首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Izmir Bay is one of the most polluted estuaries in the Mediterranean Sea. The extent of pollution due to anthropogenic inputs in the Izmir Bay is investigated on the basis of nutrients together with basic oceanographic parameters. Significant phosphate, nitrogen (N) and iron (Fe) enrichment has been found in the water of inner Izmir Bay. The situation of middle Izmir Bay is also similar but not as critical as in inner Izmir Bay, whereas outer Izmir Bay shows 'typical Mediterranean coastal marine ecosystem' characteristics. The average atomic ratios of apparent oxygen utilization (AOU) and nutrient fractions (N and phosphorous [P]) have been found as AOU:P (49:1), AOU:N (48:1) and N:P (5:1). A comparative evaluation of these ratios leads to the conclusion that they are too low; e.g. such a low AOU:P ratio supports fairly high P enrichment. Principal component analysis (PCA) indicates that 31% of the variation in the data is related to enrichment parameters, i.e. dissolved inorganic phosphate, NH4+, reactive Fe, 15% is related to NO3-, pH and 13% is related to temperature and total Fe. Additionally, PCA shows that the middle Izmir Bay has an ecological transient character between the inner and outer Izmir Bay.  相似文献   

2.
基于PCA法的春、夏季东山湾海域富营养化特征   总被引:1,自引:0,他引:1  
根据2011年5月和8月东山湾及邻近海域的调查结果,选择10个与富营养化有关的参数,包括溶解无机氮(DIN)、溶解硅酸盐(DSi)、活性磷酸盐(SRP)、总氮(TN)、总磷(TP)、化学耗氧量(COD)、溶解有机碳(DOC)、总有机碳(TOC)、叶绿素a(Chl-a)和浮游植物丰富度(d)等,应用主成分分析(PCA)法对该海域富营养化特征进行研究。主成分分析表明,主成分1(PC1)表征了有机污染、浮游植物和总磷状况;主成分2(PC2)反映了硅和氮营养水平,主成分3(PC3)体现了SRP的特点。春、夏季PC1、PC2、PC3和综合主成分(CPC)的空间分布表明漳江口和八尺门养殖区邻近海域富营养化风险较高;各主成分与盐度的相关分析表明东山湾内富营养化压力主要来自漳江,夏季有所增强;有机污染物和浮游植物可能是控制东山湾海域春、夏季富营养空间分布的主要驱动因素。  相似文献   

3.
Transitional ecosystems,estuaries and the coastal seas,are distinctively affected by natural and anthropogenic factors.Organic matter(OM)originating from terrestrial sources is exported by rivers and forms a key component of the global biogeochemical cycles.Most previous studies focused on the bulk biochemical and anthropogenic aspects affecting these ecosystems.In the present study,we examined the sources and fate of OM entrained within suspended particulate matter(SPM)of the Zuari River and its estuary,west coast of India.Besides using amino acid(AA)enantiomers(L-and D-forms)as biomarkers,other bulk biochemical parameters viz.particulate organic carbon(POC),δ13C,particulate nitrogen(PN),δ15N and chlorophyll a were analyzed.Surprisingly no significant temporal variations were observed in the parameters analyzed;nonetheless,salinity,POC,δ13C,PN,δ15N,glutamic acid,serine,alanine,tyrosine,leucine and D-aspartic acid exhibited significant spatial variability suggesting source differentiation.The POC content displayed weak temporal variability with low values observed during the post-monsoon season attributed to inputs from mixed sources.Estuarine samples were less depleted than the riverine samples suggesting contributions from marine plankton in addition to contributions from river plankton and terrestrial C3 plants detritus.Labile OM was observed during the monsoon and post-monsoon seasons in the estuarine region.More degraded OM was noticed during the pre-monsoon season.Principal component analysis was used to ascertain the sources and factors influencing OM.Principally five factors were extracted explaining 84.52%of the total variance.The first component accounted for 27.10%of the variance suggesting the dominance of tidal influence whereas,the second component accounted for heterotrophic bacteria and their remnants associated with the particulate matter,contributing primarily to the AA pool.Based on this study we ascertained the role of the estuarine turbidity maximum(ETM)controlling the sources of POM and its implications to small tropical rivers.Thus,changes in temporal and regional settings are more likely to affect the natural biogeochemical cycles of small tropical rivers.  相似文献   

4.
Seasonal and interannual variations in physicochemical properties (i.e., temperature, salinity, dissolved oxygen and dissolved inorganic nutrients), chlorophyll a (Chl-a), particulate carbon and nitrogen (PC and PN, respectively), and primary production were investigated in the neritic area of Sagami Bay, Kanagawa, Japan, from January 2002 to December 2008. These abiotic/biotic variables, except for NH4 +–N, repeated similar seasonal variations for all 7 years. On the basis of the analysis of data obtained on 167 sampling dates, depth-integrated primary production in this water can be easily estimated from Chl-a at the surface using the regression equations obtained in the present study. Intermittently high values of dissolved inorganic nutrients, Chl-a, PC, PN and primary productivity at the surface during the summer stratified period were induced by high freshwater discharge from the rivers after rainfalls and by the expansion of nutrient-rich Tokyo Bay Water. Temperature, salinity and dissolved inorganic nutrients showed drastic variations within a scale of a few days and/or weeks, and these variations were related to sea levels that represent the intrusion of the Kuroshio Water, Intermediate Oyashio Water or deep water from the continental slope. However, there was no consistent trend in the variations in Chl-a, PC, PN and primary production due to the complex effects of these waters.  相似文献   

5.
Seasonal and inter-annual variability of hydrological parameters and its impact on chlorophyll distribution was studied from January 2009 to December 2011 at four coastal stations along the southwest Bay of Bengal. Statistical analysis(principal component analysis(PCA), two-way analysis of variance(ANOVA) and correlation analysis)showed the significant impact of hydrological parameters on chlorophyll distribution in the study area. The ranges of different parameters recorded were 23.8–33.8°C(SST), 4.00–36.00(salinity), 7.0–9.2(p H), 4.41–8.32 mg/L(dissolved oxygen), 0.04–2.45 μmol/L(nitrite), 0.33–16.10 μmol/L(nitrate), 0.02–2.51 μmol/L(ammonia),0.04–3.32 μmol/L(inorganic phosphate), 10.09–85.28 μmol/L(reactive silicate) and 0.04–13.8 μg/L(chlorophyll).PCA analysis carried out for different seasons found variations in the relationship between physico-chemical parameters and chlorophyll in which nitrate and chlorophyll were positively loaded at PC1(principal component1) during spring inter-monsoon and at PC2(principal component 2) during other seasons. Likewise correlation analysis also showed significant positive relationship between chlorophyll and nutrients especially with nitrate(r=0.734). Distribution of hydrobiological parameters between stations and distances was significantly varying as evidenced from the ANOVA results. The study found that the spatial and temporal distribution of chlorophyll was highly dependent on the availability of nutrients especially, nitrate in the southwest Bay of Bengal coastal waters.  相似文献   

6.
The relationship between spatial patterns of macrobenthos community characteristics and environmental conditions(salinity, temperature, dissolved oxygen, organic matter content, sand, silt and clay) was investigated throughout the Gorgan Bay in June 2010. Principal components analysis(PCA) based on environmental data separated eastern and western stations. The maximum(4500 ind./m2) and minimum(411 ind./m2) densities were observed at Stas 1 and 6, respectively. Polychaeta was the major group and Streblospio gynobranchiata was dominant species in the bay. According to Distance Based Linear Models results, macrofaunal total density was correlated with silt percentage and salinity and these two factors explaining 64% of the variability while macrofaunal community structure just correlated with salinity(22% total variation). In general, western part of the bay showed the highest number of species and biodiversity while, the highest density was found at Sta. 1 and in the middle part of the bay. Furthermore, relationship between diversity indices and macrobenthic species with measured factors is also discussed. Our results confirm the effect of salinity as an important factor on distribution of macrobenthic fauna in south Caspian brackish waters.  相似文献   

7.
提要在淡水、1.00、2.00、3.00、4.00盐度等条件下,采用鱼类生物能量学的方法,测定了河川沙塘鳢胚胎、仔鱼发育过程中的耗氧率、NH3-N排泄率,并对不同盐度下河川沙塘鳢胚胎、仔鱼发育过程中的能量流转进行了研究。结果表明,在不同发育时期,盐度对耗氧率和NH3-N排泄率都有显著影响,以1.00盐度条件下的耗氧率为最低,而NH3-N排泄率则在淡水条件下为最低并随着盐度的升高逐渐增高;盐度对河川沙塘鳢胚胎、仔鱼发育过程中的能量收支有显著影响,以1.00盐度条件下的能量分配模式为最佳模式,代谢耗能占食物能的比例(R/C)最低,为35.06%,而生长能占食物能的比例(G/C)最高,达到58.55%,能量收支方程为:100C=6.40U 35.06R 58.55G。  相似文献   

8.
The Jiaozhou Bay is characterized by heavy eutrophication that is associated with intensive anthropogenic activities. Four core sediments from the Jiaozhou Bay are analyzed using bulk technologies, including sedimentary total organic carbon(TOC), total nitrogen(TN), the stable carbon(δ~(13)C) and nitrogen(δ~(15) N) isotopic composition to obtain the comprehensive understanding of the source and composition of sedimentary organic matter and further shed light on the environmental changes of the Jiaozhou Bay on a centennial time scale.Results suggest that the TOC and TN concentrations increase in the upper core, having indicated a probable eutrophication process since the 1920 s in the inner bay and the 2000 s in the bay mouth. The TOC and TN concentrations outside the bay have also changed since 1916 owing to the variation of terrigenous input.Considering TOC/TN ratio, δ~(13) C and δ~(15) N, it can be concluded there is a mixture of terrigenous and marine organic matter sources in the study area. A simple two end-member(terrigenous and marine) mixing model usingδ~(13) C indicats that 45%–79% of TOC in the Jiaozhou Bay is from the marine source. The environmental changes of the Jiaozhou Bay are recorded by geochemical proxies, which are influenced by the intensive anthropogenic activities(e.g., extensive use of fertilizers, and discharge of sewage) and climate changes(e.g., rainfall).  相似文献   

9.
采用实验室模拟的方法,研究了不同海水温度、盐度、pH、N/P比下,沙海蜇消亡过程中海水溶解氧的变化特征,这对探讨水母灾害性暴发后消亡的环境影响有重要的科学意义。研究结果表明,沙海蜇的消亡可引起海水溶解氧浓度的显著降低,不同海水温度、盐度、pH、N/P比条件下沙海蜇消亡引起的海水溶解氧浓度的降低无显著差异,但与没有沙海蜇消亡时,海水溶解氧的变化相比则差异显著。沙海蜇消亡一般需要6—7天时间,在高N/P比的海水中,沙海蜇的消亡时间延长。沙海蜇的消亡造成水体的严重缺氧,水体氧饱和度低于20%,从第2天到第3天,本底海水、不同过程温度、盐度、pH条件下,消耗水体氧的量剧增,第6天达到峰值,但不同N/P比条件下,水体溶解氧的降低在第2天即可达到一个耗氧的高值,一直持续到第7天出现峰值;海水温度、盐度、pH、N/P比变化,可导致沙海蜇的消亡过程中水体氧消耗量的变化,就这四种影响因素而言,其平均最大耗氧量从大到小的顺序是:温度(23—30℃区间段)>pH(5.0—9.0区间段)>盐度(21—33区间段)>N/P比(16:1—240:1区间段),分别为39.9、39.7、38.0和35.9mg/(kg.d),相对而言,水体温度和pH对沙海蜇消亡过程中氧消耗量影响较大,水体N/P比和盐度影响较小。所以,沙海蜇消亡过程中,由于海水温度和pH的变化形成的低氧区更为严重,而且在当今富营养化(高N/P比)的近海水域中,水母的消亡高耗氧的时间加长,对海水环境造成的影响更为严重。  相似文献   

10.
珠江口海域无机氮和活性磷酸盐含量的时空变化特征   总被引:17,自引:1,他引:17  
黄小平  黄良民 《台湾海峡》2002,21(4):416-421
主要利用1998年在珠江口海域连续同步观测资料,研究该海域无机氮、活性磷酸盐含量和富营养化状况。结果表明,无机氮主要来自四个口门的径流,但深圳湾附近的陆源亦有一定贡献;无机氮的形态主要以硝酸氮为主,而在深圳湾附近海域则以氨氮为主;无机氮含量普遍超过0.30mg/dm^3的我国海水水质标准二类标准值,大部分海域已超过0.50mg/dm^3的四类水质标准值,径流对活性磷酸盐含量的贡献不显著,而深圳湾附近的陆源则有明显的贡献,从珠江口附近由沿岸流和涨潮流带来的活性磷酸盐亦有明显的影响;除深圳湾附近海域活性磷酸盐含量超过0.030mg/dm^3的二类海水水质标准值外,其他海域基本符合0.015mg/dm^3的一类海水水质标准值要求。该海域的N/P值普遍较高,而且北部海域的高于南部海域;最高值超过300,最小值也大小30;该水域的营养盐主要为磷限制。  相似文献   

11.
以莱州湾为例,基于GIS和地理空间模拟框架,结合海洋生态红线区分布,建立了海域使用活动对海洋生态环境的潜在压力评估模型,空间量化评估多种海域使用活动对海洋生态环境的潜在影响。结果显示,多种海域使用活动的潜在压力总体呈近岸高于远岸、湾顶>东部>西部的分布特征;压力高值区集中于距岸10 km以内海域和5 m水深以内海域;海洋特别保护区、海洋自然保护区及重要河口生态系统等类型的海洋生态红线区受到开放式养殖、围海养殖、盐业用海活动的压力较大,需要对其进行重点监控。研究揭示了莱州湾海域使用活动对海洋生态环境潜在压力的空间分布格局,为海洋生态红线落地实施和海域使用管理提供决策依据。  相似文献   

12.
Seasonal and interannual variations in physicochemical properties were investigated in the neritic area of Sagami Bay, Kanagawa, Japan, from December 2000 to December 2005. Physicochemical properties (i.e. temperature, salinity, density, dissolved oxygen and dissolved inorganic nutrient concentration) revealed clear seasonal variations, which were similar to each other during all 5 years. Temperature, salinity and dissolved inorganic nutrients showed rapid, drastic variations within a few days and/or weeks. These variations are related to sea levels, principally due to the shifting effects of the Kuroshio Current axis: they were strongly affected by the Kuroshio Water and other waters, when sea level difference was greater than ca. 35 cm and lower than ca. 15 cm, respectively. Temperature difference (DF T ) increased with sea level difference, and the difference of salinity and dissolved inorganic nutrients (NH4 +-N, NO3 +NO2 -N, NH4 ++NO3 +NO2 -N, PO4 3−-P and SiO2-Si) increased and decreased with DF T , respectively. All these correlations are significant. Total dissolved inorganic nitrogen (N), phosphate (P) and silicate (Si) revealed seasonal variations in the ranges of 0.57–16.08, 0.0070–0.91 and 0.22–46.38 μM, respectively. From the regression equations between these elements allowed the following relation to be obtained; Si:N:P = 14.8:13.4:1. Dissolved inorganic nutrients were characterized by Si and/or P deficiency, especially in the upper layer (0–20 m depth) during summer. Single and/or combined elements are discussed on the basis of potential and stoichiometric nutrient limitations, which could restrict phytoplankton (diatom) growth as a limiting factor.  相似文献   

13.
We measured benthic and water column fluxes in a hypersaline coastal system (Baffin Bay, Texas) in 1996–1997, a period of decreasing salinity (increased freshwater input) and turbidity. Salinity decreased from a mean of 60 to 32 practical salinity units (psu) and turbidity decreased from a mean of 78 to 25 NTU over the study period. Associated with hydrological changes, there were important changes in nutrient fluxes and metabolism. There was a shift of total respiration from the water column to the sediments and an increased amount of the benthic metabolism (2–67%) was attributed to sulfate reduction in this system when salinity was lowest, perhaps a consequence of increased benthic light levels and photosynthetic production of labile carbon in the sediments. The sediments were a large sink for both N and P. Sediment particulate C:N (9.8) and C:P (119) ratios were lower than those in the water column. However, ammonium:phosphate fluxes increased coincident with increased sulfate reduction rates and porewater sulfide concentrations. Efficient N-retention mediated through dissimilative nitrate reduction to ammonium, and high rates of N-fixation in shallow, hypersaline systems may facilitate transitions from N-limitation to P-limitation. During the most hypersaline period, seston exhibited some of the most extreme nutrient ratios ever reported for a marine ecosystem (C:N 10–37 and C:P 200–1200) and suggest that plankton are likely to be P-limited or are very well adapted to low P availability. When salinity and N:P and C:P ratios were highest, the plankton was dominated by a brown tide alga (Aureoumbra lagunensis), supporting evidence that this organism is adapted to low P, long residence time systems.  相似文献   

14.
The horizontal distribution of the near-surface (neuston) copepods of the family Pontellidae was studied on the meridional transects through the central part of the Indian ocean between 12°N and 12°S and in the Bay of Bengal in the summer monsoon period. Eleven species of neuston pontellids were found. The common species Labidocera detruncate and Pontellopsis villosa have the sane high frequencies in the central part of the ocean and in the Bay of Bengal. Some species are rarer in the Bay of Bengal than in the central part of the ocean. In contrast, other species are more frequent in the Bay of Bengal. The special traits of the distribution in the Bay of Bengal coincide with the lower salinity in the bay than in the central ocean. The distribution of some neritic species from the Bay of Bengal to the south is dependent on the intensification of the water translocation to the south in the summer. In the central part of the Indian Ocean, the distribution of the common neustonic pontellids is similar in the periods of the summer and winter monsoons. It is the result of the occupation of the region by the same equatorial water masses.  相似文献   

15.
The distribution of protein and carbohydrate concentrations of the particulate matter (size fraction: 0.45–160 μm) was studied, from 22 January 2003 to 02 December 2003, in three ponds of increasing salinity in the Sfax solar saltern (Tunisia). The coupling of N/P: DIN (DIN = NO2 + NO3 + NH4+) to DIP (DIP = PO43−) with P/C: protein/carbohydrates ratios along salinity gradient allowed the discrimination of three types of ecosystems. Pond A1 (mean salinity: 45.0 ± 5.4) having marine characteristics showed enhanced P/C ratios during a diatom bloom. N/P and P/C ratios were closely coupled throughout the sampling period, suggesting that the nutritional status is important in determining the seasonal change in the phytoplankton community in pond A1. In pond A16 (mean salinity: 78.7 ± 8.8), despite the high nitrate load, P/C ratios were overall lower than in pond A1. This may be explained by the fact that dinoflagellates, which were the most abundant phytoplankton in pond A16 might be strict heterotrophs and/or mixotrophs, and so they may have not contributed strongly to anabolic processes. Also, N/P and P/C ratios were uncoupled, suggesting that cells in pond A16 were stressed due to the increased salinity caused by water evaporation, and so cells synthesized reserve products such as carbohydrates. In pond M2 (mean salinity: 189.0 ± 13.8), P/C levels were higher than those recorded in either pond A1 or A16. N/P and P/C were more coupled than in pond A16. Species in the hypersaline pond seemed paradoxally less stressed than in pond A16, suggesting that salt-tolerant extremophile species overcome hypersaline constraints and react metabolically by synthesizing carbohydrates and proteins.  相似文献   

16.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献   

17.
The metal load into sediments and the change in the sedimentary environment of Osaka Bay in the Seto Inland Sea have been studied through geochemical analysis of core sediments, using both Pb-210 dating and a selective chemical leaching technique. Analytical results from a 6-m core of sediment show that copper and zinc pollution started in the late 1800's and the present enrichment ratios of copper and zinc, relative to background levels (20 mg kg–1 for Cu and 94 mg kg–1 for Zn), are 2.8 and 4.1, respectively. The present anthropogenic copper and zinc loads into Osaka Bay sediments, are 47 and 368 ton yr–1, while natural copper and zinc loads are 40 and 186 ton yr–1, respectively. Osaka Bay sediment at the present day is considered to be seriously polluted by zinc, now. The vertical profiles of copper and zinc in four successively separated fractions (10% acetic acid soluble fraction: F-HAC, 0.1M hydrochloric acid-soluble fraction: F-HCl, hydrogen peroxide-soluble fraction: F-H2O2 and hydrofluoric acid-soluble fraction: F-HF) from the core sediments indicate that enrichments of copper and zinc in the upper layer of the sediment are dependent on increases in the metal contents of the F-HAC, F-HCl and F-H2O2 fractions. Copper in F-HAC, and zinc in F-HAC and F-HCl, seem to be of anthropogenic origin.Results of sequential studies of the whole Seto Inland Sea can be summarized as follows: At the present time, the sedimentary loads of copper and zinc over the whole Seto Inland Sea area are 630 and 3,500 ton yr–1, respectively, while the natural and anthropogenic loads are 320 and 310 ton yr–1 for copper and 1,800 and 1,700 ton yr–1 for zinc, respectively.  相似文献   

18.
The changes in the concentrations of silicate, phosphate and inorganic nitrogen in Elefsis Bay, an intermittently anoxic basin, are described and related to the changes in the physical properties of the water for two seasonal cycles. Winter convection resulted in a very small vertical gradient of temperature, salinity, oxygen and nutrients. Stratification started to develop in May and persisted for about 6 months. In Elefsis Bay, high values of silicate, phosphate and ammonia occurred during the anoxic conditions prevailing in summer. The consumption of oxygen in the lower water column was directly related to density differences in it. The regeneration of nutrients was related to the consumption of oxygen, with seasonal differences in the regeneration of nitrate and silicate. A stoichiometric model indicates that plankton organisms in Elefsis Bay have approximate ratios for C:N:P of 105:14:1, whereas the ratio for nitrogen and phosphorus in the water is only 2:1. The water/plankton relationship in Elefsis Bay appears to be very similar to that in the Baltic Sea.  相似文献   

19.
The diversity of small-scale wetlands, high salinity tidal creeks, salt marshes, estuaries, and a wide and shallow shelf with the Gulf Stream close to the break makes the coastal zone of south-eastern North Carolina (U.S.) a natural laboratory for the study of the cycling of nitrogen (N) and phosphorus (P) in coastal and shelf waters. We assessed the summer concentrations, forms, and ratios for each N (total dissolved N, nitrate + nitrite, ammonium and dissolved organic N) and P (total dissolved P, o-phosphate and dissolved organic P) pool as these nutrients travel from tidal creeks, salt marshes and two large estuaries to Long and Onslow Bays. Additionally, we measured ancillary physical (temperature, salinity and turbidity) and chemical (dissolved oxygen, chlorophyll a and pH) water properties. Highest concentrations of all individual N and P compounds were found in the upper parts of each tributary and were attributed to loads from agricultural and urban sources to the coastal watersheds, continuing downstream to receiving estuaries. In all areas, dissolved organic N and P species were predominant constituents of the total dissolved N and P pools (64–97% and 56–93%, respectively). The lower parts of estuaries and surface shelf waters were characterized by oceanic surface values, indicating removal of N and P downstream in all tributaries. The different watershed and hydrological characteristics also determined the different speciation of N and P pools in each estuary. Despite a high level of anthropogenic pressure on the uppermost coastal waters, there is self-regulation in this coastal ecosystem with respect to human perturbations; i.e. significant amounts of the N and P load are retained within estuarine and nearshore waters without reaching the shelf.  相似文献   

20.
Seasonal variations and distributions of dissolved carbohydrate concentrations at the İzmir Bay were investigated with salinity, chlorophyll a (Chl a), and dissolved organic carbon (DOC) levels to understand their relationships. Samples were collected from surface, subsurface and bottom depths at seven stations. DOC concentrations ranged from 32.2 to 244.2 μmol/L, and in general, DOC levels increased from winter to summer, then slightly decreased in autumn. Monosaccharide (MCHO), polysaccharide (PCHO) and total dissolved carbohydrate (TDCHO) levels were found between 0.7-8.3, 0.7-19.5, and 2.6-24.6 μmol/L. DOC, MCHO, PCHO and TDCHO levels were found higher in middle-inner bays, under the influence of anthropogenic inputs, compared to outer bay. Seasonal changes of MCHO/DOC, PCHO/DOC and TDCHO/DOC ratios were statistically significant (p<0.05) and the ratios showed decrease trends from winter to summer-autumn seasons. Distributions of TDCHO/DOC ratios at wide ranges (2.5%-42.3%) indicated the presence of newly forming and degrading fractions of DOM. According to results of factor analysis, Chl a, MCHO and TDCHO were explained in the same factor groups. In conclusion, the results showed that dissolved carbohydrate levels in the İzmir Bay might be influenced by biological processes and terrestrial/anthropogenic inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号