granites, Ta–Nb oxides are characterised by high total REE concentrations and both, negative Eu and Y anomalies in chondrite-normalised REE diagrams.Although constituting a vastly different magmatic system compared to rare metal pegmatites and granites, we included the Upper Fir carbonatite from the Canadian Cordillera, for comparison, because it is characterised by unusal high Ta contents. As expected, the CGM differ from the pegmatitic CGM by having high Mg and Th, and low U concentrations in columbite-(Fe) and lack an Eu anomaly. However, they also show similarities to primitive CGM from rare metal pegmatites of the NYF family in terms of the REE pattern and the increase in #Ta and #Mn towards the margins of the CGM. Our findings support recent results presented in Chudy (2014) indicating that the Ta enrichment in some carbonatites might be attributed to magmatic processes and conditions that are similar to the pegmatitic systems.  相似文献   

2.
It is generally accepted that pegmatites are derived from large masses of granite but, even in areas where complete mineralogical, chemical and isotopic datasets are available, the relation between pegmatites and host granitic rocks or nearby plutons is usually not simple to address. The Pavia pluton, located in the Ossa-Morena Zone (Iberian Massif), is a multiphase intrusive body constructed over ∼11 m.y. by the amalgamation of several batches of magma. At the first glance, pegmatites seem to constitute a very homogeneous pegmatite field. They are mainly “intragranitic” thin tabular dikes, unzoned, layered, or with simple internal structure and are composed by the ordinary minerals that constitute the different classes of igneous rocks. They also present identical whole rock major and trace elements geochemistry and isotopic signature [(87Sr/86Sr)i = 0.70434–0.70581, ɛNdt = −1.3 to −3.7 and δ18O = 8.2–9.6‰] but, based on previously published geochronological data, three generations of pegmatites were identified. Two of these are coeval with the emplacement of the host granites (s.l.) at 328 Ma and ca. 324 Ma. The other is related to a later magmatic event at 319–317 Ma. A similar and rather juvenile source is suggested for host granites (s.l.) and pegmatites but a simple and continuous process of intra-chamber magmatic differentiation is not supported by our data. It is suggested that pegmatites derived from slightly evolved batches of magma that interacted with fresh, newly emplaced, batches (from the same or from a similar source) with limited interaction with the crust. Therefore, the Pavia pegmatites do not represent the final products of magmatism at this level of the crust but slightly differentiated products of different batches of magma. This study demonstrates how long-lived magmatic systems can potentially affect the recognition of granite–pegmatite genetic relationships.  相似文献   

3.
Tantalum, an important metal for high-technology applications, is recovered from oxide minerals that are present as minor constituents in rare-metal granites and granitic rare-element pegmatites. Columbite-group minerals (CGM) account for the majority of the current tantalum production; other Ta–Nb oxides (TNO) such as tapiolite, wodginite, ixiolite, rutile and pyrochlore-supergroup minerals may also be used.In this paper mineralogical and geochemical data with a focus on opaque minerals as well as age determinations on CGM using the U–Pb method are presented for 13 rare-element granite and pegmatite districts in Africa, covering Archean, Paleoproterozoic, Neoproterozoic, Paleozoic and Mesozoic provinces. Geological, economic and geochronological data are reviewed.Each period of Ta-ore formation is characterised by peculiar mineralogical and geochemical features that assist in discriminating these provinces. Compositions of CGM are extremely variable: Fe-rich types predominate in the Man Shield (Sierra Leone), the Congo Craton (Democratic Republic of the Congo), the Kamativi Belt (Zimbabwe) and the Jos Plateau (Nigeria). Mn-rich columbite–tantalite is typical of the Alto Ligonha Province (Mozambique), the Arabian–Nubian Shield and the Tantalite Valley pegmatites (southern Namibia). Large compositional variations through Fe–Mn fractionation, followed by Nb–Ta fractionation are typical for pegmatites of the Kibara Belt of Central Africa, pegmatites associated with the Older Granites of Nigeria and some pegmatites in the Damara Belt of Namibia. CGM, tapiolite, wodginite and ixiolite accommodate minor and trace elements at the sub-ppm to weight-percent level. Trace elements are incorporated in TNO in a systematic fashion, e.g. wodginite and ixiolite carry higher Ti, Zr, Hf, Sn and Li concentrations than CGM and tapiolite. Compared to tapiolite, CGM have higher concentrations of all trace elements except Hf and occasionally Zr, Ti, Sn and Mg. The composition of TNO related to rare-element pegmatites is rather different from rare-metal granites: the latter have high REE and Th concentrations, and low Li and Mg. Pegmatite-hosted TNO are highly variable in composition, with types poor in REE, typical of LCT-family pegmatites, and types rich in REE — showing affinity for NYF-family or mixed LCT–NYF pegmatites. Major and trace elements show regional characteristics that are conspicuous in normalised trace element and REE diagrams. In general, CGM from Ta-ore provinces are characterised by the predominance of one type of REE distribution pattern characterised by ratios between individual groups of REE (light, middle, heavy REE) and the presence and intensity of anomalies (e.g. Eu/Eu*).Despite textural complexities such as complex zoning patterns and multiple mineralisation stages, the chemical compositions of CGM, tapiolite and wodginite–ixiolite from rare-metal granite and rare-element pegmatite provinces indicate that they are cogenetic and reflect specific source characteristics that may be used to discriminate among rocks of different origin.Geochronological data produced for CGM from ore districts are discussed together with the respective ore mineralogy and minor and trace element geochemistry of TNO to reconsider the geodynamics of pegmatite formation. In Africa, formation of rare element-bearing pegmatites and granites is related to syn- to late-orogenic (e.g., West African Craton, Zimbabwe Craton), post-orogenic (Kibara Belt, Damara Belt, Older Granites of Nigeria, Adola Belt of Ethiopia) and anorogenic (Younger Granites of Nigeria) tectonic and magmatic episodes. The late-orogenic TNO mineralisation associated with A-type granites in the Eastern Desert of Egypt shares geochemical features with the anorogenic Younger Granites of Nigeria.  相似文献   

4.
Compositional variation (results of electron microprobe analyses and mass-spectrometry analyses) of columbite-group minerals (CGM) from fully differentiated albite–spodumene pegmatites at Kolmozero in the Kola Peninsula is evaluated. Concentric zoning, typical of rare-metal pegmatites, was not observed in the Kolmozero pegmatites. Columbite-group minerals occur in all main parageneses of the pegmatites and form four generations, reflecting the sequence of pegmatite formation. These minerals demonstrate wide variations in the content of major and trace elements. The composition of CGM ranges from columbite-(Fe) to tantalite-(Mn). Fractionation trends were observed in Mn/(Mn + Fe) versus Ta/(Ta + Nb) diagrams and trace-element abundances plotted versus XTa and XMn. The early CGM paragenesis is characterized by homogeneous, oscillatory and progressive oscillatory zoning and corresponds to a primary magmatic type. Late-generation CGM show patchy irregular internal textures replacing earlier regular patterns of zoning. The irregular zoning points to metasomatic replacement processes. For the first time, it is shown that distributions of rare earth elements (REE) in CGM reflect the evolution of a pegmatite-forming system. At Kolmozero, the main trend of REE variation from early to late generations of CGM involves decreasing total REE contents due to a decrease in heavy REE and Y, decreasing negative Eu anomaly and decreasing magnitude of M-shape tetrad effect between Gd and Ho. These changes are accompanied by gradual flattening of the “bird-like” patterns of chondrite-normalized REE distribution. All these features are typical for late differentiates of granitic volatile-rich magma. Late metasomatic tantalite-(Mn) is characterized by sharp changes in its REE distribution pattern: decreasing total REE contents, changing shape of the REE distribution pattern, the absence of Eu anomaly and tetrad effects, and the appearance of a negative Ce anomaly. The textural characteristics and mineral chemistry of CGM indicate that the pegmatite-forming system underwent several stages of evolution. The earliest magmatic stage can be divided into two sub-stages, involving direct crystallization and collective recrystallization, respectively, and was succeeded by a late hydrothermal–metasomatic post-magmatic stage. Variations in chemical composition among the different generations of CGM are explained by the interplay of several processes: fractional crystallization; competitive crystallization of main rock-forming (feldspar, muscovite, spodumene) and accessory (triphylyte–lithiophilite, spessartine, fluorapatite, zircon, microlite) minerals; and evolution of the mineral-forming environment from a melt to a hydrothermal–metasomatic fluid.  相似文献   

5.
In this paper, we show that the crystallization of miarolitic pegmatites at K?nigshain started at about 700°C, in melts containing up to 30 mass% water. Such high water concentration at low pressures (1–3 kbar) is only possible if the melts are peralkaline. Such peralkaline melts are highly corrosive, and reacted with the wall rock—here the granite host—forming the graphic granite zone, in part via a magmatic–metasomatic reaction. With cooling, the water concentration in some melt fractions increased up to 50 mass% H2O. The melt-dominated system ends below 600°C and passes into a fluid-dominated system, the beginning of which is characterized by strong pressure fluctuations, caused by the change of OH and CO3 2− in the melt, to molecular water and CO2. We note two generations of smoky quartz, one crystallized above the β–α-transition of quartz (≈573°C), and one below, both of which contain melt inclusions. This indicates that some melt fraction remains during at least the higher-temperature portion of the growth of minerals into the miarolitic cavity, contradicting the view that minerals growing into a pegmatite chamber only do so from aqueous fluids. We show that the K?nigshain miarolitic pegmatites are part of the broad spectrum of pegmatite types, and the processes active at K?nigshain are representative of processes found in most granitic pegmatites, and are thus instructive in the understanding of pegmatite formation in general, and constraining the composition and characteristics of pegmatite-forming melts. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The Durulgui granite?pegmatite system unites the Dedova Gora granite massif and pegmatite field with the Chalotskoe beryl deposit. New geochronological data on micas from porphyric biotite granites, fine-grained biotite granites, two-mica granites, and Be-bearing pegmatites are discussed. The plateau age of 128.5(±1.5)–131.2(±1.5) should be considered as indicating the formation time of the granite?pegmatite system as a whole. The age of the system implies the possibility of its formation owing to several magmatic pulses. This assumption concerns porphyric and fine-grained biotite granites and two-mica and muscovite granites, the contact between which is locally sharp. At the same time, the succession “two-mica granites → muscovite granites → granite?pegmatites → microcline pegmatites → microcline?albite pegmatites → albite pegmatites” demonstrates gradual facies transitions between rocks, which indicates their emplacement during a single magmatic pulse.  相似文献   

7.
The Piaoak tin-bearing granite-leucogranites located in the Caobang Province of Northern Vietnam compose a stock-like hypabyssal body. Host rocks are represented by Early Devonian carbonate sequences and Early Triassic ??black?? shales. The geochronological age of the Piaoak granite-leucogranites corresponds to the Late Cretaceous: T = 83.5 ± 6.2 Ma, 87Rb/86Sr method; T = 89.7 ± 1.0 Ma, 39Ar/40Ar method. The massif has a simple basic to acid order: two-mica and muscovite granite-leucogranite ?? raremetal aplites, pegmatites ?? tin-bearing greisens and hydrothermal veins. The petrographic and microstructural studies revealed a sharp change in crystallization conditions of the granite-leucogranite magma at the late magmatic stage and formation of muscovite via incongruent melting of protolithionite. The study of melt and coexisting fluid inclusions showed that solidus crystallization occurred under fluid-saturated conditions at 635?C600°C. In composition, the granite-leucogranites of the Piaoak Massif correspond to the raremetal-plumasite geochemical type (according to L.V. Tauson), and reach Li-F facies in terms of their rare-element composition. The composition of aplites and pegmatites demonstrates that granite-leucogranite magma did not accumulate lithophile and volatile components in the residual melt during differentiation, but was initially enriched in rare-metals. It is most probable that the melt was generated from Proterozoic lithotectonic complexes and overlaying Lower Triassic ??black?? shales.  相似文献   

8.
This paper presents geochemical, Sr–Nd isotopic, and U–Pb zircon geochronological data on the Alvand plutonic complex in Sanandaj–Sirjan zone (SSZ), Western Iran. The gabbroic rocks show a trend of a calc-alkaline magma suite and are characterized by low initial 87Sr/86Sr ratios (0.7023–0.7037) and positive εNd(t) values (2.9–3.3), which suggest derivation from a moderately depleted mantle source. Geochemical features of the granites illustrate a high-K calc-alkaline magma series, whereas the leucocratic granitoids form part of a low-K series. Granites have intermediate 87Sr/86Sr ratios (0.707–0.719) and negative εNd(t) values (−1.0 to −3.4), while leucocratic granitoids have higher initial 87Sr/86Sr ratio (0.713–0.714) and more negative εNd(t) values (−3.5 to −4.5). Potential basement source lithologies for the granites are Proterozoic granites and orthogneisses, and those for the leucocratic granites are plagioclase-rich sources such as meta-arkoses or tonalites. The U–Pb dating results demonstrate that all granitoids were exclusively emplaced during the Jurassic instead of being Cretaceous or younger in age as suggested previously. The pluton was assembled incrementally over c. 10 Ma. Gabbros formed at 166.5 ± 1.8 Ma, granites between 163.9 ± 0.9 Ma and 161.7 ± 0.6 Ma, and leucocratic granitoids between 154.4 ± 1.3 and 153.3 ± 2.7 Ma. Granites and leucocratic granitoids show some A-type affinity. It is concluded that the Alvand plutonic complex was generated in a continental-arc-related extensional regime during subduction of Neo-Tethyan oceanic crust beneath the SSZ. The U/Pb zircon age data, recently corroborated by similar results in the central and southern SSZ, indicate that Jurassic granitoids are more areally extensive in this belt than previously thought.  相似文献   

9.
We report new geological, mineralogical, geochemical and geochronological data about the Katugin Ta-Nb-Y-Zr (REE) deposit, which is located in the Kalar Ridge of Eastern Siberia (the southern part of the Siberian Craton). All these data support a magmatic origin of the Katugin rare-metal deposit rather than the previously proposed metasomatic fault-related origin. Our research has proved the genetic relation between ores of the Katugin deposit and granites of the Katugin complex. We have studied granites of the eastern segment of the Eastern Katugin massif, including arfvedsonite, aegirine-arfvedsonite and aegirine granites. These granites belong to the peralkaline type. They are characterized by high alkali content (up to 11.8 wt% Na2O + K2O), extremely high iron content (FeO1/(FeO1 + MgO) = 0.96–1.00), very high content of most incompatible elements – Rb, Y, Zr, Hf, Ta, Nb, Th, U, REEs (except for Eu) and F, and low concentrations of CaO, MgO, P2O5, Ba, and Sr. They demonstrate negative and CHUR-close εNd(t) values of 0.0…−1.9. We suggest that basaltic magmas of OIB type (possibly with some the crustal contamination) represent a dominant part of the granitic source. Moreover, the fluorine-enriched fluid phases could provide an additional source of the fluorine. We conclude that most of the mineralization of the Katugin ore deposit occurred during the magmatic stage of the alkaline granitic source melt. The results of detailed mineralogical studies suggest three major types of ores in the Katugin deposit: Zr mineralization, Ta-Nb-REE mineralization and aluminum fluoride mineralization. Most of the ore minerals crystallized from the silicate melt during the magmatic stage. The accessory cryolites in granites crystallized from the magmatic silicate melt enriched in fluorine. However, cryolites in large veins and lens-like bodies crystallized in the latest stage from the fluorine enriched melt. The zircons from the ores in the aegirine-arfvedsonite granite have been dated at 2055 ± 7 Ma. This age is close to the previously published 2066 ± 6 Ma zircon age of the aegirine-arfvedsonite granites, suggesting that the formation of the Katugin rare-metal deposit is genetically related to the formation of peralkaline granites. We conclude that Katugin rare-metal granites are anorogenic. They can be related to a Paleoproterozoic (∼2.05 Ga) mantle plume. As there is no evidence of the 2.05 Ga mantle plume in other areas of southern Siberia, we suggest that the Katugin mineralization occurred on the distant allochtonous terrane, which has been accreted to Siberian Craton later.  相似文献   

10.
Partial melting has been shown to be an important mechanism for intracrustal differentiation and granite petrogenesis. However, a series of compositional differences between granitic melt from experiments and natural granites indicate that the processes of crustal differentiation are complex. To shed light on factors that control the processes of crustal differentiation, and then the compositions of granitic magma, a combined study of petrology and geochemistry was carried out for granites (in the forms of granitic veins and parautochthonous granite) from a granulite terrane in the Tongbai orogen, China. These granites are characterized by high SiO2 (>72 wt%) and low FeO and MgO (<4 wt%) with low Na2O/K2O ratios (<0.7). Minerals in these granites show variable microstructures and compositions. Phase equilibrium modelling using P–T pseudosections shows that neither anatectic melts nor fractionated melts match the compositions of the target granites, challenging the conventional paradigm that granites are the crystallized product of pure granitic melts. Based on the microstructural features of minerals in the granites, and a comparison of their compositions with crystallized minerals from anatectic melts and minerals in granulites, the minerals in these granitoids are considered to have three origins. The first is entrained garnets, which show comparable compositions with those in host granulites. The second is early crystallized mineral from melts, which include large plagioclase and K-feldspar (with high Ca contents) crystals as well as a part of biotite whose compositions can be reproduced by crystallization of the anatectic melts. The compositions of other minerals such as small grained plagioclase, K-feldspar and anorthoclase in the granites with low Ca contents are not well reconstructed, so they are considered as the third origin of crystallized products of fractionated melts. The results of mass balance calculation show that the compositions of these granites can be produced by mixing between different proportions of crystallized minerals and fractionated melts with variable amounts of entrained minerals. However, the calculated modal proportions of different crystallized minerals (plagioclase, K-feldspar, biotite and quartz) in the granites are significantly different from those predicted by melt crystallization modelling. Specifically, some rocks have lower modes of biotite and plagioclase, whereas others show lower K-feldspar modes than those produced by melt crystallization. This indicates that the crystallized minerals would be differentially separated from the primary magmas to form the evolved magmas that produce these granites. Therefore, the crystal entrainment and differential melt-crystal separation make important contributions to the composition of the target granites. Compared with leucogranites worldwide, the target granites show comparable compositions. As such, the leucogranites may form through the crystal fractionation of primary granitic magmas at different extents in addition to variable degrees of partial melting.  相似文献   

11.
The Podlesí granite stock (Czech Republic) is a fractionated, peraluminous, F-, Li- and P-rich, and Sn, W, Nb, Ta-bearing rare-metal granite system. Its magmatic evolution involved processes typical of intrusions related to porphyry type deposits (explosive breccia, comb layers), rare-metal granites (stockscheider), and rare metal pegmatites (extreme F–P–Li enrichment, Nb–Ta–Sn minerals, layering). Geological, textural and mineralogical data suggest that the Podlesí granites evolved from fractionated granitic melt progressively enriched in H2O, F, P, Li, etc. Quartz, K-feldspar, Fe–Li mica and topaz bear evidence of multistage crystallization that alternated with episodes of resorption. Changes in chemical composition between individual crystal zones and/or populations provide evidence of chemical evolution of the melt. Variations in rock textures mirror changes in the pressure and temperature conditions of crystallization. Equilibrium crystallization was interrupted several times by opening of the system and the consequent adiabatic decrease of pressure and temperature resulted in episodes of nonequilibrium crystallization. The Podlesí granites demonstrate that adiabatic fluctuation of pressure (“swinging eutectic”) and boundary-layer crystallization of undercooled melt can explain magmatic layering and unidirectional solidification textures (USTs) in highly fractionated granites.  相似文献   

12.
Fluorine-, boron- and phosphorus-rich pegmatites of the Variscan Ehrenfriedersdorf complex crystallized over a temperature range from about 700 to 500 °C at a pressure of about 1 kbar. Pegmatite quartz crystals continuously trapped two different types of melt inclusions during cooling and growth: a silicate-rich H2O-poor melt and a silicate-poor H2O-rich melt. Both melts were simultaneously trapped on the solvus boundaries of the silicate (+ fluorine + boron + phosphorus) − water system. The partially crystallized melt inclusions were rehomogenized at 1 kbar between 500 and 712 °C in steps of 50 °C by conventional rapid-quench hydrothermal experiments. Glasses of completely rehomogenized inclusions were analyzed for H2O by Raman spectroscopy, and for major and some trace elements by EMP (electron microprobe). Both types of melt inclusions define a solvus boundary in an XH2O–T pseudobinary system. At 500 °C, the silicate-rich melt contains about 2.5 wt% H2O, and the conjugate water-rich melt about 47 wt% H2O. The solvus closes rapidly with increasing temperature. At 650 °C, the water contents are about 10 and 32 wt%, respectively. Complete miscibility is attained at the critical point: 712 °C and 21.5 wt% H2O. Many pegmatites show high concentrations of F, B, and P, this is particularly true for those pegmatites associated with highly evolved peraluminous granites. The presence of these elements dramatically reduces the critical pressure for fluid–melt systems. At shallow intrusion levels, at T ≥ 720 °C, water is infinitely soluble in a F-, B-, and P-rich melt. Simple cooling induces a separation into two coexisting melts, accompanied with strong element fractionation. On the water-rich side of the solvus, very volatile-rich melts are produced that have vastly different physical properties as compared to “normal” silicate melts. The density, viscosity, diffusivity, and mobility of such hyper-aqueous melts under these conditions are more comparable to an aqueous fluid. Received: 15 September 1999 / Accepted: 10 December 1999  相似文献   

13.
Phengites from eclogites and pegmatites (3T, 2M1, coarse-grained and recrystallized) of the Münchberg Massif (Weissenstein and Oberkotzau) have been dated by the 40Ar/39Ar method. 3T-micas from the eclogites yielded plateau and isochron ages of 365±7 Ma. 2M1-micas show disturbed degassing spectra. Micas from pegmatites show a slight excess Ar component, with an isochron age of 353 to 351±3 Ma. An age component of approximately 300 Ma was also detected. In combination with age values from the literature, the cooling history of the Münchberg Massif from eclogite-facies conditions (390 Ma) to cooling below 350°C (350 Ma) is documented. The age component of 300 Ma is attributed to a low-grade stage of mineral growth accompanied by a transitional ductile-brittle deformation. The petrological effects include formation of pumpellyite-prehnite-facies minerals, frequently precipitated in microcraks and cleavage planes of earlier formed minerals. This stage has to be seen in conjunction with the intrusions of the Fichtelgebirge granite.  相似文献   

14.
Summary Four types of pegmatites comprise the zoned pegmatite field in the eastern sector of the Albera Massif. Type I is represented by barren pegmatites with graphic textures; type II comprises transitional varieties with Li-Fe-Mn phosphates, Be (chrysoberyl) and scarce Nb-Ta and U oxide minerals; type III consists of pegmatites with significant zones of replacement containing Li-Fe-Mn phosphates, beryl and more abundant Nb-Ta oxide minerals; and type IV, muscovite-quartz-albite pegmatites are highly mineralized with Be, Nb-Ta and HREE. REE mineralization is strongly related to abundance of graphite in the late pegmatite units and in the host-rock. The individual pegmatite types are distributed within four subparallel zones concentric around anatectic muscovite-biotite leucogranites, with type I within the granites or close to the contact, and type IV pegmatites in the outermost areas. The zoning from type I to type IV could relate to fractionation processes which generated the pegmatites and is characterized by an enrichment of Mn, Ta, Na, Li, P, Be and REE. According to the pegmatite distribution and their fractionation trends, we propose an origin by differentiation of a granitic melt.
Résumé On a établi quatre types de pegmatites dans le champ pegmatitique zoné du secteur est du Massif des Albères (Pyrénées Orientales, France). Celles de type I sont des pegmatites non minéralisées avec des textures graphiques, celles de type II sont des variétés intermediaires avec des phosphates à Li-Fe-Mn, Be (chrysobéryl) et des rares oxides à Nb-Ta et U; celles de type Ill sont des pegmatites avec des zones de réplacement bien dévéloppées et qui contiennent des phosphates à Li-Fe-Mn, du béryl et des oxides à Nb-Ta plus abondants; celles de type IV sont des pegmatites bien minéralisées à Be, Nb-Ta et des T.R. La minéralisation à T.R. est liée à des phénomènes de graphitisation répandus dans les unités tardives de la pegmatite et dans l'encaissant. La distribution de chaque type de pegmatite correspond à quatre zones à peu près parallèles et concentriques autour des granites anatectiques à muscovite-biotite, avec le type I dans les granites ou prochain au contact, et les pegmatites à type IV dans la bande plus externe. La zonation serait due à des processus de fractionnement qui auraient généré les pegmatites et qui sont caracterisés par un enrichissement en Mn, Ta, Na, Li, P, Be et T.R. dès les pegmatites de type I vers celles de type IV. On propose un origine par différentiation des granites en vue de la distribution des pegmatites.


With 5 Figures  相似文献   

15.
《Gondwana Research》2014,26(4):1570-1598
Granitic rocks are commonly used as means to study chemical evolution of continental crust, particularly, their isotopic compositions, which reflect the relative contributions of mantle and crustal components in their genesis. New SIMS and K–Ar geochronology, isotope, geochemical, and mineral chemistry data are presented for the granitoid rocks located in and around Gabal Dara in the Northern Eastern Desert of Egypt. The granitoid suite comprises quartz diorites, Muscovite (Mus) trondhjemites, and granodiorites intruded by biotite-hornblende (BH) granites and alkali feldspar (AF) granites. Mus trondhjemite, granodiorite and BH granite exhibit I-type calc alkaline affinities. Mus trondhjemite and granodiorite show medium-K calc-alkaline and metaluminous/mildy peraluminous affinities, whereas BH granites have high-K calc-alkaline and metaluminous character. Concordant 206Pb/238U weighted mean ages together with geochemical peculiarities suggest that Mus trondhjemites (741 Ma) followed by granodiorites (720 Ma) are genetically unrelated, and formed in subduction-related regime by partial melting of lower oceanic crust together with a significant proportion of mantle melt. The genesis of Mus trondhjemites is correlated with the main event in the evolution of the Eastern Desert, called “~750 Ma crust forming event”.The field and geochemical criteria together with age data assign the high-K calc-alkaline BH granites (608–590 Ma) and alkaline AF granites (600–592 Ma) as post-collisional granites. The differences in geochemical traits, e.g. high-K calc-alkaline versus alkaline/peralkaline affinities respectively, suggest that BH granites and AF granites are genetically unrelated. The age overlap indicating coeval generation of calc-alkaline and alkaline melts, which in turn suggests that magma genesis was controlled by local composition of the source. The high-K calc-alkaline BH granites are most likely generated from lithospheric mantle melt which have been hybridized by crustal melts produced by underplating process. AF granites exhibit enrichment in K2O, Rb, Nb, Y, and Th, and depletion in Al2O3, TiO2, MgO, CaO, FeO, P2O5, Sr, and Ba as well as alkaline/peralkaline affinity. These geochemical criteria combined with the moderately fractionated rare earth elements pattern (LaN/YbN = 9–14) suggest that AF granite magma might have been generated by partial melting of Arabian–Nubian Shield (ANS) arc crust in response of upwelling of hot asthenospheric mantle melts, which became in direct contact with lower ANS continental crust material due to delamination. Furthermore, a minor role of crystal fractionation of plagioclase, amphibole, biotite, zircon, and titanomagnetite in the evolution of AF granites is also suggested. The low initial 87Sr/86Sr ratios (0.7033–0.7037) and positive εNd(T) values (+ 2.32 to + 4.71) clearly reflect a significant involvement of depleted mantle source in the generation of the post-collision granites and a juvenile nature for the ANS.  相似文献   

16.
Granite pegmatite sheets in the continental crust are characterized by very large crystals. There has been a shift in viewing pegmatites as products of very slow cooling of granite melts to viewing them as products of crystal growth in undercooled liquids. With this shift there has been a renewed debate about the role of H2O in the petrogenesis of pegmatites. Based on data on nucleation of minerals and new viscosity models for hydrous granite melts, it is argued that H2O is the essential component in the petrogenesis of granite pegmatites. H2O is key to reducing the viscosity of granite melts, which enhances their transport within the crust. It also dramatically reduces the glass transition temperature, which permits crystallization of melts at hundreds of degrees below the thermodynamic solidus, which has been demonstrated by fluid inclusion studies and other geothermometers. Published experimental data show that because H2O drastically reduces the nucleation rates of silicate minerals, the minerals may not be able to nucleate until melt is substantially undercooled. In a rapidly cooling intrusion, nucleation starts at its highly undercooled margins, followed by inward crystal growth towards its slower-cooling, hotter core. Delay in nucleation may be caused by competition for crystallization by several minerals in the near-eutectic melts and by the very different structures of minerals and the highly hydrated melts. Once a mineral nucleates, however, it may grow rapidly to a size that is determined by the distance between the site of nucleation and the point in the magma at which the temperature is approximately that of the mineral’s liquidus, assuming components necessary for mineral growth are available along the growth path. Granite pegmatites are apparently able to retain H2O during most of their crystallization histories within the confinement of their wall rocks. Pegmatitic texture is a consequence of delayed nucleation and rapid growth at large undercooling, both of which are facilitated by high H2O (±Li, B, F and P) contents in granite pegmatite melts. Without retention of H2O the conditions for pegmatitic textural growth may be difficult to achieve. Loss of H2O due to decompression and venting leads to microcrystalline texture and potentially glass during rapid cooling as seen in rhyolites. In contrast, slow cooling within a large magma chamber promotes continuous exsolution of H2O from crystallizing magma, growth of equant crystals, and final solidification at the thermodynamic solidus. These are the characteristics of normal granites that distinguish them from pegmatites.  相似文献   

17.
A 40Ar/39Ar geochronological study was performed on amphibole and biotite from some representative units of distinct tectonic domains of the southeastern Guiana Shield, north of the Amazonian Craton, the Amapá Block and the Carecuru Domain. In the Amapá Block, an Archean continental block involved in the Transamazonian orogenesis (2.26–1.95 Ga), the investigated minerals, from rocks of the Archean high-grade basement assemblage, give only Paleoproterozoic ages, indicating their complete resetting during the Transamazonian orogenic event. Amphibole ages vary from 2087 ± 3 to 2047 ± 20 Ma, and biotite ages spread mainly between 2079 ± 18 and 2033 ± 13 Ma. In the Carecuru Domain, in which the geodynamic evolution is related to Paleoproterozoic magmatic arc setting during the Transamazonian event, calc-alkaline granitoids yield amphibole age of 2074 ± 17 Ma, and biotite ages of 1928 ± 19 Ma and 1833 ± 13 Ma.These data reinforce the importance of the Transamazonian orogenic cycle in the investigated area, and indicate that the rocks were not significantly affected by post-Transamazonian events. When coupled with available U–Th–Pb monazite and Pb–Pb zircon geochronological records and petro-structural observations, the new 40Ar/39Ar data delineate contrasting cooling and exhumation histories for the tectonic domains. In the Amapá Block, the data suggest nearly vertical Tt paths that reflect fast cooling rates, which indicate tectonically controlled exhumation, related to collisional stages of the Transamazonian event, between 2.10 and 2.08 Ga. Conversely, in the Carecuru Domain, low cooling rates suggest that the arc-related granitoids underwent slow and monotonous cooling since their emplacement until reaching the biotite isotopic closure temperature.  相似文献   

18.
《Chemical Geology》2007,236(1-2):112-133
The Cida A-type granitic stock (∼ 4 km2) and Ailanghe I-type granite batholith (∼ 100 km2) in the Pan-Xi (Panzhihua-Xichang) area, SW China, are two important examples of granites formed during an episode of magmatism associated with the Permian Emeishan mantle plume activity. This is a classic setting of plume-related, anorogenic magmatism exhibiting the typical association of mantle-derived mafic and alkaline rocks along with silicic units. SHRIMP zircon U–Pb data reveal that the Cida granitic pluton (261 ± 4 Ma) was emplaced shortly before the Ailanghe granites (251 ± 6 Ma). The Cida granitoids display mineralogical and geochemical characteristics of A-type granites including high FeO/MgO ratios, elevated high-field-strength elements (HFSE) contents and high Ga/Al ratios, which are much higher than those of the Ailanghe granites. All the granitic rocks show significant negative Eu anomalies and demonstrate the characteristic negative anomalies in Ba, Sr, and Ti in the spidergrams. It can be concluded that the Cida granitic rocks are highly fractionated A-type granitoids whereas the Ailanghe granitic rocks belong to highly evolved I-type granites.The Cida granitoids and enclaves have Nd and Sr isotopic initial ratios (εNd(t) =  0.25 to + 1.35 and (87Sr/86Sr)i = 0.7023 to 0.7053) close to those of the associated mafic intrusions and Emeishan basalts, indicating the involvement of a major mantle plume component. The Ailanghe granites exhibit prominent negative Nb and Ta anomalies and weakly positive Pb anomalies in the spidergram and have nonradiogenic εNd(t) ratios (− 6.34 to − 6.26) and high (87Sr/86Sr)i values (0.7102 to 0.7111), which indicate a significant contribution from crustal material. These observations combined with geochemical modeling suggest that the Cida A-type granitoids were produced by extensive fractional crystallization from basaltic parental magmas. In contrast, the Ailanghe I-type granites most probably originated by partial melting of the mid-upper crustal, metasedimentary–metavolcanic rocks from the Paleo-Mesoproterozoic Huili group and newly underplated basaltic rocks.In the present study, it is proposed that petrogenetic distinctions between A-type and I-type granites may not be as clear-cut as previously supposed, and that many compositional and genetically different granites of the A- and I-types can be produced in the plume-related setting. Their ultimate nature depends more importantly on the type and proportion of mantle and crustal material involved and melting conditions. Significant melt production and possible underplating and/or intrusion into the lower crust, may play an important role in generating the juvenile mafic lower crust (average 20 km) in the central part of the Emeishan mantle plume.  相似文献   

19.
The study of re-homogenized melt inclusions in the same growth planes of quartz of pegmatites genetically linked to the Variscan granite of the Ehrenfriedersdorf complex, Erzgebirge, Germany, by ion microprobe analyses has determined high concentrations of Be, up to 10,000 ppm, in one type of melt inclusion, as well as moderate concentrations in the 100 ppm range in a second type of melt inclusion. Generally, the high Be concentrations are associated with the H2O- and other volatile-rich type-B melt inclusions, and the lower Be concentration levels are connected to H2O-poor type-A melt inclusions. Both inclusion types, representing conjugate melt pairs, are formed by a liquid–liquid immiscibility separation process. This extremely strong and very systematic scattering in Be provides insights into the origin of Be concentration and transport mechanisms in pegmatite-forming melts. In this contribution, we present more than 250 new analytical data and show with ion microprobe and fs-LA-ICPMS studies on quenched glasses, as well as with confocal Raman spectroscopy of daughter minerals in unheated melt inclusions, that the concentrations of Be may achieve such extreme levels during melt–melt immiscibility of H2O-, B-, F-, P-, ± Li-enriched pegmatite-forming magmas. Starting from host granite with about 10 ppm Be, melt inclusions with 10,000 ppm Be correspond to enrichment by a factor of over 1,000. This strong enrichment of Be is the result of processes of fractional crystallization and further enrichment in melt patches of pegmatite bodies due to melt–melt immiscibility at fluid saturation. We also draw additional conclusions regarding the speciation of Be in pegmatite-forming melt systems from investigation of the Be-bearing daughter mineral phases in the most H2O-rich melt inclusions. In the case of evolved volatile and H2O-rich pegmatite systems, B, P, and carbonates are important for the enrichment and formation of stable Be complexes.  相似文献   

20.
Early Tonian (∼1000–920 Ma) rocks occur within the Transversal Zone of the Borborema Province in Northeast Brazil comprising the 700 km-long sigmoidal Cariris Velhos belt. The Afeição augen-gneiss Suite crops out in the internal zone of the Riacho do Pontal fold belt, about 100 km southwestward of the closest Cariris Velhos occurrence within the Transversal Zone, and has been proposed to represent a continuation of this belt within the Southern subprovince of the Borborema Province. Several plutons included within this unit intrude or are thrust upon metavolcanosedimentary sequences of three different units (Santa Filomena, Paulistana and Morro Branco complexes). The Afeição Suite is composed mostly of calc-alkaline, high-K, peraluminous, high-silica ferroan and magnesian granites. Chondrite-normalized REE patterns are moderate to highly fractionated, with a pronounced negative Eu anomaly. Incompatible element spidergrams show a negative Nb–Ta anomaly, akin to convergence setting (Cordilleran-type) granites. U–Pb zircon data constrain the age of crystallization between 1000 and 960 Ma, thus confirming chrono-correlation with the Cariris Velhos belt. Values of εNd(t) between −1.0 and +3.1 and TDM of 1.2–1.5 Ga, similar to other Cariris Velhos occurrences, suggest variable mixing of Tonian juvenile sources with older crustal sources, the latter involving Archean/Paleoproterozoic basement. Although there are currently no reliable geochronological data for the supracrustal sequences of the internal zone, cross-cutting relationships indicate that the Santa Filomena and Morro Branco complexes are older or of similar age to the Afeição Suite, and thus could be related to the Cariris Velhos Orogeny. Based on petrographic, lithogeochemical, geochronological and isotope data, and according to previous models proposed for the Cariris Velhos belt, we interpret the Afeição Suite as the southwestern edge of a continental margin magmatic arc accreted to this portion of West Gondwana during the Early Tonian. Late-Brasiliano dextral displacement through the western branch of the Pernambuco shear zone separated these Cariris Velhos occurrences from its equivalents within the Transversal Zone of the Borborema Province (Recanto-type augen-gneiss of the Alto Pajeú Terrane).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号