首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The distribution of Zn, Pb, Cu, Cr, Ni and Co in the plant species and soil of the Zn-Pb sulfide deposits of the Besham area in Pakistan has been studied for geochemical prospecting and environmental pollution. Representative samples of several plant species and associated soil were collected and analyzed by the atomic absorption technique. The data suggest that the plants, especially Plectranthus rugosus, Artemisia indica and Verbascum thapsus, in the mineralized area are enriched in Zn, Pb and Cu (Zn>Pb>Cu) and depleted in Cr, Ni and Co. This is correlated with the concentration of these metals in the associated soil. There is no significant correlation of elements among each other in plants and soil; however, strong correlation of Cu, Cr and Ni has been observed between plants and associate soil. Plectranthus rugosus has the greatest capability for accumulating Zn and Pb in its tissues through soil and can be used as a bioindicator for base metal mineral exploration. This plant along with other plant species such as Artemisia indica and Verbascum thapsus having high scavenging ability for Zn and Pb from the soil and could cause serious environmental and health problems in the living organisms of the area.  相似文献   

2.
The vegetal species Ampelozizyphus amazonicus Ducke (Rhamnaceae Family) was chosen as a sampling medium for the lateritic surfaces of the Pitinga Mine in the Amazon region, in order to study the biogeochemical behavior of this species and compare it with the chemical composition of a reference plant. The Pitinga mining district is one of the largest producers of tin in the world. This district contains unique deposits of cryolite and rare metals such as Zr, Nb, Ta, Y and REEs related to granitic bodies that intrude into the volcanic and acid pyroclastic rocks. The results showed that the species A. amazonicus predominantly concentrates significant levels of Zr, Nb, Ta, Th, Be, Sc over U, Hf, Ga and In. These elements are characteristic of the mineral paragenesis for the region, suggesting that this plant can provide a representative sampling medium future geochemical exploration programs in the region.  相似文献   

3.
The concentration of rare earth elements (REE), thorium and uranium were determined by inductively coupled plasma mass spectrometry (ICP−MS) in the plant species, Pterocarpus santalinus, P. marsupium and P. dalbergioides, and the soils on which they were growing. Higher concentrations of lanthanum (La), cerium (Ce) were observed in both plants and soils. Large amounts of thorium and uranium were found in the soil. In all tree species, the concentration of REEs were higher in the heartwood than the leaves. The heartwood of P. santalinus accumulated larger quantities of uranium (average concentration of 1.22 ppm) and thorium (mean value of 2.57 ppm) than the other two species. Received: 8 September 1999 · Accepted: 15 December 1999  相似文献   

4.
In accordance with the set of species-defining chemical elements in minerals, n-component systems (where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) for all mineral species (4952) known to 2014 inclusive were distinguished. Seventy chemical elements have been established to be species-defining, which are distributed by mineral systems as follows: 1 (29), 2 (62), 3 (68), 4 (61), 5 (61), 6 (55), 7 (49), 8 (38), 9 (28), and 10 (19). The number of mineral species in which certain chemical elements are species-defining has been specified. Oxygen (4041), hydrogen (2755), silicon (1448), calcium (1139), sulfur (1025), aluminum (960), iron (917), sodium (914), copper (616), phosphorous (580), arsenic (575), and magnesium (550) are the leading elements in minerals in the Earth’s crust. It has been found that the most species-defining elements are normally distributed by mineral systems. The distributions of mineral species in various systems from the Khibiny and Lovozero, Kola Peninsula, Russia; and Mont Saint-Hilaire, Quebec, Canada peralkaline plutons were compared and the characters of species-defining element distribution in these localities were compared. Si, Na, K, C, F, Ti, Ce, Zr, Nb, Sr, and Th are “excess” species-defining elements in minerals from the plutons compared to the total number of mineral species, whereas S, Cu, Pb, Cl, B, Te, Ag, Ni, and Be are “scarce” elements.  相似文献   

5.
The results of a multielemental biogeochemical orientation survey carried out in Calabria, southern Italy, are reported in this paper. Five plant species: three herbaceous species, Oenanthe pimpinelloides, Anthemis triumphetti, and a stonecrop (Sedum tenuifolium), a leguminous shrub, spanish broom (Spartium junceum) and laricio pine (Pinus nigra ssp laricio) were studied to determine which species is the most responsive to sulfide mineralization and which are the best indicator elements. Si, Fe, Ti, Mn, Zn, Mo, Cu, and Pb were determined in ashed material by X-ray fluorescence analysis. All the data were treated statistically and classified into geometrically increasing intervals, in order to discriminate anomalous from background values. In addition, an R-mode factor analysis and a correlation analysis were performed to find out whether any specific metal association that could characterize both the lithology and mineralization existed for each plant species. The herbaceous plants, particularly Oenanthe, were much more effective as indicators of mineralization compared with laricio pine. The elements that gave the best indication of sulfide mineralization were Zn and Pb, confirming the usefulness of biogeochemical methods as an additional prospecting tool in Calabria, where such exploration has never been attempted before. R-mode factor analysis was found to be extremely promising as a supplemental tool in the interpretation of results from this biogeochemical survey. Each plant species is always characterized by a metal association (predominantly Pb-Zn-Mn) whose high factor loading scores constantly show a close relationship with proven sulfide mineralization.  相似文献   

6.
A biogeochemical orientation survey was carried out in the vicinity of an epithermal Au deposit in the Moisan Au–Ag mineralized area, Haenam district in Korea. The Au–Ag bearing quartz veins of the mine occur as narrow open-space fillings within Cretaceous silicic pyroclastics. The vein minerals consist mainly of quartz, sericite, pyrite, chalcopyrite, and galena, with some electrum and argentite. The main objectives of this study were to study the geochemical characteristics of rocks, soils and plants in this area, to investigate the spatial relationship between Au and associated elements in rock–soil–plant system, and to evaluate the applicability of biogeochemical prospecting for Au vein occurrences in Korea. Samples of rocks and soils, and leaves of three plant species (Japanese red pine — P. densiflora, oriental white oak — Q. aliena, Japanese mallotus — M. japonicus) were collected from the target mineralized area and control barren locations, and analyzed for trace elements by instrumental neutron activation analysis. Sampling lines were composed of one slope line which is almost parallel to the mineralized quartz-veins, and four transect lines spaced 100 m apart across the veins at 20 m sampling intervals. From the multi-element data of rock samples (n = 9), high values of Au (maximum 2030 ppb) are spatially related to Au–quartz veins. Soil samples (n = 61) collected from five sampling lines show higher values of Au (24–825 ppb) whereas soil samples from the control locations have lower values of Au (below 25 ppb). Many plant species collected from the vicinity of the veins have high Au contents compared with those at the control locations, but the ranges of Au values are variable among plant species. In a total of 128 samples of plant leaves, Q. aliena yielded Au values of 0.4 to 6.9 ppb, and M. japonicus 0.9 to 4.1 ppb. Gold contents in P. densiflora ranged from 0.1 to 5.6 ppb. Plant leaves from control areas show less than 1.6 ppb Au. The biological absorption coefficient (BAC) of Au in plants decreases in the order of Q. aliena > M. japonicus > P. densiflora. Based on the results of the study, Q. aliena appeared to be the best sampling media for biogeochemical prospecting of Au in the study area.  相似文献   

7.
本研究以石灰岩山地淡竹林为研究对象,测定了岩石、土壤和4种淡竹群落植物[优势种淡竹(Phyllostachys glauca),伴生种枸骨(Ilex cornuta)、油茶(Camellia oleifera)和胡颓子(Elaeagnus pungens)]的N、P、K、Ca、Mg、Fe、Al、Mn和Na等9种元素含量,对元素迁移积聚特征进行了分析,结果表明:(1)淡竹林石灰岩Ca含量高(363.09 g· kg-1);土壤Ca含量下降至2.68 g·kg-1,Fe、Al含量升高(48.12 g·kg-1、84.00 g·kg-1);与土壤相比,植物N、P和Ca含量上升,其他元素含量则降低;(2)从岩石到土壤,Ca为纯迁移,迁移积累系数仅为0.01;Fe和Al明显富集,迁移积累系数分别高达9.98和14.10;从土壤到植物,N、Ca、P为富集,Fe、Al生物吸收系数很低,仅为1.41和2.08;(3)除K外,群落优势种淡竹的元素含量和生物吸收系数均小于伴生种。研究发现,强淋溶作用下淡竹林石灰岩发育为酸性红石灰土,其生长的植物均非喜钙植物;“岩石—土壤—植物”元素迁聚特征因土壤发育过程和植物种间特征而异,红石灰土Ca积累少;淡竹对土壤元素需求少可能是其在石灰岩生境占据竞争优势的生理基础。   相似文献   

8.
We describe the new mineral species titanium,ideally Ti,found in the podiform chromitites of the Luobusha ophiolite in Tibet,People’s Republic of China.The irregular crystals range from 0.1 to 0.6 mm in diameter and form an intergrowth with coesite and kyanite.Titanium is silver grey in colour,the luster is metallic,it is opaque,the streak is grayish black,and it is non-fluorescent.The mineral is malleable,has a rough to hackly fracture and has no apparent cleavage.The estimated Mohs hardness is 4,and the calculated density is 4.503 g/cm3.The composition is Ti 99.23-100.00 wt%.The mineral is hexagonal,space group P63 /mmc.Unit-cell parameters are a 2.950(2),c 4.686(1),V 35.32(5) 3,Z = 2.The five strongest powder diffraction lines [d in(hkl)(I/I0)] are: 2.569(010)(32),2.254(011)(100),1.730(012)(16),1.478(110)(21),and 0.9464(121)(8).The species and name were approved by the CNMNC(IMA 2010–044).  相似文献   

9.
Late-glacial-Holocene forest history of southern Isla Chiloé (latitude 43°10′ S) was reconstructed on the basis of pollen analysis in three profiles (Laguna Soledad, Laguna Chaiguata, Puerto Carmen). Prior to 12,500 yr B.P. pollen records are dominated by plant taxa characteristic of open habitats (Zone I). From 12,500 yr B.P. to the present, tree species predominate in the pollen records (Zones II–V). Between 12,500 and 9500 yr B.P. ombrophyllous taxa (Nothofagus, Podocarpus nubigena. Myrtaceae, Fitzroya/Pilgerodendron, and Drimys) are frequent in all pollen diagrams, suggesting a wetter and colder climate than the present. Between 9000 and 5500 yr B.P. Valdivian forest elements, such as Nothofagus dombeyi type, Weinmannia, and Eucryphia/Caldcluvia, dominate, indicating a period of drier and warmer climate. From 5500 yr B.P. onward, the expansion of mixed North Patagonian-Subantarctic forest elements and the increased frequence of Tepualia suggest increased rainfall and temperatures oscillating around the modern values.The change from open to forest vegetation (ca. 12,500 yr B.P.) probably represents the most pronounced climatic change in the record and can be interpreted as the glacial-postglacial transition in the study area.  相似文献   

10.
A new mineral species, named naquite(FeSi), is found in the podiform chromitites of the Luobusha ophiolite in Qusong County, Tibet, China. The detailed composition is Fe 65.65, Si 32.57 and Al 1.78 wt%. The mineral is cubic, space group P213. The irregular crystals range from 15 to 50 μm in diameter and form an intergrowth with luobusaite. Naquite is steel grey in color, opaque, with a metallic lustre and gives a grayish-black streak. The mineral is brittle, has a conchoidal fracture and no apparent cleavage. The estimated Mohs hardness is 6.5, and the calculated density is 6.128 g/cm3. Unit-cell parameters are a 4.486 (4) ?, V 90.28 (6) ?3, Z=4. The five strongest powder diffraction lines [d in ? (hkl) (I/I0)] are: 3.1742 (110) (40), 2.5917(111) (43), 2.0076 (210) (100), 1.8307 (211) (65), and 1.1990 (321) (36). Originally called ‘fersilicite’, the species and new name have now been approved by the CNMNC (IMA 2010–010).  相似文献   

11.
Ten kilometres from the eastern edge of the Athabasca Sandstone, near McClean Lake, uranium mineralization (locally up to 27% U3O8) lies 150 m beneath the surface at the unconformity between the Athabasca and crystalline basement.A biogeochemical survey of the area sampled AH and BF soil horizons, peat moss, and plant organs from the dominant species, viz. black spruce (Picea mariana), jack pine (Pinus banksiana), labrador tea (Ledum groenlandicum), and leather leaf (Chamaedaphne calyculata). Uranium concentrations in the ash of various media are surprisingly high: spruce twigs up to 154 ppm U; labrador tea and leather leaf stems around 100 ppm U. Conversely, labrador tea roots yield < 5 ppm U and spruce trunk wood usually < 1 ppm U. Soils give values of 1–3 ppm U. Contoured U values reveal that highest concentrations occur in plants growing above, but laterally displaced from the mineralization. Track-Etch data show a similar pattern. Upward migration of ions along steeply inclined fractures is invoked to explain the phenomenon. Other elements are present in varying concentrations, depending upon the plant species and the plant organ. High concentrations of several elements are recorded, most notably Cd and Ag in the conifers.  相似文献   

12.
New constraints on metamorphism in the Rauer Group, Prydz Bay, east Antarctica   总被引:12,自引:0,他引:12  
Abstract Granulite facies metapelites of the Mather and Filla Paragneisses within the Rauer Group, east Antarctica, possess markedly different compositions. The metamorphic evolution of the two metapelite types has been interpreted as temporally distinct, with the Rauer Group preserving at least two distinct granulite facies tectonothermal episodes. Calculated P–T pseudosections and orthopyroxene Al content indicate the revised maximum‐preserved P–T conditions within the Mather Paragneiss to lie in the vicinity of 950–975 °C and 10–10.6 kbar, less extreme than previous estimates. The range of possible P–T paths for the Mather Paragneiss consistent with mineral textural relationships and pseudosections contoured for mineral proportion are significantly shallower (dP/dT) than previous estimates. A near‐isothermal decompression P–T path, and extreme peak metamorphic conditions, are not necessary to explain the development of preserved mineral reaction textures. The Filla Paragneiss contains pelitic assemblages less amenable to rigorous quantitative analysis. Nevertheless, possibilities for the shared or otherwise metamorphic evolution of the Mather and Filla Paragneisses may be postulated on the basis of calculated pseudosections in the context of existing geochronology for the Rauer Group and preserved microstructures. A shared evolution, most likely during Pan‐African granulite facies metamorphism, is plausible and consistent with mineral assemblage development, geochronology and microstructures. A revised interpretation of the Rauer Group's preserved metamorphic evolution may warrant the revision of existing tectonic models, applicable also to the remainder of Prydz Bay. More generally, the employed approach may incite a revision of peak P–T and P–T paths in other granulite facies terranes.  相似文献   

13.
Lisiguangite, CuPtBiS3, is a new mineral species discovered in a PEG-bearing, Co-Cu sulfide vein in garnet pyroxenite of the Yanshan Mountains, Chengde Prefecture, Hebei Province, China. It is associated with chalcopyrite and bornite, galena, minor pyrite, carrolite, molybdenite and the platinum-group minerals daomanite (CuPtAsS2), Co-bearing malanite (Cu(Pt, Co)2S4) sperrylite, moncheite, cooperite and malyshevite (CuPdBiS3), rare damiaoite (Pt2In3) and yixunite (Pt3In). Lisiguangite occurs as idiomorphic crystals, tabular or lamellae (010) and elongated [100] or as aggregates, up to 2 mm long and 0.5 mm wide. The mineral is opaque, has lead-gray color, black streak and metallic luster. The mineral is non-fluorescent. The observed morphology displays the following forms: pinacoids {100}, {010}, {001}, and prism {110}. No twining is observed. The a:b:c ratio, calculated from unit-cell parameters, is 0.6010:1:0.3836. Cleavage: {010} perfect, {001} distinct, {100} may be visible. H Mohs: 21/2; VHN25=46.7-49.8 (mean 48.3) kg/mm2. Tenacity: brittle. Lisiguangite is bright white with a yellowish tint. In reflected light it shows neither internal reflections nor bireflectance or pleochroism. It has weak to moderate anisotropy (blue-greenish to brownish) and parallel-axial extinction. The reflectance values in air (and in oil) for R3, R4 and (imR3, imR4), at the standard Commission on Ore Mineralogy wavelengths are: 37.5, 35.7 (23.4, 22.3) at 470 nm; 38.6, 36.5 (23.6, 22.6) at 546 nm; 39.4, 37.5 (23.6, 22.7) at 589 nm and 40.3, 38.2 (23.7, 22.9) at 650 nm. The average of eight electron-microprobe analyses: Cu 12.98, Pt 30.04, Pd 2.69, Bi 37.65 and S 17.55, totaling 100.91%, corresponding to Cu1.10(Pt 0.83, Pd0.14)Σ0.97Bi0.97S2.96 based on six atoms apfu. The ideal formula is CuPtBiS3. The mineral is orthorhombic. Space group: P212121, a=7.7152(15)?,b=12.838(3)?, c=4.9248(10)?, V=487.80(17)?3, Z=4. The six strongest lines in the X-ray powder-diffraction pattern [d in ? (I) (h k l) are 6.40(30)(020), 3.24(80)(031), 3.03(100)(201), 2.27(40)(051), 2.14(50)(250), 1.865(60)(232).  相似文献   

14.
V. Raghu 《Environmental Geology》2001,40(10):1265-1277
Different plant organs and their corresponding substrate samples were collected from Mangampeta and Vemula barite mining areas of Cuddapah District, Andhra Pradesh. The presence of Indigofera cordifolia exclusively developed on mine dumps of the Vemula barite area and its significant absence away from the mining area shows its indicator characteristics for barium from the geobotanical point of view. Multi-element analysis of these samples was carried out and thebiological absorption coefficient (BAC) was calculated. The BAC is the ratio of the concentration of an element in plant ash to that of its substrate. The results show the presence and/or absence of certain elements in plants and soils, which can be explained on the basis of biogeochemical cycling of elements, exclusion mechanisms, and bioavailability. Further, Tridax procumbens (Li), I. cordifolia (Ba), Cassia angustifolia (Sr), and Kirganelia reticulata (Co) are identified as accumulator plants without considering their substrate concentration. Based on BAC, C. angustifolia (Sr) and Tephrosia purpurea (Zn) are determined to be accumulator plants. Such plant species may be useful in mineral exploration, and reclamation and revegetation of adversely affected mining environments.  相似文献   

15.
ABSTRACT

Metaconglomerates in the lawsonite–blueschist facies unit of the Catalina Schist (California) contain gabbroic and dioritic clasts exhibiting evidence for extensive metasomatism during high-P/T metamorphism. We performed whole-rock and in situ analyses of these metaconglomerate clasts to better constrain the composition of infiltrating fluids and to elucidate the history of chemical alteration. Petrographic evidence for this alteration includes replacements of plagioclase by phengite and sodic amphibole rims developed on igneous hornblende. These observations regarding mineral replacement are reinforced by corresponding shifts in chemical compositions. Relative to compositions of presumed protoliths, whole-rock compositions of the metaconglomerate clasts show enrichments in elements that are relatively mobile in aqueous fluids (LILE: K, Rb, Cs, and Ba; Li, B, N), and elevated δ15N, and show depletions in Ca and Sr. Electron and ion microprobe data, and analyses of mineral separates, show that phengite and sodic amphibole are enriched in LILE and Li and B, respectively, relative to the igneous phases they have replaced. Oxygen and C isotope compositions of finely disseminated calcite in the clasts, and of calcite in veins cross-cutting or mantling the clasts, are consistent with crystallization from fluids previously equilibrated with metasedimentary rocks within the same unit. The same fluids are implicated as the source for the Li, B, N, and LILE enrichments. These metaconglomerate clasts provide unique records of forearc metasomatism due to the presumed extremely low and well-constrained concentrations of fluid-mobile elements in their protoliths and the previously published, larger-scale fluid–rock context into which the observed metasomatic changes can be placed.  相似文献   

16.
《Applied Geochemistry》2001,16(2):137-159
Five hundred and ninety-eight samples of terrestrial moss (Hylocomium splendens and Pleurozium schreberi) collected from a 188,000 km2 area of the central Barents region (NE Norway, N Finland, NW Russia) were analysed by ICP-AES and ICP-MS. Analytical results for Al, B, Ba, Ca, K, La, Mg, Mn, Na, P, Rb, Si, Sr, Th, U and Y concentrations are reported here. Graphical methods of data analysis, such as geochemical maps, cumulative frequency diagrams, boxplots and scatterplots, are used to interpret the origin of the patterns for these elements. None of the elements reported here are emitted in significant amounts from the smelting industry on the Kola Peninsula. Despite the conventional view that moss chemistry reflects atmospheric element input, the nature of the underlying mineral substrate (regolith or bedrock) is found to have a considerable influence on moss composition for several elements. This influence of the chemistry of the mineral substrate can take place in a variety of ways. (1) It can be completely natural, reflecting the ability of higher plants to take up elements from deep soil horizons and shed them with litterfall onto the surface. (2) It can result from naturally increased soil dust input where vegetation is scarce due to harsh climatic conditions for instance. Alternatively, substrate influence can be enhanced by human activity, such as open-cast mining, creation of ‘technogenic deserts’, or handling, transport and storage of ore and ore products, all of which magnify the natural elemental flux from bedrock to ground vegetation. Seaspray is another natural process affecting moss composition in the area (Mg, Na), and this is most visible in the Norwegian part of the study area. Presence or absence of some plant species, e.g., lichens, seems to influence moss chemistry. This is shown by the low concentrations of B or K in moss on the Finnish and Norwegian side of the (fenced) border with Russia, contrasting with high concentrations on the other side (intensive reindeer husbandry west of the border has selectively depleted the lichen population).  相似文献   

17.
Mineral deposits frequently contain several elements of interest that are spatially correlated and require the use of joint geostatistical simulation techniques in order to generate models preserving their spatial relationships. Although joint-simulation methods have long been available, they are impractical when it comes to more than three variables and mid to large size deposits. This paper presents the application of block-support simulation of a multi-element mineral deposit using minimum/maximum autocorrelation factors to facilitate the computationally efficient joint simulation of large, multivariable deposits. The algorithm utilized, termed dbmafsim, transforms point-scale spatial attributes of a mineral deposit into uncorrelated service variables leading to the generation of simulated realizations of block-scale models of the attributes of interest of a deposit. The dbmafsim algorithm is utilized at the Yandi iron ore deposit in Western Australia to simulate five cross-correlated elements, namely Fe, SiO2, Al2O3, P and LOI, that are all critical in defining the quality of iron ore being produced. The block-scale simulations reproduce the direct- and cross-variograms of the elements even though only the direct variograms of the service variables have to be modeled. The application shows the efficiency, excellent performance and practical contribution of the dbmafsim algorithm in simulating large multi-element deposits.  相似文献   

18.
Very few studies deal with the biogeochemical behaviors of rare earth elements (REEs) in goldfields. This paper presents the geochemical and biogeochemical characteristics of REEs within the soil–plant system in the Hetai goldfield, Guangdong, China. The samples from the goldfield region show anomalies in distribution patterns and behavioral characteristics of REES as compared with those from the background areas. The REEs in rocks, soils, and plants prove to be much higher than those in the surrounding regions. The distribution patterns of REEs are characterized by LREE-enrichment and HREE-depletion, with the REE concentrations in Layer A being the highest. Differentiations between LREEs and HREEs may lead to some extent of negative Eu anomaly in the soils. Research results demonstrate that the REEs in a soil profile can be transferred and accumulated during the mineral formation and supergenic geochemical processes, and the anomalies are obviously related to the geological settings for the REE-bearing ore-forming processes and to the geochemical characteristics of the habitats for the REE-bearing plants. For Dicranopteris dichotoma, the total amount of REEs in the tissues shows an order of leaf > root > stem, while for Pinus massoniana the order becomes root > leaf > stem. The distribution patterns of REEs in Pinus massoniana leaves are similar to those in soils where the plants grow up in the mineralization area. However, in the background areas the REE distribution patterns for Pinus massoniana stems are similar to those for soils where the plants grow up. Parameters such as biological absorption coefficients and biological transfer coefficients show the differences in REE absorption features among plants and indicate that REEs can be transferred among plant organs. The two coefficients can reveal the different survival mechanisms for the two plant species, which are subject to long-term REE-affected stress conditions in the gold mineralization zone.  相似文献   

19.
Granulite facies magnesian metapelites commonly preserve a wide array of mineral assemblages and reaction textures that are useful for deciphering the metamorphic evolution of a terrane. Quantitative pressure, temperature and bulk composition constraints on the development and preservation of characteristic peak granulite facies mineral assemblages such as orthopyroxene + sillimanite + quartz are assessed with reference to calculated phase diagrams. In NCKFMASH and its chemical subsystems, peak assemblages form mainly in high‐variance fields, and most mineral assemblage changes reflect multivariant equilibria. The rarity of orthopyroxene–sillimanite–quartz‐bearing assemblages in granulite facies rocks reflects the need for bulk rock XMg of greater than approximately 0.60–0.65, with pressures and temperatures exceeding c. 8 kbar and 850 °C, respectively. Cordierite coronas mantling peak minerals such as orthopyroxene, sillimanite and quartz have historically been used to infer isothermal decompression P–T paths in ultrahigh‐temperature granulite facies terranes. However, a potentially wide range of P–T paths from a given peak metamorphic condition facilitate retrograde cordierite growth after orthopyroxene + sillimanite + quartz, indicating that an individual mineral reaction texture is unable to uniquely define a P–T vector. Therefore, the interpretation of P–T paths in high‐grade rocks as isothermal decompression or isobaric cooling may be overly simplistic. Integration of quantitative data from different mineral reaction textures in rocks with varying bulk composition will provide the strongest constraints on a P–T path, and in turn on tectonic models derived from these paths.  相似文献   

20.
The invasion of alien species is a significant threat to global biodiversity and the top driver of climate change. The present study was conducted in the Great Rann of Kachchh, part of Kachchh Biosphere Reserve, Gujarat, India, which has been severely affected by invasion of Prosopis juliflora. The invasive weed infestation has been identified using multi-temporal remote sensing datasets of 1977, 1990, 1999, 2005 and 2011. Spatial analyses of the transition matrix, extent of invasive colonies, patchiness, coalescence and rate of spread were carried out. During the study period of three and half decades, almost 295 km2 of the natural land cover was converted into Prosopis cover. This study has shown an increment of 42.9% of area under Prosopis cover in the Great Rann of Kachchh, part of the Kachchh Biosphere Reserve during 1977 to 2011. Spatial analysis indicates high occupancy of Prosopis cover with most of the invasion (95.9%) occurring in the grasslands and only 4.1% in other land cover types. The process of Prosopis invasion shows high patch initiation, followed by coalescence, indicating aggressive colonization of species. The number of patches within an area of < 1 km2 increased from 1977 to 2011, indicating the formation of new Prosopis habitats by replacing the grasslands. The largest patch of Prosopis cover increased from 144 km2 in 1977 to 430 km2 in 2011. The estimated mean patch size was 7.8 km2 in 1977. The mean patch size was largest during 2011, i.e., 9 km2. The annual spread rate for Prosopis has been estimated as 2.1% during 2005–2011. The present work has investigated the long term changes in Prosopis cover in the Great Rann of Kachchh, part of Kachchh Biosphere Reserve. The spatial database generated will be useful in preparing strategies for the management of Prosopis juliflora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号