共查询到20条相似文献,搜索用时 78 毫秒
1.
The southern Central Andes of Argentina and Chile (27–40°S) are the product of deformation, arc magmatism, and basin evolution above a long-lived subduction system. With sufficient timing and provenance constraints, Andean stratigraphic and structural records enable delineation of Mesozoic-Cenozoic variations in subsidence and tectonic regime. For the La Ramada Basin in the High Andes at ∼31–33°S, new assessments of provenance and depositional age provided by detrital zircon U-Pb geochronology help resolve deformational patterns and subsidence mechanisms over the past ∼200 Myr. Marine and nonmarine clastic deposits recorded the unroofing of basin margins and sediment contributions from the Andean magmatic arc during Late Triassic to Early Cretaceous extension, thermal subsidence, and possible slab rollback. Subsequent sediment delivery from the Coastal Cordillera corresponded with initial flexural accommodation in the La Ramada Basin during Andean shortening of late Early Cretaceous to Late Cretaceous age. The architecture of the foreland basin was influenced by the distribution of precursor extensional depocenters, suggesting that inherited basin geometries provided important controls on later flexural subsidence and basin evolution. Following latest Cretaceous to early Paleogene tectonic quiescence and a depositional hiatus, newly dated deposits in the western La Ramada Basin provide evidence for a late Paleogene episode of intra-arc and proximal retroarc extension (development of the Abanico Basin, principally in Chile, at ∼28–44°S). Inversion of this late Paleogene extensional basin system during Neogene compression indicates the southern Central Andes were produced by at least two punctuated episodes of shortening and uplift of Late Cretaceous and Neogene age. 相似文献
2.
《International Geology Review》2012,54(10):896-915
A 100 km long balanced structural transect is presented for the Patagonian Andes at 50° S Latitude. The area studied is characterized by a fold belt in the eastern Andean foothills and basement-involved thrusts in a western-basement thrust zone. The basement thrust zone exposes pre-Jurassic, polydeformed sedimentary and layered metamorphic rocks emplaced over Lower Cretaceous rocks above an E-vergent thrust located at the western end of the fold belt. The fold belt is developed in a 3 km thick deformed Cretaceous–Paleogene sedimentary cover with few basement outcrops and scarce calc-alkaline magmatism. Cover structures related to shallow décollements have a N-S to NW-SE strike, with fold wavelengths from 1100 to 370 m in the east to 20 to 40 m in the west. However, long-wavelength basement-involved structures related to deeper décollements have a dominant N-S to NE-SW trend along the eastern and western parts of the fold belt. Field evidence showing different degrees of inversion of N-S–trending normal faults suggests that the orientation of the Cenozoic compressive basement structures was inherited partially from the original geometry of Mesozoic normal faults. The deformation propagated toward the foreland in at least two events of deformation. The effects of Paleogene (Eocene?) compressive episode are observed in the western fold belt and a Neogene (Late Miocene) compressive episode is present in the eastern fold belt. Basement-involved structures typically refold older cover structures, producing a mixed thick and thin-skinned structural style. By retrodeforming a regional balanced cross section in the fold belt, a minimum late Miocene shortening of 35 km (26%) was calculated. 相似文献
3.
Cenozoic marine strata occur in the western, eastern, and central parts of the North Patagonian Andes between ∼43°S and 44°S. Correlation of these deposits is difficult because they occur in small and discontinuous outcrops and their ages are uncertain. In order to better understand the age and sedimentary environment of these strata, we combined U–Pb (LA-MC-ICPMS) geochronology on detrital zircons with sedimentologic and paleontologic (foraminifers and molluscs) studies. Sedimentologic analyses suggest that the Puduhuapi Formation on the western flank of the Andean Cordillera was deposited in a deep-marine setting, the Vargas Formation in the central part of the Andes was deposited at outer-neritic or bathyal depths, and the La Cascada Formation on the eastern flank of the range was deposited in a shallow-marine environment. Geochronologic and paleontologic results indicate that the three marine units were deposited during the late Oligocene-early Miocene interval, although it is not clear whether this occurred during one or more marine incursions in the area. The alluvial(?) conglomeratic deposits of the La Junta Formation, exposed in the proximity of the Vargas Formation outcrops, have a maximum depositional age of ∼26 Ma and could have been deposited during the initial stage of subsidence that affected this region prior to the marine transgression over this area. The occurrence of both Pacific and Atlantic molluscan taxa in the La Cascada and Vargas formations suggests that a marine strait connected both oceans during the accumulation of these units. The new data on the age of the Puduhuapi, Vargas, and La Cascada formations indicate that these units may correlate with lower Miocene marine deposits in the forearc of central and southern Chile (Navidad Formation and equivalent units) and on the eastern flank of the Patagonian Andes (Río Foyel Formation and equivalent units). A late Oligocene−early Miocene age for these marine deposits is a reliable maximum age for the deformation and uplift of the North Patagonian Andes. 相似文献
4.
《Journal of South American Earth Sciences》2000,13(1-2):3-19
Arrival-times of local events recorded in northern Chile and southern Bolivia were used to determine the P velocity structure above the subducted Nazca plate. The data were recorded between June and November 1994 by the French “Lithoscope” network: 41 vertical and 14 three-component short-period seismic stations were installed along a 700 km long profile crossing the main structures of the Andean chain, from the Coastal Cordillera to the Subandean Zone. The inversion method used is a modified version of Thurber’s 3D iterative simultaneous inversion code. The results were compared with a model obtained from previous German nearby refraction seismic studies and supplemented by field geological observations.The relocated seismicity is consistent with an ∼30° dipping slab between 0 and 170 km depth. We found a variation of about 30 km of the Moho depth along the profile. The crustal thickness is about 47 km under the Coastal Cordillera, 70 km under the Western Cordillera and the western part of the Eastern Cordillera, and 60–65 km beneath the Altiplano. Close to the surface, a good agreement between the velocity model and the geological structures is observed. Generally, in the upper crust, high velocities coincide with zones where basement is present near the surface. Low velocities are well correlated with the presence of very thick sedimentary basins or volcanic material. At greater depth, the trend of the velocity model is consistent with the existence of asymmetrical west-dipping imbricated blocks, overthrusting toward the east, which explain the asymmetrical pattern of the sedimentary basins. Beneath the Western Cordillera, the active volcanic arc, a large zone of low velocity is observed and interpreted to be due to partially molten material. A clear velocity contrast appears between the western and eastern parts of the upper mantle beneath the Andes; this geometry suggests the existence of a low velocity wedge in the mantle above the slab and the presence of a thick old lithosphere in the eastern part of the Andes. 相似文献
5.
C. Casquet R.J. Pankhurst C. Galindo C. Rapela C.M. Fanning E. Baldo J. Dahlquist J.M. Gonzlez Casado F. Colombo 《Precambrian Research》2008,165(3-4):205-220
A deformed ca. 570 Ma syenite–carbonatite body is reported from a Grenville-age (1.0–1.2 Ga) terrane in the Sierra de Maz, one of the Western Sierras Pampeanas of Argentina. This is the first recognition of such a rock assemblage in the basement of the Central Andes. The two main lithologies are coarse-grained syenite (often nepheline-bearing) and enclave-rich fine-grained foliated biotite–calcite carbonatite. Samples of carbonatite and syenite yield an imprecise whole rock Rb–Sr isochron age of 582 ± 60 Ma (MSWD = 1.8; Sri = 0.7029); SHRIMP U–Pb spot analysis of syenite zircons shows a total range of 206Pb–238U ages between 433 and 612 Ma, with a prominent peak at 560–580 Ma defined by homogeneous zircon areas. Textural interpretation of the zircon data, combined with the constraint of the Rb–Sr data suggest that the carbonatite complex formed at ca. 570 Ma. Further disturbance of the U–Pb system took place at 525 ± 7 Ma (Pampean orogeny) and at ca. 430–440 Ma (Famatinian orogeny) and it is concluded that the Western Sierras Pampeanas basement was joined to Gondwana during both events. Highly unradiogenic 87Sr/86Sr values in calcites (0.70275–0.70305) provide a close estimate for the initial Sr isotope composition of the carbonatite magma. Sm–Nd data yield Nd570 values of +3.3 to +4.8. The complex was probably formed during early opening of the Clymene Ocean from depleted mantle with a component from Meso/Neo-proterozoic lower continental crust. 相似文献
6.
The Wajilitag igneous complex is part of the early Permian Tarim large igneous province in NW China, and is composed of a layered mafic–ultramafic intrusion and associated syenitic plutons. In order to better constrain its origin, and the conditions of associated Fe–Ti oxide mineralization, we carried out an integrated study of mineralogical, geochemical and Sr–Nd–Hf isotopic analyses on selected samples. The Wajilitag igneous rocks have an OIB-like compositional affinity, similar to the coeval mafic dykes in the Bachu region. The layered intrusion consists of olivine clinopyroxenite, coarse-grained clinopyroxenite, fine-grained clinopyroxenite and gabbro from the base upwards. Fe–Ti oxide ores are mainly hosted in fine-grained clinopyroxenite. Forsterite contents in olivines from the olivine clinopyroxenite range from 71 to 76 mol%, indicating crystallization from an evolved magma. Reconstructed composition of the parental magma of the layered intrusion is Fe–Ti-rich, similar to that of the Bachu mafic dykes. Syenite and quartz syenite plutons have εNd(t) values ranging from +1.4 to +2.9, identical to that for the layered intrusion. They may have formed by differentiation of underplated magmas at depth and subsequent fractional crystallization. Magnetites enclosed in olivines and clinopyroxenes have Cr2O3 contents higher than those interstitial to silicates in the layered intrusion. This suggests that the Cr-rich magnetite is an early crystallized phase, whereas interstitial magnetite may have accumulated from evolved Fe–Ti-rich melts that percolated through a crystal mush. Low V content in Cr-poor magnetite (<6600 ppm) is consistent with an estimate of oxygen fugacity of FMQ + 1.1 to FMQ + 3.5. We propose that accumulation of Fe–Ti oxides during the late stage of magmatic differentiation may have followed crystallization of Fe–Ti-melt under high fO2 and a volatile-rich condition. 相似文献
7.
New rurality and the experience of place: the small rural locality of La Niña,Buenos Aires,Argentina
This paper presents a cultural geographic approach for understanding local social processes of territorial re-appropriation taking place in response to non-local forces and interests. This approach is applied to the small rural locality of La Niña, in Buenos Aires Province, Argentina. The small village of La Niña is currently in a locally-led process of recovering from a recent depopulation trend caused mainly by the irruption of transnational agribusiness. As economic opportunities have dwindled in the last decades, more recently local inhabitants and new settlers have set forth diverse strategies aimed at mitigating the effects of depopulation on the social structure. We focus our attention on the way the living experience of place is involved in all these strategies. We contend that despite economic and cultural homogenization caused by globalization, the experience of place is a permanent though ever-changing aspect of social life. Our research was based on archival and hemerographic surveys and ethnographic field techniques, encompassing participatory observation, semistructured and in-depth interviews with social and government leaders and local producers as well as field landscape appraisals. 相似文献
8.
This paper reports results from detrital zircon U–Pb geochronology, Hf isotopic geochemistry, sandstone modal analysis, and palaeocurrent analysis of the early Mesozoic strata within the Ningwu basin, China, with the aims of constraining the depositional ages and sedimentary provenances and shedding new light on the Mesozoic tectonic evolution of the northcentral North China Craton (NCC). The zircons from early Mesozoic sandstones are characterized by three major populations: Phanerozoic (late Palaeozoic and early Mesozoic), late Palaeoproterozoic (with a peak at approximately 1.8 Ga), and Neoarchaean (with a peak at approximately 2.5 Ga). Notably, three Phanerozoic zircons in the Early Triassic Liujiagou Formation were found to have positive εHf(t) values and characteristics typical of zircons from the Central Asian Orogenic Belt (CAOB). Therefore, the CAOB began to represent the provenance of sediment in the sedimentary basins in the northern NCC no later than the Early Triassic (261 Ma), implying that the final amalgamation of the NCC and CAOB occurred before the Early Triassic. The U–Pb geochronologic and Hf isotopic results show that the Lower Middle Triassic sediments were mainly sourced from the Yinshan–Yanshan Orogenic Belt (YYOB), and that a sudden change in provenances occurred, shifting from a mixed YYOB and CAOB source in the Middle Jurassic to a primarily YYOB source in the Late Jurassic. The results of the sandstone modal analysis suggest that the majority of the samples from the Lower Middle Jurassic rocks were derived from either Continental Block or Recycled Orogen sources, whereas all the samples from the Upper Jurassic rocks were derived from Mixed sources. The change in source might be ascribed to the southward subduction and closure of the Okhotsk Ocean and the resulting intense uplift of the YYOB during the Late Jurassic. This uplift likely represents the start of the Yanshan Orogeny. 相似文献
9.
Hossein Azizi Sepideh Hadad Robert J. Stern Yoshihiro Asahara 《International Geology Review》2019,61(2):195-223
The Baneh plutonic complex is situated in the Zagros suture zone of northwest Iran between the Arabian and Eurasian plates. This complex is divided into granite and appinite groups. Zircon U–Pb dating shows that granites crystallized 41–38 million years ago but appinites experience more protracted magmatic evolution, from at 52 to 38 Ma. Whole-rock chemical compositions show significant major and trace element variations between the two lithologies. Granitic rocks are more evolved, with high contents of SiO2 (62.4–77.0 wt%), low contents of TiO2 (0.25 wt%), MgO (0.05–1.57 wt%), and Fe2O3 (0.40–4.06 wt%) and high contents of Na2O + K2O (≈10 wt%). In contrast, appinites have low contents of SiO2 (51.0–57.0 wt%) and K2O (<2.1 wt%) and high Fe2O3 (6.4–9.35 wt%), MgO (2.0–9.9 wt%), and Mg number (Mg# = 35–76). The concentration of rare earth elements in the appinites is higher than in granitic rocks, making it difficult to form granites solely by fractionation of appinite magma. (87Sr/86Sr)i and εNd(40 Ma) in both groups are similar, from 0.7045 to 0.7061 and ?1.2 to +2.6, except for a primitive gabbroic dike with εNd(40 Ma) = +9.9. Appinites show mainly typical I-type characteristics, but granites have some S-type characteristics. The sigmoidal shape of the Baneh pluton and its emplacement into deformed Cretaceous shales and limestone showing kink bands, asymmetric and recumbent folds in a broad contact zone, with pervasive ductile to brittle structures in both host rocks and intrusion, indicate that magma emplacement was controlled by a transpressional tectonic regime, perhaps developed during early stages in the collision of Arabia and Eurasian plates. 相似文献
10.
《Journal of South American Earth Sciences》1999,12(2):135-155
Chemical and isotopic data from 12 volcanic centers of the southern Central Volcanic Zone (CVZ) in Chile, whose ages of 20, 16, 11, 8, 5, 2 and <1 Ma bracket the peak of shortening and crustal thickening in the mid-Miocene, show systematic differences with age. The composition of andesites erupted before and after crustal thickening are similar in terms of most major and trace elements, but the post-Miocene andesites show enrichments in Th, U, Cs and Rb, as well as high 87Sr/86Sr and 206Pb/204Pb ratios coupled with low εNd values which indicate greater crustal contamination compared with the older equivalents. Comparison of contamination indicators with age shows that contamination was low from 20 Ma to 8 Ma, increased sharply between 8 and 5 Ma, and remained at a high level into the Quaternary. Constant ratios of fluid-mobile vs immobile elements (Cs/Th or Ba/Zr) in even the most contaminated rocks indicate that fluid interaction was negligible. The contaminated andesites display disequilibrium textures and contain phenocrysts with a mixed population of melt inclusions. We suggest that the main process of crustal contamination was mixing with crustal melts. This is supported by geophysical evidence for a zone of partial melting in the mid and lower crust under the magmatic arc and by the presence of late Miocene to Pliocene crustal-derived felsic ignimbrites in the CVZ. 相似文献
11.
《International Geology Review》2012,54(12):1466-1483
Chromitites (>80% volume chromite) hosted in two ultramafic bodies (Lavanderos and Centinela Bajo) from the Palaeozoic metamorphic basement of the Chilean Coastal Cordillera were studied in terms of their chromite composition, platinum-group element (PGE) abundances, and Re-Os isotopic systematics. Primary chromite (Cr# = 0.64–0.66; Mg# = 48.71–51.81) is only preserved in some massive chromitites from the Centinela Bajo ultramafic body. This chemical fingerprint is similar to other high-Cr chromitites from ophiolite complexes, suggesting that they crystallized from arc-type melt similar to high-Mg island-arc tholeiites (IAT) and boninites in supra-subduction mantle. The chromitites display enrichment in IPGE (Os, Ir, Ru) over PPGE (Rh, Pt, Pd), with PGE concentrations between 180 and 347 ppb, as is typical of chromitites hosted in the mantle of supra-subduction zone (SSZ) ophiolites. Laurite (RuS2)-erlichmanite (OsS2) phases are the most abundant inclusions of platinum-group minerals (PGM) in chromite, indicating crystallization from S-undersaturated melts in the sub-arc mantle. The metamorphism associated with the emplacement of the ultramafic bodies in the La Cabaña has been determined to be ca. 300 Ma, based on K-Ar dating of fuchsite. Initial 187Os/188Os ratios for four chromitite samples, calculated for this age, range from 0.1248 to 0.1271. These isotopic compositions are well within the range of chromitites hosted in the mantle section of other Phanaerozoic ophiolites. Collectively, these mineralogical and geochemical features are interpreted in terms of chromite crystallization in dunite channels beneath a spreading centre that opened a marginal basin above a supra-subduction zone. This implies that chromitite-bearing serpentinites in the metamorphic basement of the Coastal Cordillera are of oceanic-mantle origin and not oceanic crust as previously suggested. We suggest that old subcontinental mantle underlying the hypothetical Chilenia micro-continent was unroofed and later altered during the opening of the marginal basin. This defined the compositional and structural framework in which the protoliths of the meta-igneous and meta-sedimentary rocks of the Eastern and Western Series of the Chilean Coastal Cordillera basement were formed. 相似文献
12.
《Geodinamica Acta》2001,14(6):345-360
In the southeastern Ötztal basement remnants of eo-Alpine high-pressure metamorphism as well as deformation related to the emplacement of these eclogites are preserved. The eo-Alpine age of the two main ductile deformation phases is constrained by Ar-Ar and Rb-Sr mica cooling ages of about 80 Ma, providing a lower, and by deformed Permo-Mesozoic rocks, providing an upper time limit. While high-pressure minerals (M1) are aligned along structures of the first deformation phase (D1), subsequently grown amphibolite facies minerals (M2) are late- to post-kinematic with respect to the third phase (D3). D1 is characterized by non-coaxial deformation producing an E-W oriented stretching lineation, the younger phases D2 and D3 by folding, where the older set of folds strikes N-S, the younger one E-W. These results imply a basic change of tectonic movement direction during the eo-Alpine event. Structural and petrological evidences favour a two-stage exhumation model, where tectonic exhumation (D1, D2 and D3) is correlated with the first stage, statically overprinted under amphibolite facies conditions (M2). As there is no evidence of significant deformation after this stage, erosion and surface uplift most probably represent the relevant processes for the last part of the exhumation path. During this stage the high-pressure rocks were exhumed from amphibolite facies conditions to the surface. 相似文献
13.
The Emeishan continental flood basalt, which is widespread in Yunnan, Guizhou and Sichuan provinces of Southwest China, is the volcanic product of a Permian mantle plume, and native copper-chalcocite mineralization associated with the basalt is very common in the border area of Yunnan and Guizhou provinces. The mineralization occurred in the tuff intercalation and terrestrial sedimentary rock intercalation which were formed during the main period of basalt eruption. The orebodies are controlled by the stratigraphic position and faults. Metal ore minerals in the ores are mainly native copper, chalcocite and tenorite, with small amounts of chalcopyrite, bomite, pyrite and malachite, and sometimes with large amounts of bitumen, carbon and plant debris. Several decades of ore deposits are distributed in the neighboring areas of the two provinces, while most of them are small-scale deposits or only ore occurrences. By comparing the lead isotopic composition of the ores with that of the wall-rocks, cover and basement rocks of various periods, the source of copper in this type of ore deposits was studied in this paper. The results showed that: (1) The Pb isotopic composition of the ores from ten deposits is absolutely different from that of sili-ceous-argillaceus rocks of the Upper Permian Xuanwei Formation, limestones of the Lower Permian Series and Carboniferous, Cambrian sandstone-shale and recta-sedimentary rock and dolomite from the upper part of the Meso-Proterozoic Kunyang Group, This indicates that ore lead was derived neither from the cover rock nor from the basement rocks; (2) Although the Neo-Proterozoic Siman dolomite and silicalite, and dolomite in the lower part of the Kunyang Group are similar in Pb isotopic composition to the ores, lead and copper contents in these rocks are very low and they have not made great contributions to copper mineralization; (3) The ores have the same Pb iso-topic composition as the basalt, the latter being enriched in copper. These facts indicate that lead and copper were derived from the basalt. According to the regional geological data and the geological-geochemical characteristics of the ore deposits, it is suggested that ore-forming materials were leached out from the basalt. The thickness and buried depth of the basalt and regional tectonic dynamics can affect the formation of large-scale copper deposits. Therefore, exploration for this type of ore deposits should be conducted in the areas from western Yunnan to western Sichuan, where there are developed basalts of great thickness, with extensive tectonic movement and magmatic activity. 相似文献
14.
L. López-Escobar M. A. Parada R. Hickey-Vargas F. A. Frey P. D. Kempton H. Moreno 《Contributions to Mineralogy and Petrology》1995,119(4):345-361
Calbuco volcano is a Late Pleistocene-Holocene composite stratovolcano located at 41°20 S, in the southern region of the Southern Volcanic Zone of the Andes (SSVZ; 37°–46° S). In contrast to basalt and basaltic andesite, which are the dominant lava types on the volcanic front from 37° to 42° S, Calbuco lavas are porphyritic andesites which contain a wide variety of crustal xenoliths. They have SiO2 contents in the 55–60% range, and have comparatively low K2O, Rb, Ba, Th and LREF abundances relative to other SSVZ centers. Incompatible element abundance ratios are similar to those of most SSVZ volcanics, but 87Sr/86Sr and 143Nd/144Nd are respectively higher and lower than those of adjacent volcanic centers. Basalts from nearby Osorno stratovolcano, 25 km to the northeast, are similar to other basaltic SSVZ volcanoes. However, basalts from several minor eruptive centers (MEC), located east of Calbuco and Osorno volcano along the Liquiñe-Ofqui fault zone (LOFZ), are enriched in Ba, Nb, Th and LREE, and have higher La/Yb and lower Ba/La, K/La and Rb/La. 87Sr/86Sr and 143Nd/144Nd in MEC basalts are respectively lower and higher than those of Osorno and Calbuco lavas. We suggest that MEC basalts were produced by lower extents of mantle melting than basalts from Osorno and other SSVZ stratovolcanoes, probably as a result of lower water content in the source of MEC basalts. Calbuco andesites formed from basaltic parents similar to Osorno basalts, by moderate pressure crystallization of a hornblende-bearing assemblage accompanied by crustal assimilation. Hornblende stability in the Calbuco andesites was promoted by the assimilation of hydrous metasedimentary crustal rocks, which are also an appropriate endmember for isotopic trends, together with magma storage at mid-crustal depths. The unique characteristics of Calbuco volcano, i.e. the stability of hornblende at andesitic SiO2 contents, low 143Nd/144Nd and high 87Sr/86Sr, and abundant crustal xenoliths, provide evidence for crustal assimilation that is not apparent at more northerly volcanoes in the SSVZ. 相似文献
15.
Martín M. Turienzo 《Journal of South American Earth Sciences》2010,29(3):537-556
The Malargüe fold-and-thrust belt is a thick-skinned belt developed in Miocene-Pliocene times during the Andean orogeny, which together with the Cordillera Frontal constitutes the Andes of central Argentina in the Diamante River area. Detailed field mapping and construction of three regional balanced cross-sections, supported by seismic and well information, constrains the structural style of this Andean region as two basement uplifts in the western and eastern sectors surrounding a central region of thin-skinned deformation. In the west, large basement wedges related to thrust faults developed during Andean compression propagated along favourable horizons (commonly gypsum) into the sedimentary cover. These wedges transferred shortening to the cover rocks producing the thin-skinned structures. There is therefore a close spatial and temporal relationship between basement and cover deformation. In the thin-skinned region, the abundance of shales and salt horizons in the west facilitated the formation of fault-related folds while the more competent units in the east were deformed into duplex and imbricated thrusts. The basement uplift in the eastern sector represents the southern end of the Cordillera Frontal, where the Carrizalito fault placed pre-Jurassic rocks over tertiary synorogenic sediments in the northern area while in the southern region it remained as a blind thrust. A common feature is the development of backthrust systems related to the major east-vergent basement structures. The backthrusts therefore serve to locate basement uplifts where outcrops are absent. Three-dimensional integration of the cross-sections and a structural map at the top of the pre-Jurassic basement show that although the main structures change considerably along strike, the total shortening of each section shows little variation. 相似文献
16.
The subduction of the Nazca plate under the South American plate around 31°S is characterized by flat slab geometry. The (Chilean) Pampean flat slab of Argentina associated with the subduction of the Juan Fernandez ridge lies in a region of a series of foreland uplifts corresponding to the thin-skinned Precordillera and basement cored Sierras Pampeanas ranges. The SIEMBRA project deployed 40 broadband stations in 2008–2009 in both the Precordillera and the Sierras Pampeanas with the aim to foster the understanding of the entire central Andean flat slab region. One of the SIEMBRA station (DOCA) located on the western flank of Sierra de la Invernada in the Central Precordillera appears particularly appropriate to study the crustal structure and eventually detect discontinuities related to terranes establishment. We thus performed a receiver function analysis using teleseismic data recorded at the DOCA station during the SIEMBRA project and from October 2011 to June 2012 using a broadband UNSJ (National University of San Juan) seismic station with the purpose to obtain crustal images with details of the intracrustal structure consistent with a mechanism that could explains both the observed earthquake depths and the uplift pattern in the Central Precordillera. Our results show that the Moho beneath the Precordillera lies at a depth of about 66 km. The Moho signal appears diminished and behaves irregularly as a function of azimuthal orientations. Although this observation could be the result of an irregular geometry it also correlates with the hypothesis of partial eclogitisation in the lower crust. Two mid-crustal discontinuities have also been revealed. The shallower one could correspond to a décollement level between the Precordilleran strata and the Cuyania basement at 21 km depth. The deeper one which the presence has been matched with a sharp decrease of the crustal seismic activity drove us to the hypothesis of a major change in crustal composition at 36 km. Finally the flat portion of the subducted slab has been imaged lying at about 100 km depth. 相似文献
17.
Rita Catanzariti Alessandro Ellero Mehmet Cemal Göncüoglu Michele Marroni Giuseppe Ottria Luca Pandolfi 《Comptes Rendus Geoscience》2013,345(11-12):454-461
In the Boyal? area, northern Turkey, the tectonic units of the ?stanbul–Zonguldak Terrane and the IntraPontide suture zone are thrust over the deposits at the top of the Sakarya Terrane, known as Tarakl? Flysch. It consists of Early Maastrichtian–Middle Paleocene turbidite and mass-gravity deposits, whose source mainly corresponds to the ?stanbul–Zonguldak Terrane, and, with a lesser extent, to the IntraPontide suture zone. These deposits were sedimented in a foredeep basin developed during the convergence between Sakarya and Eurasian continental microplates. In the Late Paleocene–Early Eocene time span, the Tarakl? Flysch was deformed (D1 phase) during the closure of the foredeep basin. In the Miocene time, the strike-slip tectonics (D2 phase) related to the North-Anatolian fault produced further deformations of the Tarakl? Flysch. 相似文献
18.
B. Aguirre-Urreta M. Tunik M. Naipauer P. Pazos E. Ottone M. Fanning V.A. Ramos 《Gondwana Research》2011,19(2):482-494
The discovery of marine to brackish and fresh-water carbonates in the inner Agrio fold-and-thrust belt at Pichaihue, Neuquén, Argentina, located to the west of the Andean orogenic front, imposes important constraints on the paleogeography of the first Atlantic transgression in the Neuquén Basin related to the break-up of Western Gondwana. The constraints on the timing and areal extent of these deposits shed light on the early uplift history of the southern Andes. These limestones are part of the Maastrichtian–Danian Malargüe Group, which was previously only known from its exposures in the extra-Andean area, representing foreland basin deposits. The presence of stromatolites, oncoids, serpulids, bivalves and gastropods as well as silicified stems of macrophytes indicates a shallow marine, partially brackish environment associated with non-marine deposits. These strata are interfingered with and overlie distal tuffs and proximal pyroclastic flows, whose geochemical characteristics point to a magmatic arc source. SHRIMP U–Pb dating of volcanic zircons of these tuffs yielded an age of 64.3 ± 0.9 Ma that confirms the correlation to the Maastrichtian–Paleocene marine transgression from the Atlantic Ocean. The change in the paleoslope of the basin from Pacific Ocean transgressions to this Atlantic transgression is related to the uplift and deformation of the Agrio fold-and-thrust belt. The Pichaihue Limestone is unconformably deposited on volcanic agglomerates which in turn unconformably overlie Early Cretaceous deposits. Based on these data, it is confirmed that the Cretaceous uplift of the Andes was episodic at these latitudes, with a first pulse in the Cenomanian and a second one in pre-Maastrichtian times. The episodic uplift is also related to an eastward migration of the thrust front and the volcanic arc, related to a previously proposed shallowing of the subduction zone. These episodes were controlled by the Western Gondwana break-up and the beginning of absolute motion of South America toward the west. 相似文献
19.
The Jinshajiang–Red River alkaline igneous belt in the eastern Indian–Asian collision zone, of southwestern China, hosts abundant, economically important Cu–Mo–Au mineralization of Cenozoic age. Major- and trace-element compositions of titanites from representative Cu-mineralized intrusions determined by LA-ICP-MS show higher values for Fe2O3/Al2O3, ΣREE?+?Y, LREE/HREE, Ce/Ce*, (Ce/Ce*)/(Eu/Eu*), U, Th, Ta, Nb and Ga, and lower values for Al2O3, CaO, Eu/Eu*, Zr/Hf, Nb/Ta and Sr than those for titanites from barren intrusions. Different ΣREE?+?Y, LREE/HREE, U, Th, Ta and Nb values of titanites between Cu-mineralized and barren intrusions were controlled mainly by the coexisting melt compositions. However, different Sr concentrations and negative Eu anomalies of titanites between Cu-mineralized and barren intrusions were most probably caused by different degrees of crystallization of feldspar from melts. In addition, different Ga concentrations and positive Ce anomalies of titanites between Cu-mineralized and barren intrusions were most likely caused by different magmatic fO2 conditions. Pronounced compositional differences of titanites between Cu-mineralized and barren intrusions can provide a useful tool to help discriminate between ore-bearing and barren intrusions at an early stage of exploration, and, thus, have a potential application in exploration for porphyry Cu deposits in the Jinshajiang – Red River alkaline igneous belt, and to other areas. 相似文献
20.
New combined U–Pb and Lu–Hf isotope analyses on zircon from three turbidite deposits, and petrologic data for associated igneous rocks were used to study the evolution of the Paleozoic basement of Eastern Cordillera, NW Argentina. Maximum and minimum ages for turbidite deposits, considered to be part of the Puncoviscana Fm., are reported. In the Tastil area, turbidites were deposited in a fore-arc setting after 560 Ma and intruded at 534 Ma by the Tastil batholith. In the El Niño Muerto Hill area turbidites with maximum depositional age of 496 ± 11 Ma were intruded by high-K dacites at 483 ± 3 Ma. In the Río Blanco Valley, the turbiditic/hemipelagitic sediments, with maximum depositional age of 463 ± 11 Ma were contemporaneous with E-MORB/OIB volcanism. The U–Pb and Lu–Hf data permitted to distinguish two major periods of magmatic activity during Late Mesoproterozoic–Early Neoproterozoic (0.95 to 1.2 Ga) and Late Neoproterozoic–Early Paleozoic (0.75 to 0.46 Ga) times, the former dominated by the input of juvenile crust and the latter by arc magmatism and recycling of Meso- to Paleoproterozoic crust. On the basis of new data we suggest that western margin of Gondwana was controlled by subduction processes and accretion of small terrains during Neoproterozoic–Early Paleozoic times. 相似文献