首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exploration of unconventional natural gas reservoirs such as impermeable shale basins through the use of horizontal drilling and hydraulic fracturing has changed the energy landscape in the USA providing a vast new energy source. The accelerated production of natural gas has triggered a debate concerning the safety and possible environmental impacts of these operations. This study investigates one of the critical aspects of the environmental effects; the possible degradation of water quality in shallow aquifers overlying producing shale formations. The geochemistry of domestic groundwater wells was investigated in aquifers overlying the Fayetteville Shale in north-central Arkansas, where approximately 4000 wells have been drilled since 2004 to extract unconventional natural gas. Monitoring was performed on 127 drinking water wells and the geochemistry of major ions, trace metals, CH4 gas content and its C isotopes (δ13CCH4), and select isotope tracers (δ11B, 87Sr/86Sr, δ2H, δ18O, δ13CDIC) compared to the composition of flowback-water samples directly from Fayetteville Shale gas wells. Dissolved CH4 was detected in 63% of the drinking-water wells (32 of 51 samples), but only six wells exceeded concentrations of 0.5 mg CH4/L. The δ13CCH4 of dissolved CH4 ranged from −42.3‰ to −74.7‰, with the most negative values characteristic of a biogenic source also associated with the highest observed CH4 concentrations, with a possible minor contribution of trace amounts of thermogenic CH4. The majority of these values are distinct from the reported thermogenic composition of the Fayetteville Shale gas (δ13CCH4 = −35.4‰ to −41.9‰). Based on major element chemistry, four shallow groundwater types were identified: (1) low (<100 mg/L) total dissolved solids (TDS), (2) TDS > 100 mg/L and Ca–HCO3 dominated, (3) TDS > 100 mg/L and Na–HCO3 dominated, and (4) slightly saline groundwater with TDS > 100 mg/L and Cl > 20 mg/L with elevated Br/Cl ratios (>0.001). The Sr (87Sr/86Sr = 0.7097–0.7166), C (δ13CDIC = −21.3‰ to −4.7‰), and B (δ11B = 3.9–32.9‰) isotopes clearly reflect water–rock interactions within the aquifer rocks, while the stable O and H isotopic composition mimics the local meteoric water composition. Overall, there was a geochemical gradient from low-mineralized recharge water to more evolved Ca–HCO3, and higher-mineralized Na–HCO3 composition generated by a combination of carbonate dissolution, silicate weathering, and reverse base-exchange reactions. The chemical and isotopic compositions of the bulk shallow groundwater samples were distinct from the Na–Cl type Fayetteville flowback/produced waters (TDS ∼10,000–20,000 mg/L). Yet, the high Br/Cl variations in a small subset of saline shallow groundwater suggest that they were derived from dilution of saline water similar to the brine in the Fayetteville Shale. Nonetheless, no spatial relationship was found between CH4 and salinity occurrences in shallow drinking water wells with proximity to shale-gas drilling sites. The integration of multiple geochemical and isotopic proxies shows no direct evidence of contamination in shallow drinking-water aquifers associated with natural gas extraction from the Fayetteville Shale.  相似文献   

2.
This paper investigated the sources and behaviors of sulfate in groundwater of the western North China Plain using sulfur and oxygen isotopic ratios. The groundwaters can be categorized into karst groundwater (KGW), coal mine drainage (CMD) and pore water (subsurface saturated water in interstices of unconsolidated sediment). Pore water in alluvial plain sediments could be further classified into unconfined groundwater (UGW) with depth of less than 30 m and confined groundwater (CGW) with depth of more than 60 m. The isotopic compositions of KGW varied from 9.3‰ to 11.3‰ for δ34SSO4 with the median value of 10.3‰ (n = 4) and 7.9‰ to 15.6‰ for δ18OSO4 with the median value of 14.3‰ (n = 4) respectively, indicating gypsum dissolution in karst aquifers. δ34SSO4 and δ18OSO4 values of sulfate in CMD ranged from 10.8‰ to 12.4‰ and 4.8‰ to 8.7‰ respectively. On the basis of groundwater flow path and geomorphological setting, the pore water samples were divided as three groups: (1) alluvial–proluvial fan (II1) group with high sulfate concentration (median values of 2.37 mM and 1.95 mM for UGW and CGW, respectively) and positive δ34SSO4 and δ18OSO4 values (median values of 8.8‰ and 6.9‰ for UGW, 12.0‰ and 8.0‰ for CGW); (2) proluvial slope (II2) group with low sulfate concentration (median values of 1.56 mM and 0.84 mM for UGW and CGW, respectively) and similar δ34SSO4 and δ18OSO4 values (median values of 9.0‰ and 7.4‰ for UGW, 10.2‰ and 7.7‰ for CGW); and (3) low-lying zone (II3) group with moderate sulfate concentration (median values of 2.13 mM and 1.17 mM for UGW and CGW, respectively) and more positive δ34SSO4 and δ18OSO4 values (median values of 10.7‰ and 7.7‰ for UGW, 20.1‰ and 8.8‰ for CGW). In the present study, three major sources of sulfate could be differentiated as following: sulfate dissolved from Ordovician to Permian rocks (δ34SSO4 = 10–35‰ and δ18OSO4 = 7–20‰), soil sulfate (δ34SSO4 = 5.9‰ and δ18OSO4 = 5.8‰) and sewage water (δ34SSO4 = 10.0‰ and δ18OSO4 = 7.6‰). Kinetic fractionations of sulfur and oxygen isotopes as a result of bacterial sulfate reduction (BSR) were found to be evident in the confined aquifer in stagnant zone (II3), and enrichment factors of sulfate–sulfur and sulfate–oxygen isotopes calculated by Rayleigh equation were −12.1‰ and −4.7‰ respectively along the flow direction of groundwater at depths of 60–100 m. The results obtained in this study confirm that detailed hydrogeological settings and identification of anthropogenic sources are critical for elucidating evolution of δ34SSO4 and δ18OSO4 values along with groundwater flow path, and this work also provides a useful framework for understanding sulfur cycling in alluvial plain aquifers.  相似文献   

3.
Natural gas in the Xujiahe Formation of the Sichuan Basin is dominated by hydrocarbon (HC) gas, with 78–79% methane and 2–19% C2+ HC. Its dryness coefficient (C1/C1–5) is mostly < 0.95. The gas in fluid inclusions, which has low contents of CH4 and heavy hydrocarbons (C2+) and higher contents of non-hydrocarbons (e.g. CO2), is a typical wet gas produced by thermal degradation of kerogen. Gas produced from the Upper Triassic Xujiahe Formation (here denoted field gas) has light carbon isotope values for methane (δ13C1: −45‰ to −36‰) and heavier values for ethane (δ13C2: −30‰ to −25‰). The case is similar for gas in fluid inclusions, but δ13C1 = −36‰ to −45‰ and δ13C2 = −24.8‰ to −28.1‰, suggesting that the gas experienced weak isotopic fractionation due to migration and water washing. The field gas has δ13CCO2 values of −15.6‰ to −5.6‰, while the gas in fluid inclusions has δ13CCO2 values of −16.6‰ to −9‰, indicating its organic origin. Geochemical comparison shows that CO2 captured in fluid inclusions mainly originated from source rock organic matter, with little contribution from abiogenic CO2. Fluid inclusions originate in a relatively closed system without fluid exchange with the outside following the gas capture process, so that there is no isotopic fractionation. They thus present the original state of gas generated from the source rocks. These research results can provide a theoretical basis for gas generation, evolution, migration and accumulation in the basin.  相似文献   

4.
The Ulu Sokor gold deposit is one of the most famous and largest gold deposits in Malaysia and is located in the Central Gold Belt. This deposit consists of three major orebodies that are related to NS- and NE-striking fractures within fault zones in Permian-Triassic meta-sedimentary and volcanic rocks of the East Malaya Block. The faulting events represent different episodes that are related to each orebody and are correlated well with the mineralogy and paragenesis. The gold mineralization consists of quartz-dominant vein systems with sulfides and carbonates. The hydrothermal alteration and mineralization occurred during three stages that were characterized by (I) silicification and brecciation; (II) carbonatization, sericitization, and chloritization; and (III) quartz–carbonate veins.Fluid inclusions in the hydrothermal quartz and calcite of the three stages were studied. The primary CO2–CH4–H2O–NaCl fluid inclusions in stage I are mostly related to gold mineralization and display homogenization temperatures of 269–389 °C, salinities of 2.77–11.89 wt.% NaCl equivalent, variable CO2 contents (typically 5–29 mol%), and up to 15 mol% CH4. In stage II, gold was deposited at 235–398 °C from a CO2 ± CH4–H2O–NaCl fluid with a salinity of 0.83–9.28 wt.% NaCl equivalent, variable CO2 contents (typically 5–63 mol%), and up to 4 mol% CH4. The δ18OH2O and δD values of the ore-forming fluids from the stage II quartz veins are 4.5 to 4.8‰ and − 44 to − 42‰, respectively, and indicate a metamorphic–hydrothermal origin. Oxygen fugacities calculated for the entire range of T-P-XCO2 conditions yielded log fO2 values between − 28.95 and − 36.73 for stage I and between − 28.32 and − 39.18 for stage II. These values indicate reduced conditions for these fluids, which are consistent with the mineral paragenesis, fluid inclusion compositions, and isotope values.The presence of daughter mineral-bearing aqueous inclusions is interpreted to be a magmatic signature of stage IIIa. Combined with the oxygen and hydrogen isotopic compositions (δ18OH2O = 6.8 to 11.9‰, δD =  77 to − 62‰), these inclusions indicate that the initial fluid was likely derived from a magmatic source. In stage IIIb, the gold was deposited at 263° to 347 °C from a CO2–CH4–H2O–NaCl fluid with a salinity of 5.33 to 11.05 wt.% NaCl equivalent, variable CO2 contents (typically 9–15 mol%), and little CH4. The oxygen and hydrogen isotopic compositions of this fluid (δ18OH2O = 8.1 to 8.8‰, δD =  44 to − 32‰) indicate that it was mainly derived from a metamorphic–hydrothermal source. The CO2–H2O ± CH4–NaCl fluids that were responsible for gold deposition in the stage IIIc veins had a wide range of temperatures (214–483 °C), salinities of 1.02 to 21.34 wt.% NaCl equivalent, variable CO2 contents (typically 4–53 mol%), and up to 7 mol% CH4. The oxygen and hydrogen isotopic compositions (δ18OH2O = 8.5 to 9.8‰, δD =  70 to − 58‰) were probably acquired at the site of deposition by mixing of the metamorphic–hydrothermal fluid with deep-seated magmatic water and then evolved by degassing at the site of deposition during mineralization. The log fO2 values from − 28.26 to − 35.51 also indicate reduced conditions for this fluid in stage IIIc. Moreover, this fluid had a near-neutral pH and δ34S values of H2S of − 2.32 to 0.83‰, which may reflect the derivation of sulfur from the subducted oceanic lithospheric materials.The three orebodies represent different gold transportation and precipitation models, and the conditions of ore formation are related to distinct events of hydrothermal alteration and gold mineralization. The gold mineralization of the Ulu Sokor deposit occurred in response to complex and concurrent processes involving fluid immiscibility, fluid–rock reactions, and fluid mixing. However, fluid immiscibility was the most important mechanism for gold deposition and occurred in these orebodies, which have corresponding fluid properties, structural controls, geologic characteristics, tectonic settings, and origins of the ore-forming matter. These characteristics of the Ulu Sokor deposit are consistent with its classification as an orogenic gold deposit, while some of the veins are genetically related to intrusions.  相似文献   

5.
Permian Khuff reservoirs along the east coast of Saudi Arabia and in the Arabian Gulf produce dry sour gas with highly variable nitrogen concentrations. Rough correlations between N2/CH4, CO2/CH4 and H2S/CH4 suggest that non-hydrocarbon gas abundances are controlled by thermochemical sulfate reduction (TSR). In Khuff gases judged to be unaltered by TSR, methane δ13C generally falls between −40‰ and −35‰ VPDB and carbon dioxide δ13C between −3‰ and 0‰ VPDB. As H2S/CH4 increases, methane δ13C increases to as much as −3‰ and carbon dioxide δ13C decreases to as little as −28‰. These changes are interpreted to reflect the oxidation of methane to carbon dioxide.Khuff reservoir temperatures, which locally exceed 150 °C, appear high enough to drive the reduction of sulfate by methane. Anhydrite is abundant in the Khuff and fine grained nodules are commonly rimmed with secondary calcite cement. Some cores contain abundant pyrite, sphalerite and galena. Assuming that nitrogen is inert, loss of methane by TSR should increase N2/CH4 of the residual gas and leave δ15N unaltered. δ15N of Paleozoic gases in Saudi Arabia varies from −7‰ to 1‰ vs. air and supports the TSR hypothesis. N2/CH4 in gases from stacked Khuff reservoirs varies by a factor of 19 yet the variation in δ15N (0.3–0.5‰) is trivial.Because the relative abundance of hydrogen sulfide is not a fully reliable extent of reaction parameter, we have attempted to assess the extent of TSR using plots of methane δ13C versus log(N2/CH4). Observed variations in these parameters can be fitted using simple Rayleigh models with kinetic carbon isotope fractionation factors between 0.98 and 0.99. We calculate that TSR may have destroyed more than 90% of the original methane charge in the most extreme instance. The possibility that methane may be completely destroyed by TSR has important implications for deep gas exploration and the origin of gases rich in nitrogen as well as hydrogen sulfide.  相似文献   

6.
Hydraulic fracturing of shale deposits has greatly increased the productivity of the natural gas industry by allowing it to exploit previously inaccessible reservoirs. Previous research has demonstrated that this practice has the potential to contaminate shallow aquifers with methane (CH4) from deeper formations. This study compares concentrations and isotopic compositions of CH4 sampled from domestic groundwater wells in Letcher County, Eastern Kentucky in order to characterize its occurrence and origins in relation to both neighboring hydraulically fractured natural gas wells and surface coal mines. The studied groundwater showed concentrations of CH4 ranging from 0.05 mg/L to 10 mg/L, thus, no immediate remediation is required. The δ13C values of CH4 ranged from −66‰ to −16‰, and δ2H values ranged from −286‰ to −86‰, suggesting an immature thermogenic and mixed biogenic/thermogenic origin. The occurrence of CH4 was not correlated with proximity to hydraulically fractured natural gas wells. Generally, CH4 occurrence corresponded with groundwater abundant in Na+, Cl, and HCO3, and with low concentrations of SO42−. The CH4 and SO42−concentrations were best predicted by the oxidation/reduction potential of the studied groundwater. CH4 was abundant in more reducing waters, and SO42− was abundant in more oxidizing waters. Additionally, groundwater in greater proximity to surface mining was more likely to be oxidized. This, in turn, might have increased the likelihood of CH4 oxidation in shallow groundwater.  相似文献   

7.
New isotopic and chemical data on the sodium bicarbonate water and associated gases from the Razdolnoe Spa located in the coastal zone of Primorsky Kray of the Russian Far East, together with previous stable isotope data (δ18O, δD, δ13C), allow elucidation of the origin and evolution of the groundwater and gases from the spa. The water is characterized by low temperature (12 °C), TDS – 2.5–6.0 g/L, high contents of B (∼5 mg/L) and F (4.5 mg/L) and low contents of Cl and SO4. Water isotopic composition indicates its essentially meteoric origin which may comply with an older groundwater that was recharged under different (colder) climatic conditions. Major components of bubbling gases are CH4 (68 vol%), N2 (28%) and CO2 (4%). The obtained values δ13C and δD for CO2 and CH4 definitely indicate the marine microbial origin of methane. Thus the high methane content in the waters relates to the biochemical processes and presence of a dispersed organic matter in the host rocks. Based on the regional hydrogeology and the geological structure of the Razdolnoe Spa, Mesozoic fractured rocks containing Na–HCO3 mineral water and gases are reservoir rocks, a chemical composition of water and gases originates in different environmental conditions.  相似文献   

8.
This study demonstrates the value of targeted pump and treatment (PAT) to enhance the in situ biodegradation of organic contaminants in groundwater for improved restoration. The approach is illustrated for a plume of phenolic compounds in a sandstone aquifer, where PAT is used for hydraulic containment and removal of dissolved phase contaminants from specific depth intervals. Time-series analysis of the plume hydrochemistry and stable isotope composition of dissolved species (δ34S-SO4, δ13C-CH4, δ13C-TDIC (TDIC = Total Dissolved Inorganic Carbon)) in groundwater samples from high-resolution multilevel samplers were used to deduce changes in the relative significance of biodegradation processes and microbial activity in the plume, induced by the PAT system over 3 years. The PAT system has reduced the maximum contaminant concentrations (up to 6800 mg L−1 total phenols) in the plume by 50% to ∼70% at different locations. This intervention has (i) stimulated in situ biodegradation in general, with an approximate doubling of contaminant turnover based on TDIC concentration, which has increased from <200 mg L−1 to >350 mg L−1, (ii) enhanced the activity of SO4-reducing microorganisms (marked by a declining SO4 concentration with corresponding increase in SO434S to values >7–14‰V-CDT relative to background values of 1.9–6.5‰V-CDT), and (iii) where the TDIC increase is greatest, has changed TDIC-δ13C from values of −10 to −15‰V-PDB to ∼−20‰V-PDB. This indicates an increase in the relative importance of respiration processes (including denitrification and anaerobic methane oxidation, AMO) that yield 13C-depleted TDIC over fermentation and acetoclastic methanogenesis that yield 13C-enriched TDIC in the plume, leading to higher contaminant turnover. The plume fringe was found to be a zone of enhanced biodegradation by SO4-reduction and methanogenesis. Isotopically heavy methane compositions (up to −47.8‰V-PDB) and trends between δ13C-TDIC and δ13C-CH4 suggest that AMO occurs at the plume fringe where the contaminant concentrations have been reduced by the PAT system. Mass and isotope balances for inorganic carbon in the plume confirm the shift in spatial dominance of different biodegradation processes and significant increase in contribution of anaerobic respiration for contaminant biodegradation in zones targeted by the PAT system. The enhanced in situ biodegradation results from a reduction in organic contaminant concentrations in the plume to levels below those that formerly suppressed microbial activity, combined with increased supply of soluble electron acceptors (e.g. nitrate) into the plume by dispersion. An interruption of the PAT system and recovery of the dissolved organic contaminant concentrations towards former values highlights the dynamic nature of this enhancement on restoration and relatively rapid response of the aquifer microorganisms to changing conditions induced by the PAT system. In situ restoration using this combined engineered and passive approach has the potential to manage plumes of biodegradable contaminants over shorter timescales than would be possible using these methods independently. The application of PAT in this way strongly depends on the ability to ensure an adequate flux of dissolved electron acceptors into the plume by advection and dispersion, particularly in heterogeneous aquifers.  相似文献   

9.
The Huijiabao gold district is one of the major producers for Carlin-type gold deposits in southwestern Guizhou Province, China, including Taipingdong, Zimudang, Shuiyindong, Bojitian and other gold deposits/occurrences. Petrographic observation, microthermometric study and Laser Raman spectroscopy were carried out on the fluid inclusions within representative minerals in various mineralization stages from these four gold deposits. Five types of fluid inclusions have been recognized in hydrothermal minerals of different ore-forming stages: aqueous inclusions, CO2 inclusions, CO2–H2O inclusions, hydrocarbon inclusions, and hydrocarbon–H2O inclusions. The ore-forming fluids are characterized by a H2O + CO2 + CH4 ± N2 system with medium to low temperature and low salinity. From early mineralization stage to later ones, the compositions of the ore-forming fluids experienced an evolution of H2O + NaCl  H2O + NaCl + CO2 + CH4 ± N2  H2O + NaCl ± CH4 ± CO2 with a slight decrease in homogenization temperature and salinity. The δ18O values of the main-stage quartz vary from 15.2‰ to 24.1‰, while the δDH2O and calculated δ18OH2O values of the ore-forming fluids range from −56.9 to −116.3‰ and from 2.12‰ to 12.7‰, respectively. The δ13CPDB and δ18OSMOW values of hydrothermal calcite change in the range of −9.1‰ to −0.5‰ and 11.1–23.2‰, respectively. Stable isotopic characteristics indicate that the ore-forming fluid was mainly composed of ore- and hydrocarbon-bearing basinal fluid. The dynamic fractionation of the sulfur in the diagenetic pyrite is controlled by bacterial reduction of marine sulfates. The hydrothermal sulfides and the diagenetic pyrite from the host rocks are very similar in their sulfur isotopic composition, suggesting that the sulfur in the ore-forming fluids was mainly derived from dissolution of diagenetic pyrite. The study of fluid inclusions indicates that immiscibility of H2O–NaCl–CO2 fluids took place during the main mineralization stage and caused the precipitation and enrichment of gold.  相似文献   

10.
Detailed knowledge of the extent of post-genetic modifications affecting shallow submarine hydrocarbons fueled from the deep subsurface is fundamental for evaluating source and reservoir properties. We investigated gases from a submarine high-flux seepage site in the anoxic Eastern Black Sea in order to elucidate molecular and isotopic alterations of low-molecular-weight hydrocarbons (LMWHC) associated with upward migration through the sediment and precipitation of shallow gas hydrates. For this, near-surface sediment pressure cores and free gas venting from the seafloor were collected using autoclave technology at the Batumi seep area at 845 m water depth within the gas hydrate stability zone.Vent gas, gas from pressure core degassing, and from hydrate dissociation were strongly dominated by methane (> 99.85 mol.% of ∑[C1–C4, CO2]). Molecular ratios of LMWHC (C1/[C2 + C3] > 1000) and stable isotopic compositions of methane (δ13C = ? 53.5‰ V-PDB; D/H around ? 175‰ SMOW) indicated predominant microbial methane formation. C1/C2+ ratios and stable isotopic compositions of LMWHC distinguished three gas types prevailing in the seepage area. Vent gas discharged into bottom waters was depleted in methane by > 0.03 mol.% (∑[C1–C4, CO2]) relative to the other gas types and the virtual lack of 14C–CH4 indicated a negligible input of methane from degradation of fresh organic matter. Of all gas types analyzed, vent gas was least affected by molecular fractionation, thus, its origin from the deep subsurface rather than from decomposing hydrates in near-surface sediments is likely.As a result of the anaerobic oxidation of methane, LMWHC in pressure cores in top sediments included smaller methane fractions [0.03 mol.% ∑(C1–C4, CO2)] than gas released from pressure cores of more deeply buried sediments, where the fraction of methane was maximal due to its preferential incorporation in hydrate lattices. No indications for stable carbon isotopic fractionations of methane during hydrate crystallization from vent gas were found. Enrichments of 14C–CH4 (1.4 pMC) in short cores relative to lower abundances (max. 0.6 pMC) in gas from long cores and gas hydrates substantiates recent methanogenesis utilizing modern organic matter deposited in top sediments of this high-flux hydrocarbon seep area.  相似文献   

11.
Hydrogen isotopic composition of n-alkanes was measured in sediments from an excavated profile of the Early Cretaceous Yixian Formation in Liaoning Province, NE China, aiming to assess the significance of the δD value of n-alkanes in ancient lacustrine sediments as the indicator for determining the source inputs of organic matters and paleoclimatic conditions. The δD values of n-alkanes are in the range of − 250‰ to − 85‰ and display an obvious three-stage variation pattern through the profile, which is consistent with the distribution of the dominated n-alkanes and the profile of their δ13C values. The δD and δ13C values of n-alkanes suggest that short-chain n-alkanes are primarily derived from photosynthetic bacteria and algae; n-C29 and n-C31 are mainly originated from terrestrial higher plants; n-C28 and n-C30 may be derived from the same precursor but via the different biological mechanism of hydrogen isotopic fractionation; while the source inputs of medium-chain n-alkanes are more complicated, with n-C23 being derived from some specific algae or biosynthesized by various aquatic organisms. The paleoclimatic conditions are reconstructed via two approaches. The reconstructed hydrogen isotopic values of lake water and meteoric water (expressed as δDLW and δDMW, respectively) were at the intervals of − 51.8‰ to 17.0‰ and − 118.1‰ to − 43.5‰, respectively, indicating a general climate transition from semi-arid to arid. The calculated ΔδDLW-MW values vary from 37.0‰ to 89.1‰ and display a similar but a significant large-scale variation trend with the ΔδDC23  long (− 28.8‰ to 85.0‰; long represents long-chain n-alkanes) and ΔδDmid-long (− 15.4‰ to 43.4‰; mid represents medium-chain n-alkanes) values. The discrepancy may be attributed to the source input overlap for n-alkanes and the uncertainties of εwater/lipid values. The coupling of ΔδDC23  long, ΔδDmid-long and ΔδDLW-MW values with the paleoclimatic evidence indicates that the δD values of n-alkanes could be more sensitive to the change of paleoclimatic conditions.  相似文献   

12.
Concentration and isotope ratios (δ34SSO4 and δ18OSO4) of dissolved sulfate of groundwater were analyzed in a very large anaerobic aquifer system under the Lower Central Plain (LCP) (25,000 km2) in Thailand. Groundwater samples were collected in two different kinds of aquifers; type 1 with a saline water contribution and type 2 lateritic aquifers with no saline water contribution. Two different isotopic compositional trends were observed: in type 1 aquifers sulfate isotope ratios range from low values (+2.2‰ for δ34SSO4 and +8.0‰ for δ18OSO4) to high values (+49.9‰ for δ34SSO4 and +17.9‰ for δ18OSO4); in type 2 aquifers sulfate isotope ratios range from low values (−0.1‰ for δ34SSO4 and +12.2‰ for δ18OSO4) to high δ18OSO4 ratios (+18.4‰) but with low δ34SSO4 ratios (<+12.9‰). Isotopic comparison with possible source materials and theoretical geochemical models suggests that the sulfate isotope variation for type 1 aquifer groundwater can be explained by two main processes. One is the contribution of remnant seawater, which has experienced dissimilatory sulfate reduction in the marine clay, into recharge water of freshwater origin. This process accounts for the high salinity groundwater. The other process, explaining for the modest salinity groundwater, is the bacterial sulfate reduction of the mixture water between high salinity water and fresh groundwater. Isotopic variation of type 2 aquifer groundwater may also be explained by bacterial sulfate reduction, with slower reduction rate than that of the groundwater with saline water effect. The origin of groundwater sulfate with low δ34SSO4 but high δ18OSO4 is recognized as an important topic to be examined in a future investigation.  相似文献   

13.
《Applied Geochemistry》2005,20(11):2017-2037
The Tertiary Thrace Basin located in NW Turkey comprises 9 km of clastic-sedimentary column ranging in age from Early Eocene to Recent in age. Fifteen natural gas and 10 associated condensate samples collected from the 11 different gas fields along the NW–SE extending zone of the northern portion of the basin were evaluated on the basis of their chemical and individual C isotopic compositions. For the purpose of the study, the genesis of CH4, thermogenic C2+ gases, and associated condensates were evaluated separately.Methane appears to have 3 origins: Group-1 CH4 is bacteriogenic (Calculated δ13CC1–C = −61.48‰; Silivri Field) and found in Oligocene reservoirs and mixed with the thermogenic Group-2 CH4. They probably formed in the Upper Oligocene coal and shales deposited in a marshy-swamp environment of fluvio-deltaic settings. Group-2 (δ13CC1–C = −35.80‰; Hamitabat Field) and Group-3 (δ13C1–C = −49.10‰; Değirmenköy Field) methanes are thermogenic and share the same origin with the Group-2 and Group-3 C2+ gases. The Group-2 C2+ gases include 63% of the gas fields. They are produced from both Eocene (overwhelmingly) and Oligocene reservoirs. These gases were almost certainly generated from isotopically heavy terrestrial kerogen (δ13C = −21‰) present in the Eocene deltaic Hamitabat shales. The Group-3 C2+ gases, produced from one field, were generated from isotopically light marine kerogen (δ13C = −29‰). Lower Oligoce ne Mezardere shales deposited in pro-deltaic settings are believed to be the source of these gases.The bulk and individual n-alkane isotopic relationships between the rock extracts, gases, condensates and oils from the basin differentiated two Groups of condensates, which can be genetically linked to the Group-2 and -3 thermogenic C2+ gases. However, it is crucial to note that condensates do not necessarily correlate to their associated gases.Maturity assessments on the Group-1 and -2 thermogenic gases based on their estimated initial kerogen isotope values (δ13C = −21‰; −29‰) and on the biomarkers present in the associated condensates reveal that all the hydrocarbons including gases, condensates and oils are the products of primary cracking at the early mature st age (Req = 0.55–0.81%). It is demonstrated that the open-system source conditions required for such an early-mature hydrocarbon expulsion exist and are supported by fault systems of the basin.  相似文献   

14.
This study was conducted on recent desert samples—including (1) soils, (2) plants, (3) the shell, and (4) organic matter from modern specimens of the land snail Eremina desertorum—which were collected at several altitudes (316–360 m above sea level) from a site in the New Cairo Petrified Forest. The soils and shellE. desertorum were analyzed for carbonate composition and isotopic composition (δ18O, δ13C). The plants and organic matterE. desertorum were analyzed for organic carbon content and δ13C. The soil carbonate, consisting of calcite plus minor dolomite, has δ18O values from −3.19 to −1.78‰ and δ13C values −1.79 to −0.27‰; covariance between the two values accords with arid climatic conditions. The local plants include C3 and C4 types, with the latter being dominant. Each type has distinctive bulk organic carbon δ13C values: −26.51 to −25.36‰ for C3-type, and −13.74 to −12.43‰ for C4-type plants.The carbonate of the shellE. desertorum is composed of aragonite plus minor calcite, with relatively homogenous isotopic compositions (δ18Omean = −0.28 ± 0.22‰; δ13Cmean = −4.46 ± 0.58‰). Most of the δ18O values (based on a model for oxygen isotope fractionation in an aragonite-water system) are consistent with evaporated water signatures. The organic matterE. desertorum varies only slightly in bulk organic carbon δ13C values (−21.78 ± 1.20‰) and these values suggest that the snail consumed more of C3-type than C4-type plants. The overall offset in δ13C values (−17.32‰) observed between shellE. desertorum carbonate and organic matterE. desertorum exceeds the value expected for vegetation input, and implies that 30% of carbon in the shellE. desertorum carbonate comes from the consumption of limestone material.  相似文献   

15.
Methane (CH4) in terrestrial environments, whether microbial, thermogenic, or abiogenic, exhibits a large variance in C and H stable isotope ratios due to primary processes of formation. Isotopic variability can be broadened through secondary, post-genetic processes, such as mixing and isotopic fractionation by oxidation. The highest and lowest 13C and 2H (or D, deuterium) concentrations in CH4 found in various geologic environments to date, are defined as “natural” terrestrial extremes. We have discovered a new extreme in a natural gas seep with values of deuterium concentrations, δDCH4, up to + 124‰ that far exceed those reported for any terrestrial gas. The gas, seeping from the small Homorod mud volcano in Transylvania (Romania), also has extremely high concentrations of nitrogen (> 92 vol.%) and helium (up to 1.4 vol.%). Carbon isotopes in CH4, C2H6 and CO2, and nitrogen isotopes in N2 indicate a primary organic sedimentary origin for the gas (a minor mantle component is suggested by the 3He/4He ratio, R/Ra ~ 0.39). Both thermogenic gas formation modeling and Rayleigh fractionation modeling suggest that the extreme deuterium enrichment could be explained by an oxidation process characterised by a δDCH4 and δ13CCH4 enrichment ratio (ΔH/ΔC) of about 20, and may be accounted for by abiogenic oxidation mediated by metal oxides. All favourable conditions for such a process exist in the Homorod area, where increased heat flow during Pliocene–Quaternary volcanism may have played a key role. Finally we observed rapid variations (within 1 h) in C and H isotope ratios of CH4, and in the H2S concentrations which are likely caused by mixing of the deep oxidized CH4–N2–H2S–He rich gas with a microbial methane generated in the mud pool of one of the seeps.We hypothesize that the unusual features of Homorod gas can be the result of a rare combination of factors induced by the proximity of sedimentary organic matter, mafic, metal-rich volcanic rocks and salt diapirs, leading to the following processes: a) primary thermogenic generation of gas at temperatures between 130 and 175 °C; b) secondary alteration through abiogenic oxidation, likely triggered by the Neogene–Quaternary volcanism of the eastern Transylvanian margin; and c) mixing at the surface with microbial methane that formed through fermentation in the mud volcano water pool. The Homorod gas seep is a rare example that demonstrates how post-genetic processes can produce extreme gas isotope signatures (thus far only theorized), and that extremely positive δDCH4 values cannot be used to unambiguously distinguish between biotic and abiotic origin.  相似文献   

16.
The isotopic composition of water and dissolved Sr as well as other geochemical parameters at the 2516 m deep Outokumpu Deep Drill Hole, Finland were determined. The drill hole is hosted by Palaeoproterozoic turbiditic metasediments, ophiolite-derived altered ultramafic rocks and pegmatitic granitoids. Sodium–Ca–Cl and Ca–Na–Cl-rich waters (total dissolved solids up to ca. 70 g L−1) containing significant amounts of gas, mainly CH4 (up to 32 mmol L−1), N2 (up to 10 mmol L−1), H2 (up to 3.1 mmol L−1) and He (up to 1.1 mmol L−1) discharge from fracture zones into the drill hole. This water is distinct from the shallow fresh groundwater of the area, and has an isotopic composition typical of shield brines that have been modified during long-term water–rock interaction. Based on water stable isotopes and geochemistry, the drill hole water profile can be divided into five water types, each discharging from separate fracture systems and affected by the surrounding rocks. The δ2H varies from −90‰ to −56‰ (VSMOW) and δ18O from −13.5‰ to −10.4‰ (VSMOW), plotting clearly above the Global and Local Meteoric Water Lines on a δ2H vs. δ18O diagram. The 87Sr/86Sr ratios range between 0.72423 and 0.73668. Simple two-component mixing between 2H and 18O rich end-member brine and meteoric water cannot explain the water stable isotopic composition and trends observed. Instead, hydration of silicates by ancient groundwaters recharged under different climatic conditions, warmer than at present, is the most likely mechanism to have caused the variation of the δ2H and δ18O values. Water types correlate with changes in microbial communities implying that different ecosystems occur at different depths. The different water types and microbial populations have remained isolated from each other and from the surface for long periods of time, probably tens of millions of years.  相似文献   

17.
Managing transboundary groundwater resources requires accurate and detailed knowledge of aquifers and groundwater bodies. The Pannonian Basin is the largest intracontinental basin in Europe with a continuous succession of more than 7 km of Miocene to Quaternary sediments and with an average geothermal gradient of about 5 °C/100 m. Geographically the Pannonian basin overlaps eight countries (Hungary, Romania, Serbia, Croatia, Slovenia, Austria, Slovakia and Ukraine), so the issue of transboundary cold and thermal water resources is regionally very important. The T-JAM bilateral Hungarian–Slovenian (HU–SLO) project is the first to apply modern isotopic and chemical analyses in the characterization and correlation of a number of shared groundwater resources in the Mura-Zala Sub-basin of the Pannonian. The aims of this work were the identification of groundwater flow paths, the delineation of transboundary aquifers based on thermal and cold groundwater geochemical and isotope properties in the Mura-Zala Basin, and providing input to calibrate a hydraulic numerical model. Following a common groundwater sampling campaign, 24 cold and thermal groundwater samples from seven aquifers were collected for chemical, isotope, gas and noble gas analyses. Chemical analyses, and D, O and C isotopes were used to correlate cross border aquifers. A regional groundwater flow is hydrogeologically possible in some aquifers in the Mura-Zala Basin, and has been confirmed by hydrogeochemistry. The Újfalu (HU) and Mura (SLO) Formations are a part of the active regional thermal groundwater flow system, probably hydraulically separated from the shallower flow system of the Ptuj-Grad (SLO), Zagyva and Somló-Tihany (HU) Formations. The thermal water is of meteoric origin, reductive and alkaline. The predominant water type in the Quaternary and Pliocene aquifers is Ca–Mg–HCO3, changing to Na–HCO3 in the main Pannonian geothermal aquifer, and Na–Cl brine in deeper and older Miocene aquifers. Total dissolved solids and Na content generally increase with depth. Deuterium is in the range −87‰ to −75‰, 18O from −11.9‰ to −10.4‰, while 14C values are less than 6.1 pmC in the samples of the active regional thermal groundwater flow system. These and results of noble gas analyses indicate recharge during the Pleistocene interglacial period with temperatures around 6–7 °C. Regional thermal water resources are limited and environmental isotopes can be used as an early warning in the management of thermal water.  相似文献   

18.
The stable carbon isotopic compositions of light hydrocarbon gases adsorbed in near-surface soil and sediments from the Saurashtra basin were characterized for their origin and maturity. Saurashtra is considered geologically prospective for oil and gas reserves; however, a major part of the basin is covered by the Deccan Traps, hindering the exploration of Mesozoic hydrocarbon targets. Surface geochemical prospecting, based on micro-seepage of hydrocarbons from subsurface accumulations, could be advantageous in such areas. In light of this, 150 soil samples were collected from the northwestern part of Saurashtra, around the Jamnagar area, where a thick sedimentary sequence of about 2–3 km exists under 1–1.5 km of Deccan basalt. The concentration of acid desorbed alkane gases from soil samples was found to vary (in ppb) as: methane (C1) = 3–518; ethane (C2) = 0–430; propane (C3) = 0–331; i-butane (iC4) = 0–297; n-butane (nC4) = 2–116; i-pentane (iC5) = 0–31 and n-pentane (nC5) = 0–23, respectively.Fifteen samples with high concentrations of alkane gases were measured for their δ13C1; δ13C2 and δ13C3 compositions using gas chromatography–combustion-isotope ratio mass spectrometry (GC–C-IRMS). The values for methane varied from ? 27 to ? 45.4‰, ethane from ? 20.9 to ? 27.6‰, and propane from ? 20.4 to ? 29.1‰ versus the Vienna PeeDee Belemnite (VPDB). The carbon isotope ratio distribution pattern represents isotopic characteristics pertaining to hydrocarbon gases derived from thermogenic sources. Comparisons of carbon isotopic signatures and compositional variations with the standard carbon isotopic models suggest that hydrocarbon gases found in the shallow depths of the study area are not of bacterial origin but are formed thermally from deeply buried organic matter, likely to be mainly a terrestrial source rock with a partial contribution from a marine source. These gases may have migrated to the near-surface environment, where they represent an admixture of thermally generated hydrocarbon gases from mixed sources and maturity. The maturity scale (δ13C versus Log Ro %) applied to the surface sediment samples of the Jamnagar area indicated the source material to be capable of generating oil and gas. The detection of thermogenic alkane gases in near-surface sediments offers the possibility of hydrocarbons at depth in Saurashtra.  相似文献   

19.
The origin of the combustible gases in groundwater from glacial-outwash and fractured-bedrock aquifers was investigated in northern Tioga County, Pennsylvania. Thermogenic methane (CH4) and ethane (C2H6) and microbial CH4 were found. Microbial CH4 is from natural in situ processes in the shale bedrock and occurs chiefly in the bedrock aquifer. The δ13C values of CH4 and C2H6 for the majority of thermogenic gases from water wells either matched or were between values for the samples of non-native storage-field gas from injection wells and the samples of gas from storage-field observation wells. Traces of C2H6 with microbial CH4 and a range of C and H isotopic compositions of CH4 indicate gases of different origins are mixing in sub-surface pathways; gas mixtures are present in groundwater. Pathways for gas migration and a specific source of the gases were not identified. Processes responsible for the presence of microbial gases in groundwater could be elucidated with further geochemical study.  相似文献   

20.
Carbon (δ13CPDB) and oxygen (δ18OSMOW) isotopic compositions of auriferous quartz-carbonate veins (QCVs) of gold deposits from Sangli, Kabuliyatkatti, Nagavi, Nabapur and Mysore mining areas developed on the Central Lode system of the Gadag Gold Field (GGF) in the Neoarchaean Gadag schist belt of the Dharwar Craton, southern India have been examined for the first time to understand the origin of the mineralising fluids. In majority of the samples (46 out of 49), δ13Cpdb of carbonates of the QCVs fall in the range from − 2.2‰ to − 9.7‰ and the δ18O values range from 12.0‰ to 30.5‰ SMOW. The calculated fluid δ13C C compositions for these deposits range from − 2.1‰ to − 9.6‰ and δ18OH2O from 6.8‰ to 25.9‰, respectively. Carbonate δ13C and fluid δ13C C compositions of the carbonates of the QCVs of the GGF are not only distinct from the carbon isotope range of marine carbonates or meta-sedimentary carbonates of the Chitradurga schist belt, but are consistent with C-isotope values of magmatic (− 5 ± 3‰, Burrows et al., 1986) and/or mantle (− 6 ± 2‰, Ohmoto, 1986) carbonates. As dissolution/decarbonation reactions during metamorphism of pre-existing carbonate/carbonated rocks produce CO2 with δ13C values similar to or more enriched than parent rock, the carbonate or fluid δ13C ratios of the QCVs (which fall in the compositional range of mantle/magmatic derived CO2 or carbonates) obtained in this work cannot be the result of metamorphism. The present study corroborates our previous reports from Ajjanahalli and G.R. Halli gold deposits (Sarangi et al., 2012) occurring in the vicinity of the southern extension of the same crustal scale shear zone on which all the GGF deposits are located.The age of gold mineralisation in this area has been reported to be 2522 ± 6 Ma by Sarma et al., 2011. Chardon et al. (2011) have proposed large-scale remobilization of the older gneissic basement, as well as, emplacement of juvenile granites between 2559 Ma and 2507 Ma, close to the crustal scale shear zone along the eastern margin of the Chitradurga schist belt. Based on these observations and our isotope studies, it is proposed that gold mineralising fluids were derived from mantle/juvenile magmatic melts and were channelled through crustal scale shear zones to give rise to the gold deposits in the GGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号