首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simple spectral theory of seismic sources was used to determine source parameters directly related to medium properties (stress drop, seismic efficiency and fracture energy) and quality factors of the Vrancea (Romania) seismic region. The results show an increase in maximum static stress drop, maximum seismic efficiency and fracture energy with depth. The seismic efficiency is magnitude independent, but the stress drop is magnitude independent only for events with ML > 3.8; below this value, the logarithm of stress drop increases quasi-linearly with magnitude. In the depth interval 50–160 km the stress drop increases with a slope of about 2–3 bar/km. The fracture energy per unit area of the fault has values of the order of 105–108 erg/cm2.The frequency independent quality factors indicate that the attenuation of P waves is generally higher than that of S waves and that Qp values are in agreement with recent tectonic models for the Vrancea region: total decoupling of the slab now sinking gravitationally is present only in the southwestern part of the Vrancea region, as suggested by the spatial position of intermediate depth hypocenters.  相似文献   

2.
Maximum magnitude of earthquakes Mmax expected in any distinct area is considered a consequence of both the tectonic features and the properties of the medium. An experimental problem was solved for the Caucasus where relationships were established between Mmax and a complex of geological conditions for the “standard” areas well known both geologically and seismologically. The solution is a formula connecting Mmax values with contributions of ten tectonic parameters expressed in terms of non-linear, monotonously increasing functions of amounts or rates of corresponding geological properties and processes.A map of calculated values of Mmax based on the solution was compiled for the Caucasus as a result of spreading the relationships established from the standard areas over the entire region. Prognostic values of Mmax were calculated and a similar map was also constructed for the Carpathian region.The detailed pattern of these maps and good coincidence of the calculated values of Mmax with registered magnitudes of earthquakes in the Carpathian region make it possible to regard the method presented in the paper as a possibility for constructing a geological basis of seismic zoning.  相似文献   

3.
There have been instances of premonitory variations in tilts, displacements, strains, telluric current, seismomagnetic effects, seismic velocities ( Vp, Vs) and their ratio (Vp/Vs), b-values, radon emission, etc. preceding large and moderate earthquakes, especially in areas near epicentres and along faults and other weak zones. Intensity and duration (T) of these premonitory quantities are very much dependent on magnitude (M) of the seismic event. Hence, these quantities may be utilised for prediction of an incoming seismic event well in advance of the actual earthquake. In the recent past, tilts, strain in deep underground rock and crustal displacements have been observed in the Koyna earthquake region over a decade covering pre- and postearthquake periods; and these observations confirm their reliability for qualitative as well as quantitative premonitory indices. Tilt began to change significantly one to two years before the Koyna earthquake of December 10, 1967, of magnitude 7.0. Sudden changes in ground tilt measured in a watertube tiltmeter accompanied an earthquake of magnitude 5.2 on October 17, 1973 and in other smaller earthquakes in the Koyna region, though premonitory changes in tilt preceding smaller earthquakes were not so much in evidence. However, changes in strains in deep underground rock were observed in smaller earthquakes of magnitude 4.0 and above. Furthermore, as a very large number of earthquakes (M = 1–7.0) were recorded in the extensive seismic net in the Koyna earthquake region during 1963–1975, precise b-value variations as computed from the above data, could reveal indirectly the state of crustal (tectonic) strain variations in the earthquake focal region and consequently act as a powerful premonitory index, especially for the significant Koyna earthquakes of December 10, 1967 (M = 7.0) and October 17, 1973 (M = 5.2). The widespread geodetic and magnetic levelling observations covering the pre- and postearthquake periods indicate significant vertical and horizontal crustal displacements, possibly accompanied by large-scale migration of underground magma during the large seismic event of December 10, 1967 in the Koyna region (M = 7.0). Duration (T) of premonitory changes in tilt, strains, etc., is generally governed by the equation of the type logT = A + BM (A and B are statistically determined coefficients). Similar other instances of premonitory evidences are also observed in micro-earthquakes (M = − 1 to 2) due to activation of a fault caused by nearby reservoir water-level fluctuations.  相似文献   

4.
Singh  A. P.  Roy  Indrajit G.  Kumar  Santosh  Kayal  J. R. 《Natural Hazards》2013,77(1):33-49

Seismic source characteristics in the Kachchh rift basin and Saurashtra horst tectonic blocks in the stable continental region (SCR) of western peninsular India are studied using the earthquake catalog data for the period 2006–2011 recorded by a 52-station broadband seismic network known as Gujarat State Network (GSNet) running by Institute of Seismological Research (ISR), Gujarat. These data are mainly the aftershock sequences of three mainshocks, the 2001 Bhuj earthquake (M w 7.7) in the Kachchh rift basin, and the 2007 and 2011 Talala earthquakes (M w ≥ 5.0) in the Saurashtra horst. Two important seismological parameters, the frequency–magnitude relation (b-value) and the fractal correlation dimension (D c) of the hypocenters, are estimated. The b-value and the D c maps indicate a difference in seismic characteristics of these two tectonic regions. The average b-value in Kachchh region is 1.2 ± 0.05 and that in the Saurashtra region 0.7 ± 0.04. The average D c in Kachchh is 2.64 ± 0.01 and in Saurashtra 2.46 ± 0.01. The hypocenters in Kachchh rift basin cluster at a depth range 20–35 km and that in Saurashtra at 5–10 km. The b-value and D c cross sections image the seismogenic structures that shed new light on seismotectonics of these two tectonic regions. The mainshock sources at depth are identified as lower b-value or stressed zones at the fault end. Crustal heterogeneities are well reflected in the maps as well as in the cross sections. We also find a positive correlation between b- and D c-values in both the tectonic regions.

  相似文献   

5.
The aim of the present work is to compile and update a catalogue of the instrumentally recorded earthquakes in Egypt, with uniform and homogeneous source parameters as required for the analysis of seismicity and seismic hazard assessment. This in turn requires a detailed analysis and comparison of the properties of different available sources, including the distribution of events with time, the magnitude completeness, and the scaling relations between different kinds of magnitude reported by different agencies. The observational data cover the time interval 1900–2004 and an area between 22°–33.5° N and 25°–36° E. The linear regressions between various magnitude types have been evaluated for different magnitude ranges. Using the best linear relationship determined for each available pair of magnitudes, as well as those identified between the magnitudes and the seismic moment, we convert the different magnitude types into moment magnitudes M W, through a multi-step conversion process. Analysis of the catalogue completeness, based on the M W thus estimated, allows us to identify two different time intervals with homogeneous properties. The first one (1900–1984) appears to be complete for M W ≥ 4.5, while the second one (1985–2004) can be considered complete for magnitudes M W ≥ 3.  相似文献   

6.
A regional time and magnitude predictable model has been applied to estimate the recurrence intervals for large earthquakes in the vicinity of 8 October 2005 Kashmir Himalaya earthquake (25°–40°N and 65°–85°E), which includes India, Pakistan, Afghanistan, Hindukush, Pamirs, Mangolia and Tien-Shan. This region has been divided into 17 seismogenic sources on the basis of certain seismotectonics and geomorphological criteria. A complete earthquake catalogue (historical and instrumental) of magnitude Ms ≥ 5.5 during the period 1853–2005 has been used in the analysis. According to this model, the magnitude of preceding earthquake governs the time of occurrence and magnitude of future mainshock in the sequence. The interevent time between successive mainshocks with magnitude equal to or greater than a minimum magnitude threshold were considered and used for long-term earthquake prediction in each of seismogenic sources. The interevent times and magnitudes of mainshocks have been used to determine the following predictive relations: logT t = 0.05 M min + 0.09 M p − 0.01 log M 0 + 01.14; and M f = 0.21 M min − 0.01 M p + 0.03 log M 0 + 7.21 where, T t is the interevent time of successive mainshocks, M min is minimum magnitude threshold considered, M p is magnitude of preceding mainshock, M f is magnitude of following mainshock and M 0 is the seismic moment released per year in each seismogenic source. It was found that the magnitude of following mainshock (M f) does not depend on the interevent time (T t), which indicates the ability to predict the time of occurrence of future mainshock. A negative correlation between magnitude of following mainshock (M f) and preceding mainshock (M p) indicates that the larger earthquake is followed by smaller one and vice versa. The above equations have been used for the seismic hazard assessment in the considered region. Based on the model applicability in the studied region and taking into account the occurrence time and magnitude of last mainshock in each seismogenic source, the time-dependent conditional probabilities (PC) for the occurrence of next shallow large mainshocks (Ms ≥ 6.5), during next 20 years as well as the expected magnitudes have been estimated.  相似文献   

7.
Magnitude conversion problem for the Turkish earthquake data   总被引:1,自引:0,他引:1  
Earthquake catalogues which form the main input in seismic hazard analysis generally report earthquake magnitudes in different scales. Magnitudes reported in different scales have to be converted to a common scale while compiling a seismic data base to be utilized in seismic hazard analysis. This study aims at developing empirical relationships to convert earthquake magnitudes reported in different scales, namely, surface wave magnitude, M S, local magnitude, M L, body wave magnitude, m b and duration magnitude, M d, to the moment magnitude (M w). For this purpose, an earthquake data catalogue is compiled from domestic and international data bases for the earthquakes occurred in Turkey. The earthquake reporting differences of various data sources are assessed. Conversion relationships are established between the same earthquake magnitude scale of different data sources and different earthquake magnitude scales. Appropriate statistical methods are employed iteratively, considering the random errors both in the independent and dependent variables. The results are found to be sensitive to the choice of the analysis methods.  相似文献   

8.
In the present study, the cumulative seismic energy released by earthquakes (M w ≥ 5) for a period of 1897 to 2009 is analyzed for northeast (NE) India. For this purpose, a homogenized earthquake catalogue in moment magnitude (M w ) has been prepared. Based on the geology, tectonics and seismicity, the study region is divided into three source zones namely, 1: Arakan-Yoma Zone (AYZ), 2: Himalayan Zone (HZ) and 3: Shillong Plateau Zone (SPZ). The maximum magnitude (M max ) for each source zone is estimated using Tsuboi’s energy blocked model. As per the energy blocked model, the supply of energy for potential earthquakes in an area is remarkably uniform with respect to time and the difference between the supply energy and cumulative energy released for a span of time, is a good indicator of energy blocked and can be utilized for the estimation of maximum magnitude (M max ) earthquakes. The proposed process provides a more consistent model of gradual accumulation of strain and non-uniform release through large earthquakes can be applied in the assessment of seismic hazard. Energy blocked for source zone 1, zone 2 and zone 3 regions is 1.35×1017 Joules, 4.25×1017 Joules and 7.25×1017 Joules respectively and will act as a supply for potential earthquakes in due course of time. The estimated M max for each source zone AYZ, HZ, and SPZ are 8.2, 8.6, and 8.7 respectively. M max obtained from this model is well comparable with the results of previous workers from NE region.  相似文献   

9.
10.
The Bayesian extreme-value distribution of earthquake occurrences has been used to estimate the seismic hazard in 12 seismogenic zones of the North-East Indian peninsula. The Bayesian approach has been used very efficiently to combine the prior information on seismicity obtained from geological data with historical observations in many seismogenic zones of the world. The basic parameters to obtain the prior estimate of seismicity are the seismic moment, slip rate, earthquake recurrence rate and magnitude. These estimates are then updated in terms of Bayes’ theorem and historical evaluations of seismicity associated with each zone. From the Bayesian analysis of extreme earthquake occurrences for North-East Indian peninsula, it is found that for T = 5 years, the probability of occurrences of magnitude (M w = 5.0–5.5) is greater than 0.9 for all zones. For M w = 6.0, four zones namely Z1 (Central Himalayas), Z5 (Indo-Burma border), Z7 (Burmese arc) and Z8 (Burma region) exhibit high probabilities. Lower probability is shown by some zones namely␣Z4, Z12, and rest of the zones Z2, Z3, Z6, Z9, Z10 and Z11 show moderate probabilities.  相似文献   

11.
North-east India is seismically very active and has experienced many widelydistributed shallow, large earthquakes. Earthquake generation model for the region was studied using seismicity data [(1906–1984) prepared by National Geophysical Data Centre (NGDC), Boulder Colorado, USA]. For establishing statistical relations surface wave magnitudes (M s≥5·5) have been considered. In the region four seismogenic sources have been identified which show the occurrences of atleast three earthquakes of magnitude 5·5≤M s≤7·5 giving two repeat times. It is observed that the time interval between the two consecutive main shock depends on the preceding main shock magnitude (M p) and not on the following main shock magnitude (M f) revealing the validity of time predictable model for the region. Linear relation between logarithm of repeat time (T) and preceding main shock magnitude (M p) is established in the form of logT=cM p+a. The values ofc anda are estimated to be 0–36 and 1–23, respectively. The relation may be used for seismic hazard evaluation in the region.  相似文献   

12.
Earthquake hazard zonation of Sikkim Himalaya using a GIS platform   总被引:2,自引:1,他引:1  
An earthquake hazard zonation map of Sikkim Himalaya is prepared using eight thematic layers namely Geology (GE), Soil Site Class (SO), Slope (SL), Landslide (LS), Rock Outcrop (RO), Frequency–Wavenumber (F–K) simulated Peak Ground Acceleration (PGA), Predominant Frequency (PF), and Site Response (SR) at predominant frequencies using Geographic Information System (GIS). This necessitates a large scale seismicity analysis for seismic source zone classification and estimation of maximum earthquake magnitude or maximum credible earthquake to be used as a scenario earthquake for a deterministic or quasi-probabilistic seismic scenario generation. The International Seismological Center (ISC) and Global Centroid Moment Tensor (GCMT) catalogues have been used in the present analysis. Combining b-value, fractal correlation dimension (Dc) of the epicenters and the underlying tectonic framework, four seismic source zones are classified in the northeast Indian region. Maximum Earthquake of M W 8.3 is estimated for the Eastern Himalayan Zone (EHZ) and is used to generate the seismic scenario of the region. The Geohazard map is obtained through the integration of the geological and geomorphological themes namely GE, SO, SL, LS, and RO following a pair-wise comparison in an Analytical Hierarchy Process (AHP). Detail analysis of SR at all the recording stations by receiver function technique is performed using 80 significant events recorded by the Sikkim Strong Motion Array (SSMA). The ground motion synthesis is performed using F–K integration and the corresponding PGA has been estimated using random vibration theory (RVT). Testing for earthquakes of magnitude greater than M W 5, a few cases presented here, establishes the efficacy and robustness of the F–K simulation algorithm. The geohazard coverage is overlaid and sequentially integrated with PGA, PF, and SR vector layers, in order to evolve the ultimate earthquake hazard microzonation coverage of the territory. Earthquake Hazard Index (EHI) quantitatively classifies the terrain into six hazard levels, while five classes could be identified following the Bureau of Indian Standards (BIS) PGA nomenclature for the seismic zonation of India. EHI is found to vary between 0.15 to 0.83 quantitatively classifying the terrain into six hazard levels as “Low” corresponding to BIS Zone II, “Moderate” corresponding to BIS Zone III, “Moderately High” belonging to BIS Zone IV, “High” corresponding to BIS Zone V(A), “Very High” and “Severe” with new BIS zones to Zone V(B) and V(C) respectively.  相似文献   

13.
This study presents the future seismic hazard map of Coimbatore city, India, by considering rupture phenomenon. Seismotectonic map for Coimbatore has been generated using past earthquakes and seismic sources within 300 km radius around the city. The region experienced a largest earthquake of moment magnitude 6.3 in 1900. Available earthquakes are divided into two categories: one includes events having moment magnitude of 5.0 and above, i.e., damaging earthquakes in the region and the other includes the remaining, i.e., minor earthquakes. Subsurface rupture character of the region has been established by considering the damaging earthquakes and total length of seismic source. Magnitudes of each source are estimated by assuming the subsurface rupture length in terms of percentage of total length of sources and matched with reported earthquake. Estimated magnitudes match well with the reported earthquakes for a RLD of 5.2% of the total length of source. Zone of influence circles is also marked in the seismotectonic map by considering subsurface rupture length of fault associated with these earthquakes. As earthquakes relive strain energy that builds up on faults, it is assumed that all the earthquakes close to damaging earthquake have released the entire strain energy and it would take some time for the rebuilding of strain energy to cause a similar earthquake in the same location/fault. Area free from influence circles has potential for future earthquake, if there is seismogenic source and minor earthquake in the last 20 years. Based on this rupture phenomenon, eight probable locations have been identified and these locations might have the potential for the future earthquakes. Characteristic earthquake moment magnitude (M w ) of 6.4 is estimated for the seismic study area considering seismic sources close to probable zones and 15% increased regional rupture character. The city is divided into several grid points at spacing of 0.01° and the peak ground acceleration (PGA) due to each probable earthquake is calculated at every grid point in city by using the regional attenuation model. The maximum of all these eight PGAs is taken for each grid point and the final PGA map is arrived. This map is compared to the PGA map developed based on the conventional deterministic seismic hazard analysis (DSHA) approach. The probable future rupture earthquakes gave less PGA than that of DSHA approach. The occurrence of any earthquake may be expected in near future in these eight zones, as these eight places have been experiencing minor earthquakes and are located in well-defined seismogenic sources.  相似文献   

14.
In this study, we accurately relocate 360 earthquakes in the Sikkim Himalaya through the application of the double-difference algorithm to 4?years of data accrued from a eleven-station broadband seismic network. The analysis brings out two major clusters of seismicity??one located in between the main central thrust (MCT) and the main boundary thrust (MBT) and the other in the northwest region of Sikkim that is site to the devastating Mw6.9 earthquake of September 18, 2011. Keeping in view the limitations imposed by the Nyquist frequency of our data (10?Hz), we select 9 moderate size earthquakes (5.3????Ml????4) for the estimation of source parameters. Analysis of shear wave spectra of these earthquakes yields seismic moments in the range of 7.95?×?1021 dyne-cm to 6.31?×?1023 dyne-cm and corner frequencies in the range of 1.8?C6.25?Hz. Smaller seismic moments obtained in Sikkim when compared with the rest of the Himalaya vindicates the lower seismicity levels in the region. Interestingly, it is observed that most of the events having larger seismic moment occur between MBT and MCT lending credence to our observation that this is the most active portion of Sikkim Himalaya. The estimates of stress drop and source radius range from 48 to 389?bar and 0.225 to 0.781?km, respectively. Stress drops do not seem to correlate with the scalar seismic moments affirming the view that stress drop is independent over a wide moment range. While the continental collision scenario can be invoked as a reason to explain a predominance of low stress drops in the Himalayan region, those with relatively higher stress drops in Sikkim Himalaya could be attributed to their affinity with strike-slip source mechanisms. Least square regression of the scalar seismic moment (M 0) and local magnitude (Ml) results in a relation LogM 0?=?(1.56?±?0.05)Ml?+?(8.55?±?0.12) while that between moment magnitude (M w ) and local magnitude as M w ?=?(0.92?±?0.04)Ml?+?(0.14?±?0.06). These relations could serve as useful inputs for the assessment of earthquake hazard in this seismically active region of Himalaya.  相似文献   

15.
The southernmost sector of the Italian peninsula is crossed by an almost continuous seismogenic belt capable of producing M ∼ 7 earthquakes and extending from the Calabrian Arc, through the Messina Straits, as far as Southeastern Sicily. Though large earthquakes occurring in this region during the last millennium are fairly well known from the historical point of view and seismic catalogues may be considered complete for destructive and badly damaging events (IX ≤ I o ≤ XI MCS), the knowledge and seismic completeness of moderate earthquakes can be improved by investigating other kinds of documentary sources not explored by the classical seismological tradition. In this paper, we present a case study explanatory of the problem, regarding the Ionian coast between the Messina Straits and Mount Etna volcano, an area of North-eastern Sicily lacking evidence of relevant seismic activity in historical times. Now, after a systematic analysis of the 18th century journalistic sources (gazettes), this gap can be partly filled by the rediscovery of a seismic sequence that took place in 1780. According to the available catalogues, the only event on record for this year is a minor shock (I = VI MCS, M w = 4.8) recorded in Messina on March 28, 1780. The newly discovered data allow to reinstate it as the mainshock (I = VII–VIII MCS, M w = 5.6) of a significant seismic period, which went on from March to June 1780, causing severe damage along the Ionian coast of North-eastern Sicily. The source responsible for this event appears located offshore, 40-km south of the previous determination, and is consistent with the Taormina Fault suggested by the geological literature, developing in the low seismic rate zone at the southernmost termination of the 1908 Messina earthquake fault.  相似文献   

16.
Turkey has been divided into eight different seismic regions taking into consideration the tectonic environments and epicenters of the earthquakes to examine relationships of the modal values (a/b), the expected maximum magnitudes (Mmax) and the maximum intensities (Imax). For this purpose, the earthquakes for the time period 1900–1992 from the Global Hypocenter Data Base CD-ROM prepared by USGS, and for the time period 1993–2001 from the PDE data and IRIS data are used. Concerning the relationships developed between different magnitude scales and between surface wave magnitudes (MS) and intensity for different source regions in Turkey, we have constructed a uniform catalog of MS. We have estimated the values of Mmax and Imax using the Gumbel III asymptotic distribution. Highest a-values are observed in the Aegean region and the lowest b-values are estimated for the North Anatolian Fault. Maximum values of a/b, Mmax and Imax are related to the eastern and western part of the North Anatolian Fault and the Aegean Arc. The lowest values of all parameters are observed near the Mid Anatolian Fault system. Linear relationships have been calculated between a/b, Mmax and Imax using orthogonal regression. If one of the three parameters is computed, two other parameters can be calculated empirically using these linear relationships. Hazard maps of Mmax and Imax values are produced using these relationships for a grid of equally spaced points at 1°. It is observed that the maps produced empirically may be used as a measure of seismic hazard in Turkey.  相似文献   

17.
A homogenous earthquake catalog is a basic input for seismic hazard estimation, and other seismicity studies. The preparation of a homogenous earthquake catalog for a seismic region needs regressed relations for conversion of different magnitudes types, e.g. m b , M s , to the unified moment magnitude M w. In case of small data sets for any seismic region, it is not possible to have reliable region specific conversion relations and alternatively appropriate global regression relations for the required magnitude ranges and focal depths can be utilized. In this study, we collected global events magnitude data from ISC, NEIC and GCMT databases for the period 1976 to May, 2007. Data for mb magnitudes for 3,48,423 events for ISC and 2,38,525 events for NEIC, M s magnitudes for 81,974 events from ISC and 16,019 events for NEIC along with 27,229 M w events data from GCMT has been considered. An epicentral plot for M w events considered in this study is also shown. M s determinations by ISC and NEIC, have been verified to be equivalent. Orthogonal Standard Regression (OSR) relations have been obtained between M s and M w for focal depths (h < 70 km) in the magnitude ranges 3.0 ≤ M s  ≤ 6.1 and 6.2 ≤ M s  ≤ 8.4, and for focal depths 70 km ≤ h ≤ 643 km in the magnitude range 3.3 ≤ M s  ≤ 7.2. Standard and Inverted Standard Regression plots are also shown along with OSR to ascertain the validation of orthogonal regression for M s magnitudes. The OSR relations have smaller uncertainty compared to SR and ISR relations for M s conversions. ISR relations between m b and M w have been obtained for magnitude ranges 2.9 ≤ m b  ≤ 6.5, for ISC events and 3.8 ≤ m b  ≤ 6.5 for NEIC events. The regression relations derived in this study based on global data are useful empirical relations to develop homogenous earthquake catalogs in the absence of regional regression relations, as the events catalog for most seismic regions are heterogeneous in magnitude types.  相似文献   

18.
The return periods and occurrence probabilities related to medium and large earthquakes (M w 4.0–7.0) in four seismic zones in northeast India and adjoining region (20°–32°N and 87°–100°E) have been estimated with the help of well-known extreme value theory using three methods given by Gumbel (1958), Knopoff and Kagan (1977) and Bury (1999). In the present analysis, the return periods, the most probable maximum magnitude in a specified time period and probabilities of occurrences of earthquakes of magnitude M ≥ 4.0 have been computed using a homogeneous and complete earthquake catalogue prepared for the period between 1897 and 2007. The analysis indicates that the most probable largest annual earthquakes are close to 4.6, 5.1, 5.2, 5.5 and 5.8 in the four seismic zones, namely, the Shillong Plateau Zone, the Eastern Syntaxis Zone, the Himalayan Thrusts Zone, the Arakan-Yoma subduction zone and the whole region, respectively. The most probable largest earthquakes that may occur within different time periods have been also estimated and reported. The study reveals that the estimated mean return periods for the earthquake of magnitude M w 6.5 are about 6–7 years, 9–10 years, 59–78 years, 72–115 years and 88–127 years in the whole region, the Arakan-Yoma subduction zone, the Himalayan Thrusts Zone, the Shillong Plateau Zone and the Eastern Syntaxis Zone, respectively. The study indicates that Arakan-Yoma subduction zone has the lowest mean return periods and high occurrence probability for the same earthquake magnitude in comparison to the other zones. The differences in the hazard parameters from zone to zone reveal the high crustal heterogeneity and seismotectonics complexity in northeast India and adjoining regions.  相似文献   

19.
This paper presents an analysis of the development of the current seismic state of the Kuznetsk coal basin, which is characterized by an increase in technogenic seismicity of different types under the influence of prolonged intensive mining operations. The development of technogenesis led to a significant increase in technogenic seismicity in the Kuznetsk Basin in the 1970-1980s, when the number of technogenic earthquakes began to exceed the number of natural earthquakes. Among the various types of induced seismicity, special attention is paid to strong technogenic tectonic earthquakes with a regional magnitude Mb ≥ 3 and, accordingly, a seismic energy release of more than 109 J, i.e., earthquakes of energy class K > 9. These small-focus earthquakes are often accompanied by destruction of underground mines, collapse of quarries and pits, damage to surface facilities and equipment, and other adverse effects. In this paper, such earthquakes are defined as technogenic tectonic to emphasize their dual origin: technogenic impacts and the subsequent relaxation of tectonic stresses. It is also noted that the Earth’s interior in Kuzbass initially had its own natural seismicity and a developed system of tectonic faults. Natural seismotectonic activity combined with constantly increasing scales of mining and explosive consumption has led to an increase in the number of technogenic seismic events and their intensity. A striking example of such an event was the 18 June, 2013 Bachat earthquake with a regional magnitude Mb= 5.8 and a seismic intensity of 7 in the epicentral zone. It was the world’s largest man-made earthquake induced by the mining of solid minerals. We consider the possible causes of this catastrophic earthquake and discuss the conditions favoring the formation of foci of such technogenic tectonic earthquakes resulting from changes in the geodynamic and hydrogeological conditions in the Earth’s crust under man-caused impacts. These induced changes in natural processes are accompanied by a change in the stress-strain state, resulting in the concentration of tectonic stresses at heterogeneities and in fault zones, which become sources of induced technogenic seismicity.The paper discusses the current period of the occurrence and increase in such anthropogenic seismicity in the Kuzbass region with increasing scales of coal mining and blasting. Over the last 20 years, the consumption of explosives at Kuzbass enterprises increased from 100-200 to 500-600 thousand tons per year, and, accordingly, the amounts of broken and transported rock increased from several million tons per year to a billion tons per year, which disturbed the dynamic equilibrium in the Earth’s crust and changed the existing field of tectonic stresses. Moreover, the continuously increasing consumption of explosives has also increased the technogenic impact on the crust structures. The location of the epicenters of large-scale blasts inducing seismic events with regional magnitudes Mb= 3.0-4.5 has made it possible to identify regions with the greatest technogenic impact in Kuzbass. Using the data of the ISC seismological catalog, we separated seismic events with the above magnitudes into day and night ones. Since blasting work is forbidden at night, night seismic events are referred to as technogenic tectonic earthquakes (night event criterion). The maximum magnitude of seismic events induced by blasting operations in the Kuznetsk Basin was estimated at Mb ≤ 4.4. The annual number of technogenic tectonic earthquakes with 3.0 ≤ Mb ≤ 3.4, 3.5 ≤ Mb ≤ 3.9, 4.0 ≤ Mb ≤ 4.4, and Mb ≥ 4.5 was determined based on the night event criterion. The regions of their occurrence were identified from the location of the epicenters of technogenic tectonic earthquakes.  相似文献   

20.
New empirical relations are derived for source parameters of the Koyna–Warna reservoir-triggered seismic zone in Western India using spectral analysis of 38 local earthquakes in the magnitude range M L 3.5–5.2. The data come from a seismic network operated by the CSIR-National Geophysical Research Institute, India, during March 2005 to April 2012 in this region. The source parameters viz. seismic moment, source radius, corner frequency and stress drop for the various events lie in the range of 1013–1016 Nm, 0.1–0.4 km, 2.9–9.4 Hz and 3–26 MPa, respectively. Linear relationships are obtained among the seismic moment (M 0), local magnitude (M L), moment magnitude (M w), corner frequency (fc) and stress drop (?σ). The stress drops in the Koyna–Warna region are found to increase with magnitude as well as focal depths of earthquakes. Interestingly, accurate depths derived from moment tensor inversion of earthquake waveforms show a strong correlation with the stress drops, seemingly characteristic of the Koyna–Warna region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号