首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basalt basement from the Kerguelen Plateau and the trail of a Dupal plume   总被引:4,自引:0,他引:4  
The first samples of volcanic basement recovered from the Kerguelen Plateau are Lower Cretaceous transitional tholeiites. Isotope and incompatible element abundance ratios for these rocks are similar to ocean island basalts from the southern hemisphere Dupal anomaly region, and geochemical, geological and geophysical data are consistent with volcanic activity associated with a mantle plume. A reconstruction of plate motions suggests that the Kerguelen Plateau formed above a mantle plume in the interval 118-95 Ma, during the opening of the Indian Ocean between India and Australia-Antarctica. This plume was the source of other plateaus and ridges of the eastern Indian Ocean and possibly the Bunbury Basalt of southwestern Australia, and is now beneath Heard Island.  相似文献   

2.
Multi-channel seismic reflection profiles across the southwest continental margin of India (SWCMI) show presence of westerly dipping seismic reflectors beneath sedimentary strata along the western flank of the Laccadive Ridge — northernmost part of the Chagos-Laccadive Ridge system. Velocity structure, seismic character, 2D gravity model and geographic locations of the dipping reflectors suggest that these reflectors are volcanic in origin, which are interpreted as Seaward Dipping Reflectors (SDRs).  相似文献   

3.
An almost complete Upper Cretaceous sedimentary sequence recently recovered on the Kerguelen Plateau (southern Indian Ocean) during ODP Leg 183 was analysed for planktonic foraminifera in order to refine and integrate the zonal schemes previously proposed for the Southern Ocean area. Detailed biostratigraphic analysis carried out on holes 1135A, 1136A and 1138A (poleward of 50°S palaeolatitude during Late Cretaceous time) has allowed recognition of low and mid–high latitude bioevents, useful for correlation across latitudes, in addition to known Austral bioevents. The low latitude biozonation can be applied to Turonian sediments, because of the occurrence of Helvetoglobotruncana helvetica, which marks the boundary between Whiteinella archaeocretacea and Helvetoglobotruncana helvetica zones. The base of the Whiteinella archeocretacea Zone falls within the uppermost Cenomanian–Turonian black shale level in Hole 1138A. The stratigraphic interval from upper Turonian to uppermost Santonian can be resolved using bioevents recognized in the mid–high latitude sections. They are, in stratigraphic order: the last occurrence of Falsotruncana maslakovae in the Coniacian, the first occurrence of Heterohelix papula at the Coniacian/Santonian boundary, the extinction of the marginotruncanids in the late Santonian, and the first occurrence of Globigerinelloides impensus in the latest (?) Santonian. The remainder of the Late Cretaceous fits rather well in the Austral zonal scheme, except that Globigerinelloides impensus exhibits a stratigraphic range in agreement with its record at the mid–high latitude sections and extends further downwards than previously recorded at southern sites. Therefore, despite the poor recovery in certain intervals and the presence of several hiatuses of local and regional importance as revealed by correlation among holes, a more detailed zonal scheme has been obtained (mainly for the less resolved Turonian–Santonian interval). Remarks on some species often overlooked in literature are also provided.  相似文献   

4.
Incised valleys are canyon‐like features that initially form near the highstand shoreline and evolve over geological time as rivers erode into coastal plains and continental shelves to maintain equilibrium‐gradient profiles in response to sea‐level fall. Most of these valleys flood during sea‐level rise to form estuaries. Incised‐valley morphology strongly controls the rate of creation of sediment accommodation, valley‐fill facies architecture and the preservation potential of coastal lithosomes on continental shelves, and affects coastal physical processes. Nonetheless, little is known about what dictates incised‐valley size and shape and whether these metrics can be used to explain principal formation processes. The main control on alluvial channel morphology over human time scales is discharge; this is based on numerous empirical studies and is well‐constrained because all variables are easily measured at this short time scale. Knowledge of long‐term river evolution over a complete glacio‐eustatic cycle, on the contrary, remains largely conceptual, experimental and based on individual systems because variables that are thought to drive morphological change are not easily quantified. In spite of this difficulty, existing models of incised‐valley formation at the coast suggest that valley evolution is driven largely by downstream forcing mechanisms, highlighting sea‐level and shelf gradient/morphology as the dominant controls on valley incision. Although valleys are cut by rivers, whose channels are a direct reflection of discharge, little empirical data exist in coastal areas to address the degree to which valley evolution is governed by upstream controls. The late Quaternary is the best time period to examine because it provides the most complete sedimentary record and many variables, including sea‐level, tectonics, substrate lithology and drainage network characteristics, are accurately constrained. Here, 38 late Quaternary valleys along the coast of two different passive continental margins are compared, which suggests that valley shape and size are governed primarily by upstream, intrinsic controls such as discharge. Valley width, depth and cross‐sectional area are found to be predictable at the highstand shoreline and are scaled with the size of their drainage basin, which has important implications for estimating sediment discharge to continental shelves and deep water environments during periods of low sea‐level.  相似文献   

5.
Seventeen basalts from Ocean Drilling Program (ODP) Leg 183 to the Kerguelen Plateau (KP) were analyzed for the platinum-group elements (PGEs: Ir, Ru, Rh, Pt, and Pd), and 15 were analyzed for trace elements. Relative concentrations of the PGEs ranged from ∼0.1 (Ir, Ru) to ∼5 (Pt) times primitive mantle. These relatively high PGE abundances and fractionated patterns are not accounted for by the presence of sulfide minerals; there are only trace sulfides present in thin-section. Sulfur saturation models applied to the KP basalts suggest that the parental magmas may have never reached sulfide saturation, despite large degrees of partial melting (∼30%) and fractional crystallization (∼45%).First order approximations of the fractionation required to produce the KP basalts from an ∼30% partial melt of a spinel peridotite were determined using the PELE program. The model was adapted to better fit the physical and chemical observations from the KP basalts, and requires an initial crystal fractionation stage of at least 30% olivine plus Cr-spinel (49:1), followed by magma replenishment and fractional crystallization (RFC) that included clinopyroxene, plagioclase, and titanomagnetite (15:9:1). The low Pd values ([Pd/Pt]pm < 1.7) for these samples are not predicted by currently available Kd values. These Pd values are lowest in samples with relatively higher degrees of alteration as indicated by petrographic observations. Positive anomalies are a function of the behavior of the PGEs; they can be reproduced by Cr-spinel, and titanomagnetite crystallization, followed by titanomagnetite resorption during the final stages of crystallization. Our modeling shows that it is difficult to reproduce the PGE abundances by either depleted upper or even primitive mantle sources. Crustal contamination, while indicated at certain sites by the isotopic compositions of the basalts, appears to have had a minimal affect on the PGEs. The PGE abundances measured in the Kerguelen Plateau basalts are best modeled by melting a primitive mantle source to which was added up to 1% of outer core material, followed by fractional crystallization of the melt produced. This reproduces both the abundances and patterns of the PGEs in the Kerguelen Plateau basalts. An alternative model for outer core PGE abundances requires only 0.3% of outer core material to be mixed into the primitive mantle source. While our results are clearly model dependent, they indicate that an outer core component may be present in the Kerguelen plume source.  相似文献   

6.
青藏高原因其复杂的地形地势和和积雪分布使得多种雪深算法未达到理想的精度。基于新一代被动微波数据AMSR2(Advanced Microwave Scanning Radiometer 2), 应用随机森林算法(Random Forest, RF)将亮温(Brightness Temperature, BT)和亮温差(Brightness Temperature Difference, BTD)作为参数输入, 并将高程和纬度参数引入雪深反演模型中, 经过模拟退火算法进行有效反演因子筛选, 构建了基于随机森林算法的青藏高原雪深反演模型。结果表明: 与AMSR2全球雪深产品相比, 随机森林算法的拟合优度(R2)由0.41提升至0.60, 均方根误差(Root Mean Square Error, RMSE)由7.36 cm降至4.88 cm, 偏差(BIAS)由3.24 cm减小至-0.16 cm, 随机森林雪深反演模型在青藏高原的精度更高; 青藏高原平均海拔超过4 000 m, 当海拔大于青藏高原平均海拔时, 随机森林算法的反演效果最差, 但RMSE仅为3.78 cm, BIAS仅为-0.09 cm; 高原南部(25° ~ 30° N)因其复杂的地势和相对较少的气象站点使得反演效果较差, RMSE为5.94 cm, BIAS为-0.39 cm; 青藏高原的主要土地覆盖类型为草地, 随机森林算法在草地的RMSE约为3 cm, BIAS接近0 cm。  相似文献   

7.
An existing lithogeochemical data file of more than 800 samples covering about 250 km2 of the east Amisk area was searched for potential pathfinder elements and rock types related to the known mineralization of the area (early Proterozoic Cu deposits of massive sulfide type). The data were studied in the form of summary statistics and chemically defined subfiles. Enhancement and depletion haloes and spatial relationships of rock types to known ore deposits were sought. Regional pathfinder haloes common to other studies or surveys of massive sulfide deposits (e.g., Na depletion) are not evident; however, the presence of depletion haloes of the immobile elements (i.e., Ti, Nb, Sr, Y, Zr) on a regional scale is demonstrated. It is concluded that the east Amisk area lithogeochemical data are different because of (a) the scale of the initial survey and (b) the environment of formation (and possibly age) of the volcanic host rocks.  相似文献   

8.
9.
Violent explosive eruptions occurred between c. 51 and 29 thousand years ago—during the Last Glacial Maximum in East‐Central Europe—at the picturesque volcano of Ciomadul, located at the southernmost tip of the Inner Carpathian Volcanic Range in Romania. Field volcanology, glass geochemistry of tephra, radiocarbon and optically stimulated luminescene dating, along with coring the lacustrine infill of the two explosive craters of Ciomadul (St Ana and Mohos), constrain the last volcanic activity to three subsequent eruptive stages. The explosivity was due to the silicic composition of the magma producing Plinian‐style eruptions, and the interaction of magma with the underlying, water‐rich rocks resulting in violent phreatomagmatic outbursts. Tephra (volcanic ash) from these eruptions are interbedded with contemporaneous loess deposits, which form thick sequences in the vicinity of the volcano. Moreover, tephra layers are also preserved in the older Mohos crater infill, providing an important archive for palaeoclimate studies. Identifying the final phreatomagmatic eruption of Ciomadul at c. 29.6 ka, which shaped the present‐day landform of the 1600‐m‐wide St Ana explosion crater, we were able to correlate related tephra deposits as far as 350 km from the source within a thick loess‐palaeosol sequence at the Dniester Delta in Roxolany, Ukraine. A refined tephrostratigraphy, based on a number of newly found exposures in the Ciomadul surrounding region as well as correlation with the distal terrestrial and marine (e.g. Black Sea) volcano‐sedimentary record, is expected from ongoing studies.  相似文献   

10.
A detailed high-pressure experimental study of two mafic xenoliths, in which coexisting garnet and clinopyroxene (± plagioclase, spinel and olivine) were crystallized over a P–T range of 10–30 kbar and 950–1200°C, has revealed significant differences in temperatures from those estimated for coexisting garnets and clinopyroxenes using the Ellis & Green Fe–Mg exchange thermometer. The results show perfect matching at 30 kbar, 1150–1200°C, but increasing deviation at lower pressure and lower temperature, with the Ellis & Green calibration reaching a Δ T (overestimate) of c. 145°C at 10–12 kbar and 950°C. The grossular content of the garnet increases from c. 21 mol.% at 10 kbar to 26–31 mol.% at 30 kbar. These results confirm other recent experimental studies that show that the pressure correction, and possibly to a lesser extent the correction for grossular content, applied by Ellis & Green, are not appropriate for lower pressure conditions, and give estimated temperatures that are significantly high when applied to granulitic terranes formed at c. 10 kbar. The new reconnaissance results allow a graphical interpolation of a garnet–clinopyroxene geothermometer based on the Fe–Mg exchange reaction which should be applicable to assemblages formed under lower crustal conditions.  相似文献   

11.
During the course of a study of historical water wells along the Israeli shore, which has been in progress since 1984, an innovative method for investigating sea-level fluctuations was developed. Eighteen ancient water wells were re-dug, 14 by the author, and four by archaeologists. Most of the re-dug wells are found at archaeological sites located a very short distance inland from the present shoreline. Evidence of ancient ground-water levels found in the wells directly reflects on historic eustatic sea-level changes, and the rate at which the end of the post-glacial transgression advanced. A critical question concerns the durability and life span of these wells, as the true age is very important for the accurate reconstruction of a sea-level curve. The Pre-Pottery Neolithic well of Atlit-Yam, which is the oldest known well in the world (ca. 8000 yr old), enabled the most accurate sea-level reconstruction for early Holocene times. Sea-level rise during that period of the Atlit-Yam site was of the order of 20 mm yr−1 at the beginning, slowing to 6–8 mm yr−1 at the abandonment of this site at ca. 7.5 ka BP, when it was flooded by the advancing and rising sea. After reaching its present level, sea-level fluctuations for the past 2.5 millennia were not greater than 1.5 to 2 m. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
The lithospheric strike‐slip Altyn Tagh Fault has accommodated hundreds of kilometres of displacement between the Qaidam and Tarim blocks since its Eocene reactivation. However, the way the deformation is accommodated in the Qilian Shan and further east remains uncertain. Based on 360 km of north‐eastward migration of the relatively rigid Qaidam block along the Altyn Tagh Fault and 3D isovolumetric balancing of the crustal deformation within the Altyn Tagh Fault–Qilian Shan system, we demonstrate that 250 ± 28 km (43.8–49.4%) of N20E directed crustal shortening and an additional ~250–370 km of eastward motion of the Qilian Shan crust must be accounted for by strike‐slip faulting in the Qilian Shan and crustal thickening in the Qinling area, as well as by extension in the adjoining North China block graben systems.  相似文献   

13.
14.
The Teisseyre-Tornquist Zone that separates the East European Craton from the Palaeozoic Platform forms one of the most fundamental lithospheric boundaries in Europe. Devonian to Cretaceous-Paleogene evolution of the SE segment of this zone was analyzed using high-quality seismic reflection data that provided detailed information regarding entire Palaeozoic and Mesozoic sedimentary cover, with particular focus on problems of Late Carboniferous and Late Cretaceous-Paleogene basin inversion and uplift. Two previously proposed models of development and inversion of the Devonian-Carboniferous Lublin Basin seem to only partly explain configuration of this sedimentary basin. A new model includes Late Devonian-Early Carboniferous reverse faulting within the cratonic area NE from the Kock fault zone, possibly first far-field effect of the Variscan orogeny. This was followed by Late Carboniferous inversion of the Lublin Basin. Inversion tectonics was associated with strike-slip movements along the Ursynów-Kazimierz fault zone, and thrusting along the Kock fault zone possibly triggered by deeper strike-slip movements. Late Carboniferous inversion-related deformations along the NE boundary of the Lublin Basin were associated with some degree of ductile (quasi-diapiric) deformation facilitated by thick series of Silurian shales. During Mesozoic extension and development of the Mid-Polish Trough major fault zones within the Lublin Basin remained mostly inactive, and subsidence centre moved to the SW, towards the Nowe Miasto-Zawichost fault zone and further to the SW into the present-day Holy Cross Mts. area. Late Cretaceous-Paleogene inversion of the Mid-Polish Trough and formation of the Mid-Polish Swell was associated with reactivation of inherited deeper fault zones, and included also some strike-slip faulting. The study area provides well-documented example of the foreland plate within which repeated basin inversion related to compressive/transpressive deformations was triggered by active orogenic processes at the plate margin (i.e. Variscan or Carpathian orogeny) and involved important strike-slip reactivation of crustal scale inherited fault zones belonging to the Teisseyre-Tornquist Zone.  相似文献   

15.
New gravity data from the Adamawa Uplift region of Cameroon have been integrated with existing gravity data from central and western Africa to examine variations in crustal structure throughout the region. The new data reveal steep northeast-trending gradients in the Bouguer gravity anomalies that coincide with the Sanaga Fault Zone and the Foumban Shear Zone, both part of the Central African Shear Zone lying between the Adamawa Plateau and the Congo Craton. Four major density discontinuities in the lithosphere have been determined within the lithosphere beneath the Adamawa Uplift in central Cameroon using spectral analysis of gravity data: (1) 7–13 km; (2) 19–25 km; (3) 30–37 km; and (4) 75–149 km. The deepest density discontinuities determined at 75–149 km depth range agree with the presence of an anomalous low velocity upper mantle structure at these depths deduced from earlier teleseismic delay time studies and gravity forward modelling. The 30–37 km depths agree with the Moho depth of 33 km obtained from a seismic refraction experiment in the region. The intermediate depth of 20 km obtained within region D may correspond to shallower Moho depth beneath parts of the Benue and Yola Rifts where seismic refraction data indicate a crustal thickness of 23 km. The 19–20 km depths and 8–12 km depths estimated in boxes encompassing the Adamawa Plateau and Cameroon Volcanic Line may may correspond to mid-crustal density contrasts associated with volcanic intrusions, as these depths are less than depths of 25 and 13 km, respectively, in the stable Congo Craton to the south.  相似文献   

16.
The origin of the Baikal rift zone (BRZ) has been debated between the advocates of passive and active rifting since the 1970s. A re-assessment of the relevant geological and geophysical data from Russian and international literature questions the concept of broad asthenospheric upwelling beneath the rift zone that has been the cornerstone of many “active rifting” models. Results of a large number of early and recent studies favour the role of far-field forces in the opening and development of the BRZ. This study emphasises the data obtained through studies of peridotite and pyroxenite xenoliths brought to the surface by alkali basaltic magmas in southern Siberia and central Mongolia. These xenoliths are direct samples of the upper mantle in the vicinity of the BRZ. Of particular importance are suites of garnet-bearing xenoliths that have been used to construct PT- composition lithospheric cross-sections in the region for the depth range of 35–80 km.Xenolith studies have shown fundamental differences in the composition and thermal regime between the lithospheric mantle beneath the ancient Siberian platform (sampled by kimberlites) and beneath younger mobile belts south of the platform. The uppermost mantle in southern Siberia and central Mongolia is much hotter at similar levels than the mantle in the Siberian craton and also has significantly higher contents of ‘basaltic’ major elements (Ca, Al, Na) and iron, higher Fe/Si and Fe/Mg. The combination of the moderately high geothermal gradient and the fertile compositions in the off-cratonic mantle appears to be a determining factor controlling differences in sub-Moho seismic velocities relative to the Siberian craton. Chemical and isotopic compositions of the off-cratonic xenoliths indicate small-scale and regional mantle heterogeneities attributed to various partial melting and enrichment events, consistent with long-term evolution in the lithospheric mantle. Age estimates of mantle events based on Os–Sr–Nd isotopic data can be correlated with major regional stages of crustal formation and may indicate long-term crust–mantle coupling. The ratios of 143/144Nd in many LREE-depleted xenoliths are higher than those in MORB or OIB source regions and are not consistent with a recent origin from asthenospheric mantle.Mantle xenoliths nearest to the rift basins (30–50 km south of southern Lake Baikal) show no unequivocal evidence for strong heating, unusual stress and deformation, solid state flow, magmatic activity or partial melting that could be indicative of an asthenospheric intrusion right below the Moho. Comparisons between xenoliths from older and younger volcanic rocks east of Lake Baikal, together with observations on phase transformations and mineral zoning in individual xenoliths, have indicated recent heating in portions of the lithospheric mantle that may be related to localised magmatic activity or small-scale ascent of deep mantle material. Overall, the petrographic, PT, chemical and isotopic constraints from mantle xenoliths appear to be consistent with recent geophysical studies, which found no evidence for a large-scale asthenospheric upwarp beneath the rift, and lend support to passive rifting mechanism for the BRZ.  相似文献   

17.
In the complex structural framework of the Western Mediterranean. Hercynian areas are expected to be thermally preserved from the recent tectonic evolution. The thermal regime of these areas is studied using heat flow, heat production and fission track data. The surface heat flow is significantly higher in Corsica (76 ± 10 mW m−2) than in the Maures and Estérel (58 ± 2 mW m−2). Neither heat production nor erosion subsequent to the Alpine orogeny in Corsica can explain such a difference. It is suggested that a deep thermal source related to the asymmetric evolution of the Provençal basin could explain the higher heat flow in Corsica. A model of thermal structure based on the present day thermal regime of the Maures and Estérei is proposed for the stable Hercynian crust in this area. The mantle heat flow is 20–25 mW m−2 and the temperature at Moho level is 375–500°C, depending on the thermal parameter distribution with depth.  相似文献   

18.
19.
Reconstruction of early Cenozoic deep‐water circulation is one of the keys to modelling Earth's greenhouse‐to‐icehouse surface evolution, but it has long been hampered by the paucity of information from the central South Pacific. To help overcome this knowledge gap, we present new micropalaeontological data from dredged carbonates (R/V Sonne Expedition SO193) at several eastern volcanic salients of the Manihiki Plateau. Interestingly, despite appreciable longitudinal separations among the dredged sites, ages indicated by the foraminiferal assemblages are consistently around the Middle Eocene (including mixed Turonian [Late Cretaceous]/Eocene at a single site), suggesting widespread post‐Eocene cessation of the pelagic sedimentation. By integrating with independent seismic and chronostratigraphic data (Deep Sea Drilling Project Leg 33) for large‐scale erosion of top‐Eocene–Oligocene sedimentary units on the eastern Manihiki Plateau, our results can be viewed as novel physical evidence for the intensification of central South Pacific deep‐water circulation since the Eocene/Oligocene climatic transition.  相似文献   

20.
A comparison of the diamond productions from Panda (Ekati Mine) and Snap Lake with those from southern Africa shows significant differences: diamonds from the Slave typically are un-resorbed octahedrals or macles, often with opaque coats, and yellow colours are very rare. Diamonds from the Kaapvaal are dominated by resorbed, dodecahedral shapes, coats are absent and yellow colours are common. The first two features suggest exposure to oxidizing fluids/melts during mantle storage and/or transport to the Earth's surface, for the Kaapvaal diamond population.

Comparing peridotitic inclusions in diamonds from the central and southern Slave (Panda, DO27 and Snap Lake kimberlites) and the Kaapvaal indicates that the diamondiferous mantle lithosphere beneath the Slave is chemically less depleted. Most notable are the almost complete absence of garnet inclusions derived from low-Ca harzburgites and a generally lower Mg-number of Slave inclusions.

Geothermobarometric calculations suggest that Slave diamonds originally formed at very similar thermal conditions as observed beneath the Kaapvaal (geothermal gradients corresponding to 40–42 mW/m2 surface heat flow), but the diamond source regions subsequently cooled by about 100–150 °C to fall on a 37–38 mW/m2 (surface heat flow) conductive geotherm, as is evidenced from touching (re-equilibrated) inclusions in diamonds, and from xenocrysts and xenoliths. In the Kaapvaal, a similar thermal evolution has previously been recognized for diamonds from the De Beers Pool kimberlites. In part very low aggregation levels of nitrogen impurities in Slave diamonds imply that cooling occurred soon after diamond formation. This may relate elevated temperatures during diamond formation to short-lived magmatic perturbations.

Generally high Cr-contents of pyrope garnets (inside and outside of diamonds) indicate that the mantle lithosphere beneath the Slave originally formed as a residue of melt extraction at relatively low pressures (within the stability field of spinelperidotites), possibly during the extraction of oceanic crust. After emplacement of this depleted, oceanic mantle lithosphere into the Slave lithosphere during a subduction event, secondary metasomatic enrichment occurred leading to strong re-enrichment of the deeper (>140 km) lithosphere. Because of the extent of this event and the occurrence of lower mantle diamonds, this may be related to an upwelling plume, but it may equally just reflect a long term evolution with lower mantle diamonds being transported upwards in the course of “normal” mantle convection.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号