首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Relativity, or gravitational physics, has widely entered geodetic modelling and parameter determination. This concerns, first of all, the fundamental reference systems used. The Barycentric Celestial Reference System (BCRS) has to be distinguished carefully from the Geocentric Celestial Reference System (GCRS), which is the basic theoretical system for geodetic modelling with a direct link to the International Terrestrial Reference System (ITRS), simply given by a rotation matrix. The relation to the International Celestial Reference System (ICRS) is discussed, as well as various properties and relevance of these systems. Then the representation of the gravitational field is discussed when relativity comes into play. Presently, the so-called post-Newtonian approximation to GRT (general relativity theory) including relativistic effects to lowest order is sufficient for practically all geodetic applications. At the present level of accuracy, space-geodetic techniques like VLBI (Very Long Baseline Interferometry), GPS (Global Positioning System) and SLR/LLR (Satellite/Lunar Laser Ranging) have to be modelled and analysed in the context of a post-Newtonian formalism. In fact, all reference and time frames involved, satellite and planetary orbits, signal propagation and the various observables (frequencies, pulse travel times, phase and travel-time differences) are treated within relativity. This paper reviews to what extent the space-geodetic techniques are affected by such a relativistic treatment and where—vice versa—relativistic parameters can be determined by the analysis of geodetic measurements. At the end, we give a brief outlook on how new or improved measurement techniques (e.g., optical clocks, Galileo) may further push relativistic parameter determination and allow for refined geodetic measurements.  相似文献   

11.
《Journal of Geodesy》2012,86(10):787-974
  相似文献   

12.
13.
14.
15.
应用测量学及其教学改革   总被引:35,自引:3,他引:35  
将高等学校非测绘学科开设的关于地球空间信息学科知识的课程称为“应用测量学”,就其理由和教学面临的问题,课程内容、教材和实践教学,教学条件的改善阐述了作者的见解。  相似文献   

16.
林明华 《测绘通报》2011,(11):91-94
以布鲁纳理论和罗杰斯理论为指导,从课堂教学、课后作业、实践动手能力、记忆与想象力4个方面,阐述一切以学生为中心,以想象力作为获取知识的桥梁的教学方法。通过将所学理论在头脑中视觉化和影像化,使得抽象的理论问题转换为具体的形象问题,最终达到长期记忆和灵活运用技能的目的。  相似文献   

17.
18.
19.
概述整体大地测量学与GPS检验网的概念和模型,以及国外3维GPS检验网概况,用实测数例说明2维GPS检验网的不足。讨论深层检验GPS接收机性能的重要性。  相似文献   

20.
从工程控制测量、大比例尺数字测图、施工放样、工业测量系统、变形监测和工程专题信息系统等6个方面,介绍了测量工程学的发展现状及取得的成就。可以看出,GPS测量技术和测量机器人技术已成为工程测量的主要应用技术,贯穿于各种工程中及工程测量的全过程;工业测量系统是测量工程学科最具活力的发展方向,在国防工业武器装备制造中发挥了巨大的作用。结合我院实际情况和今后学科二期建设的目标,指出了未来工测专业的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号