首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The southeastern Georgetown Inlier (Greenvale Province) consists of Early Palaeozoic metamorphic rocks in fault contact along the Lynd Mylonite Zone with the Palaeoproterozoic to Mesoproterozoic craton of northeastern Australia. It has a central assemblage of metamorphosed silicic volcanic and sedimentary rocks considered equivalent to the Late Cambrian to Early Ordovician Seventy Mile Range Group that developed in an extensional backarc in the Charters Towers Province to the southeast. In the western part of the Greenvale Province, the Oasis Metamorphics have a U – Pb zircon SHRIMP metamorphic age of 476 ± 5 Ma and are intruded by the granodioritic Lynwater Complex with U – Pb zircon ages of 486 ± 5 Ma and 477 ± 6 Ma. These ages are consistent with these rocks forming basement and intrusive equivalents to the extensional volcanic basin. Existing geochronological constraints on the Halls Reward domain, located at the eastern margin of the province, are consistent with it being basement to the extensional basin. Several domains are recognised in the Greenvale Province with either dominantly steep or low to moderate dips of the main foliation, and each experienced multiple deformation with locally up to four overprinting structural phases. Steepening of foliation in several of the domains is attributed to contractional deformation in the Early Silurian that is inferred to have overprinted low-angle foliation developed during extensional tectonics in the backarc setting. Contractional deformation related to the Early Silurian Benambran Orogeny is considered responsible for multiple deformation in the Greenvale Province and reactivation of domain-bounding faults.  相似文献   

2.
The Yingchengzi gold deposit, located 10 km west of Shalan at the eastern margin of the Zhangguangcai Range, is the only high commercially valuable gold deposit in southern Heilongjiang Province, NE China. This study investigates the chronology and geodynamic mechanisms of igneous activity and metallogenesis within the Yingchengzi gold deposit. New zircon U–Pb data, fluid inclusion 40Ar/39Ar dating, whole‐rock geochemistry and Sr–Nd isotopic analysis is presented for the Yingchengzi deposit to constrain its petrogenesis and mineralization. Zircon U–Pb dating of the granite and diabase–porphyrite rocks of the igneous complex yields mean ages of 471.7 ± 5.5 and 434 ± 15 Ma respectively. All samples are high‐K calc‐alkaline or shoshonite rocks, are enriched in light rare earth elements and large ion lithophile elements, and are depleted in high field strength elements, consistent with the geochemical characteristics of arc‐type magmas. The Sr–Nd isotope characteristics indicate that the granite formed by partial melting of the lower crust, including interaction with slab‐derived fluids from an underplated basaltic magma. The primary magma of the diabase–porphyrite was likely derived from the metasomatized mantle wedge by subducted slab‐derived fluids. Both types of intrusive rocks were closely related to subduction of the ocean plate located between the Songnen–Zhangguangcai Range and Jiamusi massifs. However, fluid inclusion 40Ar/39Ar dating indicates that the Yingchengzi gold deposit formed at ~249 Ma, implying that the mineralization is unrelated to both the granite (~472 Ma) and diabase–porphyrite (~434 Ma) intrusions. Considering the tectonic evolution of the study area and adjacent regions, we propose that the Yingchengzi gold deposit was formed in a late Palaeozoic–Early Triassic continental collision regime following the closure of the Paleo‐Asian Ocean. In addition, the Yingchengzi deposit could be classified as a typical orogenic‐type gold deposit occuring in convergent plate margins in collisional orogens, and unlikely an intrusion‐related gold deposit as reported by previous studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Paleomagnetic data from lavas and dikes of the Unkar igneous suite (16 sites) and sedimentary rocks of the Nankoweap Formation (7 sites), Grand Canyon Supergroup (GCSG), Arizona, provide two primary paleomagnetic poles for Laurentia for the latest Middle Proterozoic (ca. 1090 Ma) at 32°N, 185°E (dp=6.8°, DM=9.3°) and early Late Proterozoic (ca. 850–900 Ma) at 10°S, 163°E (dp=3.5°, DM=7.0°). A new 40Ar/39Ar age determination from an Unkar dike gives an interpreted intrusion age of about 1090 Ma, similar to previously reported geochronologic data for the Cardenas Basalts and associated intrusions. The paleomagnetic data show no evidence of any younger, middle Late Proterozoic tectonothermal event such as has been revealed in previous geochronologic studies of the Unkar igneous suite. The pole position for the Unkar Group Cardenas Basalts and related intrusions is in good agreement with other ca. 1100 Ma paleomagnetic poles from the Keweenawan midcontinent rift deposits and other SW Laurentia diabase intrusions. The close agreement in age and position of the Unkar intrusion (UI) pole with poles derived from rift related rocks from elsewhere in Laurentia indicates that mafic magmatism was essentially synchronous and widespread throughout Laurentia at ca. 1100 Ma, suggesting a large-scale continental magmatic event. The pole position for the Nankoweap Formation, which plots south of the Unkar mafic rocks, is consistent with a younger age of deposition, at about 900 to 850 Ma, than had previously been proposed. Consequently, the inferred 200 Ma difference in age between the Cardenas Basalts and overlying Nankoweap Formation provides evidence for a third major unconformity within the Grand Canyon sequence.  相似文献   

4.
The Berezitovoe gold-polymetallic deposit is localized in the west of the Selenga–Stanovoi superterrane composed of a wide spectrum of Early and Late Precambrian igneous rocks and abundant Paleozoic and Mesozoic intrusive and volcanoplutonic associations. The 40Ar/39Ar ages determined for metasomatites bearing gold-polymetallic mineralization are as follows: garnet-quartz-muscovite-sericite-K-feldspathic metasomatites (129.7±3.2–127.3±4.4 Ma); muscovite-quartz-sericite metasomatites (132.0±2.9–131.3±2.3 Ma). According to the age and general scheme of evolution of the Early Cretaceous magmatism in the Selenga–Stanovoi superterrane, the metasomatites of the Berezitovoe deposit are nearly coeval to the intrusive rocks of the Amudzhikan complex (132–128 Ma). The revealed platinum potential of gold-polymetallic ores and metasomatites permits ranking the Berezitovoe deposit as a specific complex gold-polymetallic-platinum deposit, which considerably increases its commercial value.  相似文献   

5.
The epithermal El Peñon gold–silver deposit consists of quartz–adularia veins emplaced within a late Upper Paleocene rhyolitic dome complex, located in the Paleocene–Lower Eocene Au–Ag belt of northern Chile. Detailed K–Ar and 40Ar/39Ar geochronology on volcano–plutonic rocks and hydrothermal minerals were carried out to constrain magmatic and hydrothermal events. The Paleocene to Lower Eocene magmatism in the El Peñon area is confined to a rhomb-shaped basin, which was controlled by N–S trending normal faults and both NE- and NW-trending transtensional fault systems. The earliest products of the basin-filling sequences comprise of Middle to Upper Paleocene (~59–55 Ma) welded rhyolitic ignimbrites and andesitic to dacitic lavas, with occasional dacitic dome complexes. Later, rhyolitic and dacitic dome complexes (~55–52 Ma) represent the waning stages of volcanism during the latest Upper Paleocene and the earliest Eocene. Lower Eocene porphyry intrusives (~48–43 Ma) mark the end of the magmatism in the basin and a change to a compressive tectonomagmatic regime. 40Ar/39Ar geochronology of hydrothermal adularia from the El Peñon deposit yields ages between 51.0±0.6 and 53.1±0.5 Ma. These results suggest that mineralization occurred slightly after the emplacement of the El Peñon rhyolitic dome at 54.5±0.6 Ma (40Ar/39Ar age) and was closely tied to later dacitic–rhyodacitic bodies of 52 to 53 Ma (K–Ar ages), probably as short-lived pulses related to single volcanic events.  相似文献   

6.
Kohistan Sequence has been considered as island arc formed during the subduction of oceanic lithosphere at the leading edge of northward moving Indian continent.. Sedimentary sequences indicate that formation of the intra\|oceanic Kohistan arc began in early Cretaceous time. The isotopic data demonstrate the involvement of enriched, DUPAL type mantle, suggesting that Kohistan arc was formed at or south of the present equator (Khan et al., 1997). The Intra oceanic phase of Kohistan lasted until sometime between 102 and 85 Ma, when Kohistan collided with Asia. From this time until collision with India about 50 Ma ago, Kohistan existed as Andean\|type margin. This paleomagnetic study is from the volcanic and plutonic rocks exposed in Gupis\|Shamran area (west of Gilgit) in northern part of the Kohistan arc. According to geochronological data these rocks were formed 61~55Ma ago (Treloar et al., 1989), when Kohistan was existing as Andean\|type margin. Seven to nine samples were collected from nine sites of Shamran volcanics (58±1)Ma and from five sites of Pingal, Gupis, and Yasin plutons (Ar\|Ar hornblende ages ranges from 61~52Ma). On the basis of one Rb\|Sr age of (59±2)Ma from these plutons, the above\|mentioned Ar/Ar ages may be regarded as reasonable intrusion ages of these plutons (Searle, 1991).  相似文献   

7.
We combine structural observations, petrological data and 40Ar–39Ar ages for a stack of amphibolite facies metasedimentary units that rims high‐P (HP) granulite facies felsic bodies exposed in the southern Bohemian Massif. The partly migmatitic Varied and Monotonous units, and the underlying Kaplice unit, show a continuity of structures that are also observed in the adjacent Blanský les HP granulite body. They all exhibit an earlier NE?SW striking and steeply NW‐dipping foliation (S3), which is transposed into a moderately NW‐dipping foliation (S4). In both the Varied and Monotonous units, the S3 and S4 foliations are characterized by a Sil–Bt–Pl–Kfs–Qtz–Ilm±Grt assemblage, with occurrences of post‐D4 andalusite, cordierite and muscovite. In the Monotonous unit, minute inclusions of garnet, kyanite, sillimanite and biotite are additionally found in plagioclase from a probable leucosome parallel to S3. The Kaplice unit shows rare staurolite and kyanite relicts, a Sil–Ms–Bt–Pl–Qtz±Grt assemblage associated with S3, retrogressed garnet?staurolite aggregates during the development of S4, and post‐D4 andalusite, cordierite and secondary muscovite. Mineral equilibria modelling for representative samples indicates that the Varied unit records conditions higher than ~7 kbar at 725 °C during the transition from S3 to S4, followed by a P?T decrease from ~5.5 kbar/750 °C to ~4.5 kbar/700 °C. The Monotonous unit shows evidence of partial melting in the S3 fabric at P?T above ~8 kbar at 740–830 °C and a subsequent P?T decrease to 4.5–5 kbar/700 °C. The Kaplice unit preserves an initial medium‐P prograde path associated with the development of S3 reaching peak P?T of ~6.5 kbar/640 °C. The subsequent retrograde path records 4.5 kbar/660 °C during the development of S4. 40Ar–39Ar geochronology shows that amphibole and biotite ages cluster at c. 340 Ma close to the HP granulite, whereas adjacent metasedimentary rocks preserve c. 340 Ma amphibole ages, but biotite and muscovite ages range between c. 318 and c. 300 Ma. The P?T conditions associated with S3 imply an overturned section of the orogenic middle crust. The shared structural evolution indicates that all mid‐crustal units are involved in the large‐scale folding cored by HP granulites. The retrograde PT paths associated with S4 are interpreted as a result of a ductile thinning of the orogenic crust at a mid‐crustal level. The 40Ar–39Ar ages overlap with U–Pb zircon ages in and around the HP granulite bodies, suggesting a short duration for the ductile thinning event. The post‐ductile thinning late‐orogenic emplacement of the South Bohemian plutonic complex is responsible for a re‐heating of the stacked units, reopening of argon system in mica and a tilting of the S4 foliation to its present‐day orientation.  相似文献   

8.
The La Hague region of northwest France exposes Palaeo-Proterozoic Icartian gneisses which were reworked and intruded by calc-alkaline plutonic rocks during the Cadomian Orogeny (about 700–500 Ma). 40Ar/39Ar mineral cooling ages have been determined to clarify the timing of the regional metamorphism of orthogneisses and the emplacement of quartz diorite plutons in this region. Metamorphic amphiboles within Icartian gneisses display discordant 40Ar/39Ar apparent age spectra interpreted to result from limited Variscan (about 350–300 Ma) overprinting of intracrystalline argon systems which initially cooled through post-metamorphic hornblende closure temperatures during the Cadomian at about 600 Ma. Igneous hornblendes from the weakly foliated Jardeheu and Moulinet quartz diorites record isotope correlation ages of 599 ± 2 and 561 ± 2 Ma, respectively. Igneous hornblende and biotite from foliated quartz diorite on the nearby Channel Island of Alderney record isotope correlation ages of about 560 Ma. The results imply that metamorphic and plutonic events in the La Hague-Alderney region were approximately contemporaneous with those recorded on Guernsey and Sark, which are thus likely to have formed part of the same tectonic block during the Cadomian Orogeny.  相似文献   

9.
黑龙江嘉荫连珠山金矿床成岩成矿年代学及其地质意义   总被引:2,自引:0,他引:2  
连珠山矿床位于小兴安岭北麓,是一个产于花岗岩内部断裂体系的蚀变岩型金矿床。为了限定其成矿时代与成矿地质背景,本文对其赋矿围岩黑云母二长花岗岩和石英闪长岩进行了岩石地球化学、锆石U-Pb和绢云母40Ar/39Ar年代学的系统研究。定年结果表明黑云母二长花岗岩形成时代为中三叠世(243.7±1.3Ma,MSWD=0.77,n=12),岩浆上侵过程中受到早古生代(474~438Ma)和中二叠世(267~261Ma)的岩浆混染,而石英闪长岩形成于晚三叠世(215.3±1.3Ma,MSWD=0.35,n=17);黄铁绢英岩化矿石中的绢云母40Ar/39Ar坪年龄为194.2±2.0Ma,指示为早侏罗世成矿;元素地球化学特征显示连珠山侵入岩为准铝质-弱过铝质、高钾钙碱性岩石系列,具有I型花岗岩的地球化学属性;轻稀土元素富集,相对亏损重稀土元素,且具有弱的负Eu异常;富集大离子亲石元素(LILE),亏损高场强元素(HFSE)。结合小兴安岭-张广才岭地区已有年代学资料和区域构造演化特征,认为其成矿地质背景为兴蒙造山晚期与古太平洋板块俯冲转换期,或成矿发生在兴蒙造山期后的伸展阶段。  相似文献   

10.
大兴安岭地区德尔布干断裂带北段构造年代学研究   总被引:16,自引:4,他引:12  
德尔布干断裂带是大兴安岭隆起西侧NE向的重要断裂带,处在海拉尔-拉布达林-根河盆地西缘,是著名德尔布干成矿区东南边界断裂带.为了确定德尔布干断裂带运动性质、活动时间,深入探讨该断裂带与中生代海拉尔-拉布达林-根河盆地及大兴安岭盆山格局、认识德尔布干断裂带多金属矿床成因等问题,本文应用锆石SHRIMP和云母40Ar/39Ar定年技术,分别对断裂带内的细粒黑云母花岗岩侵入体、韧性变形的花岗闪长质片麻岩、白云母石英片岩,进行了同位素年代学研究.其中花岗闪长质片麻岩岩浆型锆石SHRIMP谐和年龄300.6±9.3Ma,为花岗闪长质片麻岩海西期的侵位年龄;而花岗闪长质片麻岩中黑云母40Ar/39Ar坪年龄是130.9±1.4Ma,白云母石英片岩的白云母40Ar/39Ar坪年龄是115.6±1.6Ma,代表早白垩世伸展构造变形年龄;细粒黑云母花岗岩侵入体岩浆型锆石SHRIMP谐和年龄130.1±1.4Ma,为同伸展构造变形侵位的岩浆事件.上述地质年代说明德尔布干断裂带是早白垩世(110~130Ma)该区最年轻的重大伸展构造变形产物.控制NE向大兴安岭隆起和中生代海拉尔-拉布达林-根河等火山沉积盆地的发育格局、以及中生代以来的地壳演化与成矿类型.  相似文献   

11.
During the Cretaceous, the South China Block (SCB) experienced a widely distributed extensional event including numerous plutons emplacement and basin opening. Investigations on the tectonic regime coeval with pluton emplacement, and emplacement mechanism of the pluton remain relatively rare in the SCB. In order to address these questions, a multidisciplinary approach, including field structural and petrographic observations, anisotropy magnetic susceptibility (AMS) and paleomagnetic analyses, was carried out on the Qingyang–Jiuhua granitic massif which intrudes into the Lower Yangtze fold belt in the northeastern part of the SCB. The Qingyang–Jiuhua massif is composed of the granodioritic Qingyang and monzogranitic Jiuhua plutons dated by zircon U–Pb method at ca. 142 Ma, and ca. 131 Ma, respectively. Our structural observations show that the intrusion of the Qingyang–Jiuhua massif does not modify the fold strike. A weak ductile deformation of the country rocks and granitoid can be only observed in the boundary zone with limited contact metamorphism. In the contact aureole of the massif, the foliation follows the pluton contour, and the mineral lineation is rare. When present, it exhibits a down-dip attitude. Field and microstructural observations indicate isotropic magmatic textures in most parts of the massif. The AMS analysis of 93 sites reveals weak values for the anisotropy degree (PJ < 1.2) and oblate magnetic fabric dominance (T > 0) for most of the measured samples. Two principal foliation patterns are identified: horizontal foliations in the center of the plutons, and vertical foliations on the boundaries. Magnetic lineation strike is largely scattered, and weakly inclined at the scale of the entire massif. The paleomagnetic investigations indicate that (a) the younger Jiuhua pluton did not produce a remagnetization in the older Qingyang pluton, (b) no relative movement can be observed between these two plutons, (c) the entire massif did not experience any important relative movement with respect to South China, considering the paleomagnetic uncertainties. Integrating the newly obtained results with previous observations, our study favors a permissive emplacement mechanism for the two plutons, i.e. vertical magma intrusion into an opening space controlled by the NW–SE brittle stretching of the upper crust, which is in agreement with a weak extensional regional tectonic framework of the SCB.  相似文献   

12.
13.
Abstract 40Ar/39Ar data collected from hornblende, muscovite, biotite and K-feldspar constrain the P-T-t history of the Cordillera Darwin metamorphic complex, Tierra del Fuego, Chile. These data show two periods of rapid cooling, the first between c. 500 and c. 325° C at rates ≥25° C Ma-1, and the second between c. 250 and c. 200°C. For high-T cooling, 40Ar/39Ar ages are spatially disparate and depend on metamorphic grade: rocks that record deeper and hotter peak metamorphic conditions have younger 40Ar/39Ar ages. Sillimanite- and kyanite-grade rocks in the south-central part of the complex cooled latest: 40Ar/39Ar Hbl = 73–77 Ma, Ms = 67–70 Ma, Bt = 68 Ma, and oldest Kfs = 65 Ma. Thermobarometry and P-T path studies of these rocks indicate that maximum burial of 26–30 km at 575–625° C may have been followed by as much as 10 km of exhumation with heating of 25–50° C. Staurolite-grade rocks have intermediate 40Ar/39Ar ages: Hbl = 84–86 Ma, Ms = 71 Ma, Bt = 72–75 Ma, and oldest Kfs = 80 Ma. Thermobarometry on these rocks indicates maximum burial of 19–26 km at temperatures of 550–580° C. Garnet-grade rocks have the oldest ages: Ms = 72 Ma and oldest Kfs = 91 Ma; peak P-T conditions were 525–550° C and 5–7 kbar. Regional metamorphic temperatures for greenschist facies rocks south of the Beagle Channel did not exceed c. 300–325° C from 110 Ma to the present, although the rocks are only 2 km from kyanite-bearing rocks to the north. One-dimensional thermal models allow limits to be placed on exhumation rates. Assuming a stable geothermal gradient of 20–25° C km-1, the maximum exhumation rate for the St-grade rocks is c. 2.5 mm yr-1, whereas the minimum exhumation rate for the Ky + Sil-grade rocks is c. 1.0 mm yr-1. Uniform exhumation rates cannot explain the disparity in cooling histories for rocks at different grades, and so early differential exhumation is inferred to have occurred. Petrological and geochronological comparisons with other metamorphic complexes suggest that single exhumation events typically remove less than c. 20 km of overburden. This behaviour can be explained in terms of a continental deformation model in which brittle extensional faults in the upper crust are rooted to shallowly dipping ductile shear zones or regions of homogeneous thinning at mid- to deep-crustal levels. The P-T-t data from Cordillera Darwin (1) are best explained by a ‘wedge extrusion’model, in which extensional exhumation in the southern rear of the complex was coeval with thrusting in the north along the margin of the complex and into the Magallanes sedimentary basin, (2) suggest that differential exhumation occurred initially, with St-grade rocks exhuming faster than Ky + Sil-grade rocks, and (3) show variations in cooling rate through time that correlate both with local deformation events and with changes in plate motions and interactions.  相似文献   

14.
《Precambrian Research》2003,120(1-2):101-129
A paleomagnetic and 40Ar/39Ar study of a 630-Ma alkaline granite suite in Madagascar, the so-called ‘stratoid’ granites, reveals a complex history of remagnetization during the formation of the Antananarivo Zone de Virgation at ∼560 Ma (D2) and the Angavo shear zone at ∼550 Ma (D3). 40Ar/39Ar dating of hornblende, biotite and potassium feldspar from rocks affected by D2/D3 show initial cooling rates of 8 °C/Ma during the 550–520 Ma interval followed by slower cooling of 2.5 °C/Ma. The thermal effects of the D2 and D3 events appear to be restricted to regions surrounding the shear zones as evidenced by a 40Ar/39Ar biotite age of 611.9±1.7 Ma north of the virgation zone. The paleomagnetic data from the stratoid granites are complex and some sites, particularly in areas to the north of the virgation zone, may have been rotated about non-vertical axes following their emplacement and cooling. Because of these possible rotations, our best estimate for the paleomagnetic pole for Madagascar is derived from sites within the virgation zone. This pole falls at 6.7°S, 352.6°E (a95=14.2°). A post-metamorphic cooling history for the virgation zone indicates a magnetization age of 521.4±11.9 Ma. Our work in central Madagascar, coupled with previous studies, suggests that emplacement of the 630 Ma stratoid granites followed a collisional (?) tectonic event beginning around 650 Ma, recently recognized in southern Madagascar and in Tanzania. Subsequently, the stratoid granites in the Antananarivo virgation zone were reheated (∼750–800 °C) at pressures between 3.5 and 3.6 kbars resulting in a pervasive remagnetization. We suggest that the younger shear events are genetically related to collisional tectonics elsewhere during the final stages of Gondwana assembly and are a consequence of the Kuunga Orogeny further south.  相似文献   

15.
This study presents new 40Ar/39Ar ages on the volcanic and intrusive rocks from the Papandayan metallic district in West Java, Indonesia. The vein system in the Arinem area, one of the prospective areas in the district, has been considered as an epithermal gold–silver–base metal deposit, however, no published age results are available for the host volcanic rocks in the district. The ages of these rocks are critical in terms of their association with mineralization and are important to understand the evolution of volcanism in the region, which has implications for mineral exploration in the district. 40Ar/39Ar plateau ages of two typical basalt and one andesite samples of the Jampang Formation volcanic rocks yielded ages of 11.65 ± 0.52 Ma, 18.15 ± 0.46 Ma and 7.69 ± 0.05 Ma, respectively. 40Ar/39Ar ages of three intrusive rock samples from Gunung Halang diorite, Gunung Lingga diorite, and Gunung Buligir fine‐grained quartz diorite yielded ages of 12.98 ± 0.20 Ma, 10.81 ± 0.15 Ma, and 7.37 ± 0.05 Ma, respectively. The age of the youngest fine‐grained diorite (Gunung Wayang dike) is 3.95 ± 0.03 Ma. An 40Ar/39Ar age obtained from adularia in the Arinem mineralized vein (18.30 ± 0.20 Ma) is older than the age of altered basalt sample of this study (11.65 ± 0.52 Ma) and the K–Ar illite ages of the Arinem vein (9.4 ± 0.3 Ma and 8.8 ± 0.3 Ma) which resulted from a previous study. The age results suggest that the Papandayan district may have experienced multiple hydrothermal and mineralization events. This study, therefore, provides crucial age data to support future mineral exploration in the district.  相似文献   

16.
The Michilla mining district comprises one of the most important stratabound and breccia-style copper deposits of the Coastal Cordillera of northern Chile, hosted by the Middle Jurassic volcanic rocks of the La Negra Formation. 40Ar/39Ar analyses carried out on igneous and alteration minerals from volcanic and plutonic rocks in the district allow a chronological sequence of several magmatic and alteration events of the district to be established. The first event was the extrusion of a thick lava series of the La Negra Formation, dated at 159.9 ± 1.0 Ma (2σ) from the upper part of the series. A contemporaneous intrusion is dated at 159.6 ± 1.1 Ma, and later intrusive events are dated at 145.5 ± 2.8 and 137.4 ± 1.1 Ma, respectively. Analyzed alteration minerals such as adularia, sericite, and actinolite apparently give valid 40Ar/39Ar plateau and miniplateau ages. They indicate the occurrence of several alteration events at ca. 160–163, 154–157, 143–148, and 135–137 Ma. The first alteration event, being partly contemporaneous with volcanic and plutonic rocks, was probably produced in a high thermal gradient environment. The later events may be related either to a regional low-grade hydrothermal alteration/metamorphism process or to plutonic intrusions. The Cu mineralization of the Michilla district is robustly bracketed between 163.6 ± 1.9 and 137.4 ± 1.1 Ma, corresponding to dating of actinolite coexisting with early-stage chalcocite and a postmineralization barren dyke, respectively. More precisely, the association of small intrusives (a dated stock from the Michilla district) with Cu mineralization in the region strongly suggests that the main Michilla ore deposit is related to a magmatic/hydrothermal event that occurred between 157.4 ± 3.6 and 163.5 ± 1.9 Ma, contemporaneous or shortly after the extrusion of the volcanic sequence. This age is in agreement with the Re–Os age of 159 ± 16 Ma obtained from the mineralization itself (Tristá-Aguilera et al., Miner Depos, 41:99–105,2006).  相似文献   

17.
The Songpan-Ganze terrane of the Tibetan plateau is underlain by Neoproterozoic crystalline basement rocks of the Yangtze block. These basement rocks are exposed as a series of extensional tectonic domes that form a nearly north–south trending extensional belt more than 1000 km long in the eastern margin of the Tibetan plateau. In the Danba area, detachment faults separate the basement core complexes (e.g., the Gezong and Gongcai complexes) from the Paleozoic strata which have been thinned or removed completely. The cover sequences have undergone upper greenschist to lower amphibolite facies metamorphism to form the Danba schist and are overlain by the Triassic Xikang Group, a thick flysch sequence. Both the basement rocks and the Paleozoic rocks have undergone multiple stages of deformation and thus provide an excellent opportunity to study the tectono-thermal evolution of the eastern margin of the Tibetan plateau. Two stages of deformation, corresponding to three generations of foliation (S1, , and ), have been recognized on the basis of structural and microscopic observations. We selected amphibole and biotite separates associated with distinct generations of foliation for 40Ar/39Ar dating using laser microprobe incremental heating technique to place numerical constraints on the major tectono-thermal events within the Danba area. The geochronogical results reveal an earliest metamorphic event at 258.6 ± 0.5 Ma (S1 biotite) and 263.6 ± 0.8 Ma (S1 amphibole), coinciding temporally with the mantle plume that produced the voluminous Emeishan flood basalts. The second event was a progressive extensional deformation first occurred at 159–166 Ma ( amphibole) responsible for the earlier tectonic doming of the crystalline basement, and then the final tectono-thermal overprint recorded by foliation and metamorphism locally in the core complexes at 47–58 Ma for the Gezong complex and 64–81 Ma for the Gongcai complex. This major post-orogenic extensional event is believed to be a consequence of collision between the North China and South China blocks. The apparent discrepancy of the 40Ar/39Ar ages observed between localities suggests a slow cooling process associated with progressive uplift.  相似文献   

18.
Isla San Pedro Nolasco (ISPN) is a structural high bounded by inactive dextral oblique-slip faults in the east-central part of the Gulf of California rift zone and is composed of intrusive rocks not exposed on other Gulf of California islands. Here we present the reconnaissance results from geological mapping, as well as first geochemical and geochronological data for the ISPN intrusive complex. The intrusive rocks compose a sheet-like body of intermediate and felsic composition intruded by an intermediate and acidic dike swarm. All intrusive rocks (host and dikes) range in age from ca. 9 Ma to 10 Ma (40Ar/39Ar) and show a hydrous ferromagnesian mineral association (amphibole and biotite) with a calc-alkalic and transitional affinity. This hydrated mineralogical association has not been recognized in the coeval rocks along the onshore western margin of the North American plate (coastal Sonora). However, such hydrous mineralogical association is found in the coeval rift transitional volcanic rocks from the Baja California Microplate at Santa Rosalía and Bahía de Los Ángeles – Bahía de Las Ánimas. The ISPN continental block, at least 40 km long, has been pulled apart by transtensional faulting of the late Miocene Gulf of California shear zone before the westward migration of the North America-Pacific plate boundary at ca. 3–2 Ma. Eventually, ISPN became isolated as an island during the late Miocene flooding of the Gulf of California seaway.  相似文献   

19.
Detailed zircon and apatite U-Pb dating and 40Ar/39Ar dating of actinolite have been carried out on the Carmen-Sierra Aspera Kiruna type magnetite-apatite and iron oxide Cu-Au (IOCG) district in the Coastal Cordillera of northern Chile (∼26°S). They define a precise succession of magmatic and hydrothermal events associated with early Cretaceous Andean magmatism. Apatite and magnetite from a magnetite-apatite tabular body with intergrowth texture in the Carmen deposit yield a total Pb-U isochron age of 131.0 ± 1.0 Ma. This result is the first direct dating of magnetite-apatite mineralization in an early Andean deposit, and the age coincides with zircon ages of a quartz diorite stock that partially hosts mineralization (130.6 ± 0.3 Ma). Magnetite from the studied tabular body contains only small amounts of radiogenic Pb and serves to constrain the initial common Pb isotopic composition. The high degree of correlation suggests that both minerals closed for Pb diffusion at essentially the same time and at a relatively high temperature (close to that of zircon), making the apatite-magnetite pair a reliable geochronometer for igneous or hydrothermal crystallization. Zircon from the Sierra Aspera composite pluton yields ages between 131.3 ± 0.3 Ma and 127.4 ± 0.1 Ma, clearly resolving the timing of intrusion of discrete intrusive phases. Actinolite 40Ar/39Ar ages partially overlap the ages of plutonic phases of the Sierra Aspera pluton, but are younger than the magnetite-apatite tabular body. The initial Pb isotopic composition of the melts and/or fluids from which the magnetite-apatite tabular bodies crystallized is very similar to the primitive Pb isotopic composition of granitic magmas associated with early Cretaceous plutons measured in K-feldspar. The Pb isotopic correspondence, combined with the temporal and spatial association between magnetite-apatite mineralization and the dioritic-quartz dioritic magmatism, strongly suggests a genetic relationship between early Cretaceous continental arc magmatism, massive magnetite-apatite deposits, and IOCG mineralization.  相似文献   

20.
Granitoids play an important role in deciphering both crustal growth and tectonic evolution of Earth. In the eastern end of the Yinshan–Yanshan belt of North China Craton, the Yiwulüshan massif is a typical region that presents the tectonic evolution features of this belt. Our field work on the host rocks has demonstrated two phases of opposite tectonics: compressional and extensional, however, the deformation is almost invisible in the intrusive rocks. To improve the understanding of the tectonic evolution of the Yiwulüshan massif and the Late Mesozoic tectonics of East Asia, a multidisciplinary study has been carried out. In this study, anisotropy of magnetic susceptibility (AMS) and gravity modeling have been applied on these Jurassic plutons (Lüshan, Jishilazi and Guanyindong), which intrude into the Yiwulüshan massif. According to laboratory measurements and microscopic observations on thin sections, the AMS of the Yiwulüshan massif is characterized by secondary fabrics, indicating that the intensive post solidus deformation has reset the (primary) magmatic magnetic fabrics. A relatively gentle NW dipping magnetic foliation has been identified with two distinct groups of magnetic lineations of N34°E and N335°E orientations, namely LM1 and LM2, relatively. Gravity modeling reveals a southward thinning of the massif with a possible feeding zone rooted in the northern part of the massif. Integrating all results from structural observation, geochronological investigation, AMS measurement and gravity modeling, two tectonic phases have been identified in the Yiwulüshan massif, posterior to the Jurassic (180–160 Ma) magmatism in the Yinshan–Yanshan area. The early one concerns a Late Jurassic–Early Cretaceous (~ 141 Ma) compressional event with a top-to-the-south to southwest sense of shear. The second one shows an Early Cretaceous (~ 126 Ma) NW–SE ductile extensional shearing. At that time, sedimentary basins widened and Jurassic plutons started to be deformed under post solidus conditions. In fact, the NW–SE trend of the maximum stretching direction is a general feature of East Asian continent during Late Mesozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号