首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An exact analysis of the effects of mass transfer on the flow of a viscous incompressible fluid past an uniformly accelerated vertical porous and non-porous plate has been presented on taking into account the free convection currents. The results are discussed with the effects of the Grashof number Gr, the modified Grashof number Sc, the Schmidt number Sc, and the suction parametera for Pr (the Prandtl number)=0.71 representating air at 20°C.Nomenclature a suction parameter - C species concentration - C species concentration at the free stream - g acceleration due gravity - Gc modified Grashof number (vg*(C C )/U 0 3 ) - Pr Prandtl number (C p/K) - T temperature of the fluid near the plate - T dimensionless temperature near the plate ((T-T )/(T -T )) - U(t) dimensionless velocity of the plate (U/U 0) - v normal velocity component - v 0 suction/injection velocity - x, y coordinate along and normal to the plate - v kinematic viscosity (/gr) - C p specific heat at constant pressure - C w species concentration at the plate - C non-dimensional species concentration ((C-C )/(C w -C )) - Gr Grashof number (g(T w -T )/U 0 3 ) - D chemical molecular diffusivity - K thermal conductivity - Sc Schmidt number (/D) - T w temperature of the plate - T free stream temperature - t time variable - t dimensionless time (tU 0 2 /) - U 0 reference velocity - u velocity of the fluid near the plate - u non-dimensional velocity (u/U 0) - v dimensionless velocity (v/U 0) - v 0 non-dimensionalv 0 (v 0 /U0)=–at–1/2 - y dimensionless ordinate (yU 0/) - density of the fluid - coefficient of viscosity  相似文献   

2.
The area preserving mapping x = x + a(yy 3), y = ya(xx3), for 0.3 a 2.0 has been studied to locate approximately the x-axis points bounding almost stable regions. For each value of a, these are fixed points with variational trace just greater than 2.0. Transition to chaos can occur rapidly as a increases (with n/k fixed).  相似文献   

3.
Two dimensional source brightness distributions at 26.4 MHz for solar bursts of spectral type II, III, IV, and V are derived from observations with a multiple-baseline, time-sharing interferometer system. It was designed explicitly to study the large angle (40 halo) component of low frequency solar bursts first reported by Weiss and Sheridan (1962). Thirty-two bursts occurring in the interval of June–August, 1975, were fit with a circular gaussian core and an elliptical gaussian halo component. Half-power halo diameters (E-W×N-S) averaged 30×28 for type III bursts and 42×27, 28×37, 30×25 for type V, II and IV bursts respectively. Typical core sizes fell in the range of 10±4 giving 31 halo to core size ratio. All burst types were found to have some large angle structure: the specific intensity was 10% compared to the core but the total power in each component was comparable. Two processes for producing the core-halo structure of type III bursts are compared: scattering and refraction of a point source and refraction from many sources over an extended region. It is concluded that the core can be explained by either model but the halo is more consistent with emission from an extended source region of 40° in longitude.  相似文献   

4.
An analysis of the effects of Hall current on hydromagnetic free-convective flow through a porous medium bounded by a vertical plate is theoretically investigated when a strong magnetic field is imposed in a direction which is perpendicular to the free stream and makes an angle to the vertical direction. The influence of Hall currents on the flow is studied for various values of .Nomenclature c p specific heat at constant pressure - e electrical charge - E Eckert number - E electrical field intensity - g acceleration due to gravity - G Grashof number - H 0 applied magnetic field - H magnetic field intensity - (j x , j y , j z ) components of current densityJ - J current density - K permeability of porous medium - M magnetic parameter - m Hall parameter - n e electron number density - P Prandtl number - q velocity vector - (T, T w , T ) temperature - t time - (u, v, w) components of the velocity vectorq - U 0 uniform velocity - v 0 suction velocity - (x, y, z) Cartesian coordinates Greek Symbols angle - coefficient of volume expansion - e cyclotron frequency - frequency - dimensionless temperature - thermal conductivity - coefficient of viscosity - magnetic permeability - kinematic viscosity - mass density of fluid - e charge density - electrical conductivity - e electron collision time  相似文献   

5.
6.
This work contains a transformation of Hill-Brown differential equations for the coordinates of the satellite to a type which can be integrated in a literal form using an analytical programming language. The differential equation for the parallax of the satellite is also established. Its use facilitates the computation of Hill's periodic intermediary orbit of the satellite and provides a good check for the expansion of the coordinates and frequencies. The knowledge of the expansion of the parallax facilitates the formation of differential equations for terms with a given characteristic. These differential equations are put into a form which favors the solution by means of iteration on the computer. As in the classical theory we obtain the expansions of the coordinates and of the parallax in the form of trigonometric series in four arguments and in powers of the constants of integration. We expand the differential operators into series in squares of the constants of integration. Only the terms of order zero in these expansions are employed in the integration of the differential equations. The remaining terms are responsible for producing the cross-effects between the perturbations of different order. By applying the averaging operator to the right sides of the differential equations we deduce the expansion of the frequencies in powers of squares of the constants of integration.Basic Notations f the gravitational constant - E the mass of the planet - M the mass of the satellite - t dynamical time - x, y, z planetocentric coordinates of the satellite - u x+y–1 - s x–y–1 - the planetocentric distance of the satellite - w 1/ - 0 the variational part of - w 0 the variational part ofw, - n the mean daily sidereal motion of the satellite - a the mean semi-major axis of the satellite defined by means of the Kepler relation:a 3 n 2=f(E+M) - a the mean semi-major axis defined as the constant factor attached to the variational solution - e the constant of the eccentricity of the satellite - the sine of one half the orbital inclination of the satellite relative to the orbit of the sun - c(n–n) the anomalistic frequency of the satellite - c 0 the part ofc independent frome,e, and - g(n–n) the draconitic frequency of the satellite, - g 0 the part ofg independent frome,e, and - exp (n–n)t–1 - D d/d - e the eccentricity of the solar planetocentric orbit - a the semi-major axis of the solar orbit - n the mean daily motion of the sun in its orbit around the planet - m n/(n–n) - a/a-the parallactic factor - the disturbing function  相似文献   

7.
We analyze a time series of high resolution observations near the solar limb, obtained in H and the Mg b1 line. We identified arch-shaped dark mottles, which are thin, faint H structures observable under very good seeing conditions, best seen in H +0.75 Å. Their mean length is about 15, their mean height about 6 and indicative lifetimes is of the order of 5 min. They show negative (away from the observer) line-of-sight velocities. A possible interpretation is that material flows from the apex towards the feet of the arches.  相似文献   

8.
We have investigated the role of the 200yr period discovered by Vienne and Duriez (1992) on the tidal evolution of the Mimas–Tethys system through the 2:4 ii present resonance. Three terms are found to generate this period. We present a perturbedpendulum model in which these terms bring about a perturbation to the ideal ii resonance pendulum, which is in a direct ratio to the eccentricity e of Tethys. Although e is now very small, it is shown that this quantity could have been much greater in the past. We also show, thanks to this model, that these terms may have brought about a stochastic layer of noticeable width at the time of capture in the ii resonance, with the consequence that the possible values of the inclination i of Mimas before capture range from 0.4° to 0.6° (these uncertainties arise from the present uncertainties on e). The role of each one of the three terms is examined in the appearance of chaos. A capture into the 1/1 secondary resonance (between the libration period of the primary ii resonance and the period of about 200yr) is found possible. It means that the system could have experienced several captures in the primary resonance, instead of a single one, and that i could have been, with this assumption, much lower than 0.4°. A probability of capture into this secondary resonance as a function of the eccentricity of Tethys on encounter is derived, using Malhotra's method (Malhotra, 1990). Allan's values of i = 0.42° and e 0 (Allan, 1969) are therefore called into question, and taking e 0 is shown to be absolutely necessary if we want to understand the phenomena at work in the Mimas–Tethys system.  相似文献   

9.
Three integrals of motion have been found in the three-dimensional elliptic restricted three-body problem for small eccentricitye of the relative orbit of the primaries and small distancer and eccentricitye of the orbit of the third body around a primary. The integrals are given in the form of formal series in the mass-ratio , the eccentricitiese, e and the coordinates and velocities. These integrals depend periodically on the time.  相似文献   

10.
The energy levels and wave functions of hydrogen and helium atoms in the presence of large (107G) magnetic fields are found by assuming that the eigenvalues and eigenvectors may be approximated by those of a truncated Hamiltonian matrix. In these atoms, fields of this size produce, in addition to the usual Paschen-Back effect, a quadratic Zeeman effect. This contributes an upward shift to the energy of all levels, which at sufficiently high fields dominates the Paschen-Back splitting.The behavior of a number of eigenvalues and wave functions as a function of magnetic field is presented. The effects of the field on the wavelengths and strengths of the components of H and the helium lines 4471, 4026 and 4120 as well as the forbidden 4025 are examined. In hydrogen the lines are split into components attributed to the now nondegenerate transitionsnlm lnlml. In helium forbidden lines are excited, which may develop strengths larger than those of the allowed lines.  相似文献   

11.
An analysis of the two-dimensional flow of water at 4°C past an infinite porous plate is presented, when the plate is subjected to a normal suction velocity and the heat flux at the plate is constant. Approximate solutions are derived for the velocity and temperature fields and the skin-friction. The effects ofG (Grashof number) andE (Eckert number) on the velocity and temperature fields are discussed.Nomenclature u, v velocity components of the fluid inx, y direction - g acceleration due to gravity - coefficient of thermal expansion of water at 4°C - v kinematic viscosity - density - T temperature inside thermal boundary layer - T free-stream temperature - k thermal conductivity - C p specific heat at constant pressure  相似文献   

12.
We study a theory for the ninth satellite of Saturn, Phoebe, based on the literal solution we have obtained in the main problem of the lunar theory.These series were computed by solving, by successive approximations, the Lagrange's equations expressed in variables, functions of the elliptic elements.We may consider the case of Phoebe simpler than a lunar case because we seek less precision (1/10 geocentric) than in the Lunar case, although the eccentricity of Phoebe is stronger.Main problem: our series are computed to the complete seventh order and a great part of the perturbations of the eighth and ninth order, where we have attributed to the small lunar parameters the order 1 tom 0=n/n 0,e 0,e, sin (i 0/2), the order 2 to 0=(a 0/a)((M 1–)/(M 1+M)) and the order 4 toµ 0(a 0/a)M 1 M/M 1 2M 2.In the case of Phoebe,µ 0 equal zero and ±0 is the ratioa 0/a.We study the further development of these series by using, instead of parameterm 0, the quantity m 0=n/n 0m 1 wherem 1 is an approached value ofm 0, in order to accelerate the convergence of the series with respect tom 0.Comparison with a numerical integration we are adjusting a numerical integration to the observations. We have already more than 100 observations, for the period 1900–1957.At first, we compare the series of the main problem to a numerical integration of the Keplerian problem.

Proceedings of the Conference on Analytical Methods and Ephemerides: Theory and Observations of the Moon and Planets. Facultés universitaires Notre Dame de la Paix. Namur, Belgium, 28–31 July, 1980.  相似文献   

13.
The Hall effect on the unsteady hydromagnetic free-convection resulting from the combined effects of thermal and mass diffusion of an electrical-conducting liquid through a porous medium past an infinite vertical porous plate in a rotating system have been analysed. The expressions for the mean velocity, mean skin friction, and mean rate of heat transfer on the plate are derived. The effects of magnetic parameterM, Hall parameterm, Ekman numberE, and permeability parameterK * on the flow field are discussed with the help of graphs and tables.Nomenclature C p specific heat at constant pressure - C the species concentration inside the boundary layer - C w the species concentration at porous plate - C the species concentration of the fluid at infinite - C dimensionless species concentration - D chemical molecular diffusivity - E Ekman number - Ec Eckert number - g acceleration due to gravity - Gr Grashof number - Gm modified Grashof number - H 0 applied magnetic field - (J x, Jy, Jz) components of current density - M magnetic parameter - m Hall parameter - P Prandtl number - q m mean rate of heat transfer - Sc Schmidt number - t time - t dimensionless time - T temperature of fluid - T w temperature of the plate - T temperature of fluid at infinite - T dimensionless temperature - (u, v, w) components of the velocityq - w 0 suction velocity - (x, y, z) Cartesian coordinates - z dimensionless coordinate normal to the plate Greek symbols coefficient of volume expansion - * coefficient of thermal expansion with concentration - frequency - dimensionless frequency - k thermal conductivity - K * permeability parameter - dinematic viscosity - density of the fluid in the boundary layer - coefficient of viscosity - e magnetic permeability - angular velocity - electrical conductivity of the fluid - m mean skin friction - mn mean skin friction in the direction ofx - mv mean skin friction in the direction ofy  相似文献   

14.
15.
Unsteady two-dimensional hydromagnetic flow of an electrically conducting viscous incompressible fluid past a semi-infinite porous flat plate with step function change in suction velocity is studied allowing a first order velocity slip at the boundary condition. The solution of the problem is obtained in closed form and the results are discussed with the aid of graphs for various parameters entering in the problem.Notations B intensity of magnetic field - H magnetic field parameter,H=(M+1/4)1/2–1/2 - h rarefaction parameter - L 1 slip coefficient; ;I, mean free path of gas molecules;f, Maxwell's reflection coefficient - M magnetic field parameter - r suction parameter - t time - t dimensionless time - u velocity of the fluid - u dimensionless velocity of the fluid - U velocity of the fluid at infinity - v suction velocity - v 1 suction velocity att<=0 - v 2 suction velocity att>0 - x distance parallel to the plate - y distance normal to the plate - y nondimensional distance normal to the plate - v kinematic viscosity - electric conductivity of the fluid - density of the fluid - shear stress at the wall - nondimensional shear stress at the wall - erf error function - erfc complementary error function  相似文献   

16.
The potential of a body of revolution is expanded in a series of spherical functions. It is proved that, for a body with analytical density limited by an analytical surface the coefficients of expansion decrease in geometrical progression.
. , , , .
  相似文献   

17.
In the present paper, the effects of free convection currents and the viscous dissipation on the unsteady flow of an electrically conducting and viscous incompressible fluid around an uniformly accelerated vertical porous plate subjected to a suction or injection velocity inversely proportional to the square root of time, in presence of a transverse magnetic field, have been investigated. Analytical solutions for the velocity and the temperature distributions, the skin-friction and the rate of heat transfer are obtained for small magnetic parameterM. During the course of discussion the effects of the Grashof number Gr, the Eckert number Ec, the suction/injection parametera have been considered for unit value of the Prandtl number Pr.Nomenclature a suction/injection parameter - C p specific heat at constant pressure - B 0 magnetic induction - g acceleration due to gravity - Gr Grashof number (g(T w –T )/U 0 3 ) - K thermal conductivity - M magnetic field parameter (B 0 2 /U 0 2 ) - Pr Prandtl number (C p/K) - T temperature of the fluid near the plate - T w temperature of the plate - T temperature of the fluid at infinity - t time - t dimensionless time (tU 0 2 /) - u velocity of the fluid - u non-dimensional velocity (u/U 0) - U velocity of the plate - U dimensionless velocity of the plate (U/U 0) - U 0 reference velocity - v 0 suction velocity - v 0 non-dimensional suction velocity (v 0/U 0)=at –1/2 - Ec Eckert number ((U 0)2/3/C p(T w –T )) - T dimensionless temperature of the fluid near the plate ((T–T )/(T w –T )) - x, y coordinates along and normal to the plate - x, y dimensionless coordinates (y=yU 0/) - kinematic viscosity - coefficient of volume expansion - electric conductivity of the fluid - y/2t 1/2 - density of the fluid - skin-friction - dimensionless skin-friction - q rate of heat transfer - q non-dimensional rate of heat transfer - coefficient of viscosity - e magnetic permeability On leave of absence from Department of Mathematics, University of Dhaka, Bangladesh  相似文献   

18.
Wan, Wilson and Sen (1986) have examined the scope of Modified Spherical Harmonic Method in a plane medium scattering anisotropically. They have used the phase functionp(µ, µ) = 1 +aµµ. In this paper, the Transfer Equation has been solved by the Modified Spherical Harmonic Method using the phase functionp(µ, µ) = 1 + 1 P 1(µ)P 1(µ) + 2)P 2(µ)P 2(µ) and a few sets of numerical solution have been predicted for three different cases.  相似文献   

19.
The observed variation of reddening as function of the heliocentric distance and the spatial variation of reddening within the coma of Comet West in the visual wavelength range have been considered to infer the properties of the cometary dust grains. The relevant model incorporates the variation in the size distribution function as well as the composition of the spherical grains. The real part of the complex index of refraction (m = m – im) is chosen such thatm = 1.6. The imaginary part is required to vary from m = 0.2 to 0.05 over the wavelength range 0.4 to 0.7 m. This choice of refractive index corresponds to dirty silicate grains. As a by-product, the model also satisfies the observed polarization and albedo for the Comet West.  相似文献   

20.
The synthetic Voigt profile of the following transitions (v=0,v=0), (v=0,v=1), (v=1,v=1), (v=1,v=0) have been computed for different concentrations and temperatures of CO and compaed to the measured intensities of the UV sunspot spectrum by a high resolution spectrograph. From this comparison the solar minimum temperature has been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号