首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
滑坡空间易发性分析有助于开展滑坡防灾减灾工作,训练有效的滑坡预测模型在其中扮演重要角色.以三峡库区湖北段为研究区,选取高程、坡度、斜坡结构、土地利用类型、岩土体类型、断裂距离、路网距离、河网距离、以及归一化植被指数这9个影响因子建立滑坡空间数据库,采用集成学习中的随机森林算法进行滑坡易发性评价.结果显示,随机森林抽样训练的方式有利于确定较优的训练参数,保证随机森林在不过拟合的情况下取得满意的拟合能力和泛化能力.随机森林绘制的滑坡易发性分级图显示出合理的空间分布,其中73.35%的滑坡分布在较高和极高级别区域.而巴东县北部、秭归县中部以及夷陵区南部等区域显示出较高的易发性级别.性能评估及易发性统计结果均表明随机森林是一种出色的算法,在滑坡空间预测领域具有较好的适用性.   相似文献   

2.
The purpose of this study is to produce landslide susceptibility map of a landslide-prone area (Daguan County, China) by evidential belief function (EBF) model and weights of evidence (WoE) model to compare the results obtained. For this purpose, a landslide inventory map was constructed mainly based on earlier reports and aerial photographs, as well as, by carrying out field surveys. A total of 194 landslides were mapped. Then, the landslide inventory was randomly split into a training dataset; 70% (136 landslides) for training the models and the remaining 30% (58 landslides) was used for validation purpose. Then, a total number of 14 conditioning factors, such as slope angle, slope aspect, general curvature, plan curvature, profile curvature, altitude, distance from rivers, distance from roads, distance from faults, lithology, normalized difference vegetation index (NDVI), sediment transport index (STI), stream power index (SPI), and topographic wetness index (TWI) were used in the analysis. Subsequently, landslide susceptibility maps were produced using the EBF and WoE models. Finally, the validation of landslide susceptibility map was accomplished with the area under the curve (AUC) method. The success rate curve showed that the area under the curve for EBF and WoE models were of 80.19% and 80.75% accuracy, respectively. Similarly, the validation result showed that the susceptibility map using EBF model has the prediction accuracy of 80.09%, while for WoE model, it was 79.79%. The results of this study showed that both landslide susceptibility maps obtained were successful and would be useful for regional spatial planning as well as for land cover planning.  相似文献   

3.
Landslide susceptibility mapping is essential for land-use activities and management decision making in hilly or mountainous regions. The existing approaches to landslide susceptibility zoning and mapping require many different types of data. In this study, we propose a fractal method to map landslide susceptibility using historical landslide inventories only. The spatial distribution of landslides is generally not uniform, but instead clustered at many different scales. In the method, we measure the degree of spatial clustering of existing landslides in a region using a box-counting method and apply the derived fractal clustering relation to produce a landslide susceptibility map by means of GIS-supported spatial analysis. The method is illustrated by two examples at different regional scales using the landslides inventory data from Zhejiang Province, China, where the landslides are mainly triggered by rainfall. In the illustrative examples, the landslides from the inventory are divided into two time periods: The landslides in the first period are used to produce a landslide susceptibility map, and those in the late period are taken as validation samples for examining the predictive capability of the landslide susceptibility maps. These examples demonstrate that the landslide susceptibility map created by the proposed technique is reliable.  相似文献   

4.
The present study is aimed at producing landslide susceptibility map of a landslide-prone area (Anfu County, China) by using evidential belief function (EBF), frequency ratio (FR) and Mahalanobis distance (MD) models. To this aim, 302 landslides were mapped based on earlier reports and aerial photographs, as well as, carrying out several field surveys. The landslide inventory was randomly split into a training dataset (70%; 212landslides) for training the models and the remaining (30%; 90 landslides) was cast off for validation purpose. A total of sixteen geo-environmental conditioning factors were considered as inputs to the models: slope degree, slope aspect, plan curvature, profile curvature, the new topo-hydrological factor termed height above the nearest drainage (HAND), average annual rainfall, altitude, distance from rivers, distance from roads, distance from faults, lithology, normalized difference vegetation index (NDVI), sediment transport index (STI), stream power index (SPI), soil texture, and land use/cover. The validation of susceptibility maps was evaluated using the area under the receiver operating characteristic curve (AUROC). As a results, the FR outperformed other models with an AUROC of 84.98%, followed by EBF (78.63%) and MD (78.50%) models. The percentage of susceptibility classes for each model revealed that MD model managed to build a compendious map focused at highly susceptible areas (high and very high classes) with an overall area of approximately 17%, followed by FR (22.76%) and EBF (31%). The premier model (FR) attested that the five factors mostly influenced the landslide occurrence in the area: NDVI, soil texture, slope degree, altitude, and HAND. Interestingly, HAND could manifest clearer pattern with regard to landslide occurrence compared to other topo-hydrological factors such as SPI, STI, and distance to rivers. Lastly, it can be conceived that the susceptibility of the area to landsliding is more subjected to a complex environmental set of factors rather than anthropological ones (residential areas and distance to roads). This upshot can make a platform for further pragmatic measures regarding hazard-planning actions.  相似文献   

5.
Landslides are introduced as regional movements, which influence different engineering structures such as roads, railways, and dams and cause the person’s death. Identification of landslide zones may decrease the financial losses and human injuries or deaths. This study tries to achieve a landslide susceptibility mapping in Cham-gardalan catchment by weighting the main criteria and the membership functions of fuzzy logic. For this, we applied the best relationship function between the presence and absence of landslides as well as a collection of the elements. At first, the landslide points were identified by the means of some components those of satellite images, topographical (1:50,000) and geographical (1:100,000) maps, field visits, and Google Earth software followed by the preparation of landslide distribution maps. Then, all effective landslide factors such as percentage of slope, slope aspect, height, geology, land uses, distance from roads, distance from drainages, distance from breakage, and precipitation map have been utilized in order to conduct the fuzzy analyses. Landslide susceptibility map was performed by fuzzy operators (Gamma, Product, Sum, Or, And) in the study area. After fuzzificating and weighting, the effective criteria of landslides were determined through fuzzy Gamma operators with the landaus of 0.2, 0.5, 0.8, and 0.9 and by comparing final maps for making an appropriate model of landslide susceptibility mapping. The regional susceptibility map represents the landslide-prone areas in five categories those of very low, low, moderate, high, and very high. Our results indicated that among the applied operators, Gamma with landau of 0.9 can be used as an appropriate method for mapping the landslide susceptibility due to the suitable fuzzification of given criteria based on landslide distribution maps. In addition, the elements of road, percentage of slope, distance from drainage, and geology were recognized as the most important factors for occurring the landslides.  相似文献   

6.
通过对攀枝花大河流域仁和街幅地质灾害的遥感解译和现场调查,共获得地质灾害点61处,其中以崩塌滑坡为主,泥石流次之。在此基础上,利用GIS空间分析方法对灾害点的空间分布与距水系距离、距断层距离、地形坡度、海拔高程、地层岩性的关系进行统计分析。结果表明:地质灾害点分布较少;崩塌滑坡主要受水系控制,沿水系呈线状分布,在距离水系300m范围内分布密度最大;海拔高程、地层岩性和距断层距离都是影响崩塌滑坡分布的重要因素;崩塌滑坡主要分布在海拔高度1 300~1 600m范围内;距断层1km范围内,崩塌滑坡分布密度最大;软弱半成砂岩、泥岩出露的地方更易发生地质灾害;在坡度0°~15°范围内,分布密度最大。  相似文献   

7.
In the Three Gorges of China, there are frequent landslides, and the potential risk of landslides is tremendous. An efficient and accurate method of generating landslide susceptibility maps is very important to mitigate the loss of lives and properties caused by these landslides. This paper presents landslide susceptibility mapping on the Zigui-Badong of the Three Gorges, using rough sets and back-propagation neural networks (BPNNs). Landslide locations were obtained from a landslide inventory map, supported by field surveys. Twenty-two landslide-related factors were extracted from the 1:10,000-scale topographic maps, 1:50,000-scale geological maps, Landsat ETM + satellite images with a spatial resolution of 28.5 m, and HJ-A satellite images with a spatial resolution of 30 m. Twelve key environmental factors were selected as independent variables using the rough set and correlation coefficient analysis, including elevation, slope, profile curvature, catchment aspect, catchment height, distance from drainage, engineering rock group, distance from faults, slope structure, land cover, topographic wetness index, and normalized difference vegetation index. The initial, three-layered, and four-layered BPNN were trained and then used to map landslide susceptibility, respectively. To evaluate the models, the susceptibility maps were validated by comparing with the existing landslide locations according to the area under the curve. The four-layered BPNN outperforms the other two models with the best accuracy of 91.53 %. Approximately 91.37 % of landslides were classified as high and very high landslide-prone areas. The validation results show sufficient agreement between the obtained susceptibility maps and the existing landslide locations.  相似文献   

8.
The objective of this study is to explore and compare the least square support vector machine (LSSVM) and multiclass alternating decision tree (MADT) techniques for the spatial prediction of landslides. The Luc Yen district in Yen Bai province (Vietnam) has been selected as a case study. LSSVM and MADT are effective machine learning techniques of classification applied in other fields but not in the field of landslide hazard assessment. For this, Landslide inventory map was first constructed with 95 landslide locations identified from aerial photos and verified from field investigations. These landslide locations were then divided randomly into two parts for training (70 % locations) and validation (30 % locations) processes. Secondly, landslide affecting factors such as slope, aspect, elevation, curvature, lithology, land use, distance to roads, distance to faults, distance to rivers, and rainfall were selected and applied for landslide susceptibility assessment. Subsequently, the LSSVM and MADT models were built to assess the landslide susceptibility in the study area using training dataset. Finally, receiver operating characteristic curve and statistical index-based evaluations techniques were employed to validate the predictive capability of these models. As a result, both the LSSVM and MADT models have high performance for spatial prediction of landslides in the study area. Out of these, the MADT model (AUC = 0.853) outperforms the LSSVM model (AUC = 0.803). From the landslide study of Luc Yen district in Yen Bai province (Vietnam), it can be conclude that the LSSVM and MADT models can be applied in other areas of world also for and spatial prediction. Landslide susceptibility maps obtained from this study may be helpful in planning, decision making for natural hazard management of the areas susceptible to landslide hazards.  相似文献   

9.
2010年1月12日海地MW 7.0级地震触发了大量的滑坡。我们基于GIS与遥感技术构建了3类详细完备的海地地震滑坡编录图,分别为单体滑坡面分布数据,滑坡中心点位置数据与滑坡后壁点位置数据。结果表明海地地震触发了30828处滑坡,这些滑坡大致分布在一个面积为3192.85km2的区域内,滑坡覆盖面积为15.736km2。基于滑坡中心点密度(LCND)、滑坡后壁点密度(LTND)、滑坡面积百分比(LAP)与滑坡剥蚀厚度(LET)这4个衡量指标,使用统计分析方法,分析了海地地震滑坡及其剥蚀厚度与地震参数、地形参数、公路参数的关系。分析结果表明滑坡与坡度、地震动峰值加速度(PGA)存在大致的正相关关系; 与距离恩里基约芭蕉园断裂、距离水系存在大致的负相关关系; 滑坡沿着恩里基约芭蕉园断裂距离的统计结果表明,震中以西距离震中22~26km与8~12km的区域,与震中以东距离震中6~18km的区域是地震滑坡易发区域; 斜坡曲率值越接近0,也就是坡面较平的斜坡越不容易在地震条件下发生滑动; LCND、LTND、LAP与LET高值对应的高程区间为200~1200m; 滑坡发生的优势坡向为E方向; 滑坡的发生与距离震中、距离公路没有太明确的关系。  相似文献   

10.
本文选择东南沿海地区具有典型降雨型滑坡的淳安县作为研究区,在完成全县地质灾害详细调查的基础上,选取高程、坡度、坡向、曲率、工程地质岩组、距断层距离、距道路距离、土地利用和植被等9个滑坡影响因子,利用GIS技术与确定性系数分析方法,对这9个影响因子开展敏感性分析。研究结果表明:(1) 寒武、震旦、石炭和白垩系是滑坡易发地层,侵入岩组、紫红色砂岩、碳酸盐岩夹碎屑岩、碳酸盐岩为主的岩组是滑坡高敏感性岩组;滑坡受断层影响总体上随着距离断层由近及远逐渐降低;(2) 坡度范围10°~35°是滑坡的易发坡度,30°~35°滑坡数量达到峰值;SE和S等朝南坡向是滑坡最易发坡向;高程范围为100~200m是滑坡最易发区间;凹坡最易发生滑坡,而凸坡则滑坡敏感性最差;非林地、茶叶、竹林和经济林等是滑坡高敏感植被类型;(3) 住宅用地、耕地、园地等与人类活动密切相关的用地类型是滑坡易发地类;距道路距离因子对滑坡敏感性低,相关性不明显。上述各滑坡影响因子最利于滑坡发生的数值区间确定,将为研究区进一步开展降雨型滑坡区域易发性评价及预测奠定基础。  相似文献   

11.
The main goal of this paper is to generate a landslide susceptibility map through evidential belief function (EBF) model by using Geographic Information System (GIS) for Qianyang County, Shaanxi Province, China. At first, a detailed landslide inventory map was prepared, and the following ten landslide-conditioning factors were collected: slope angle, slope aspect, curvature, plan curvature, profile curvature, altitude, distance to rivers, geomorphology, lithology, and rainfall. The landslides were detected from the interpretation of aerial photographs and supported by field surveys. A total of 81 landslides were randomly split into the following two parts: the training dataset 70 % (56 landslides) were used for establishing the model and the remaining 30 % (25 landslides) were used for the model validation. The ArcGIS was used to analyze landslide-conditioning factors and evaluate landslide susceptibility; as a result, a landslide susceptibility map was generated by using EBF and ArcGIS 10.0, thus divided into the following five susceptibility classes: very low, low, moderate, high, and very high. Finally, when we validated the accuracy of the landslide susceptibility map, both the success-rate and prediction-rate curve methods were applied. The results reveal that a final susceptibility map has the success rate of 83.31 % and the prediction rate of 79.41 %.  相似文献   

12.
The 2015 Mw7.8 Gorkha earthquake triggered thousands of landslides of various types scattered over a large area. In the current study, we utilized pre- and post-earthquake high-resolution satellite imagery to compile two landslide inventories before and after earthquake and prepared three landslide susceptibility maps within 404 km2 area using frequency ratio (FR) model. From the study, we could map about 519 landslides including 178 pre-earthquake slides and 341 coseismic slides were identified. This study investigated the relationship between landslide occurrence and landslide causative factors, i.e., slope, aspect, altitude, plan curvature, lithology, land use, distance from streams, distance from road, distance from faults, and peak ground acceleration. The analysis showed that the majority of landslides both pre-earthquake and coseismic occurred at slope >30°, preferably in S, SE, and SW directions and within altitude ranging from 1000 to 1500 m and 1500 to 3500 m. Scatter plots between number of landslides per km?2 (LN) and percentage of landslide area (LA) and causative factors indicate that slope is the most influencing factor followed by lithology and PGA for the landslide formation. Higher landslide susceptibility before earthquake is observed along the road and rivers, whereas landslides after earthquake are triggered at steeper slopes and at higher altitudes. Combined susceptibility map indicates the effect of topography, geology, and land cover in the triggering of landslides in the entire basin. The resultant landslide susceptibility maps are verified through AUC showing success rates of 78, 81, and 77%, respectively. These susceptibility maps are helpful for engineers and planners for future development work in the landslide prone area.  相似文献   

13.
Landslides are very common natural problems in the Black Sea Region of Turkey due to the steep topography, improper use of land cover and adverse climatic conditions for landslides. In the western part of region, many studies have been carried out especially in the last decade for landslide susceptibility mapping using different evaluation methods such as deterministic approach, landslide distribution, qualitative, statistical and distribution-free analyses. The purpose of this study is to produce landslide susceptibility maps of a landslide-prone area (Findikli district, Rize) located at the eastern part of the Black Sea Region of Turkey by likelihood frequency ratio (LRM) model and weighted linear combination (WLC) model and to compare the results obtained. For this purpose, landslide inventory map of the area were prepared for the years of 1983 and 1995 by detailed field surveys and aerial-photography studies. Slope angle, slope aspect, lithology, distance from drainage lines, distance from roads and the land-cover of the study area are considered as the landslide-conditioning parameters. The differences between the susceptibility maps derived by the LRM and the WLC models are relatively minor when broad-based classifications are taken into account. However, the WLC map showed more details but the other map produced by LRM model produced weak results. The reason for this result is considered to be the fact that the majority of pixels in the LRM map have high values than the WLC-derived susceptibility map. In order to validate the two susceptibility maps, both of them were compared with the landslide inventory map. Although the landslides do not exist in the very high susceptibility class of the both maps, 79% of the landslides fall into the high and very high susceptibility zones of the WLC map while this is 49% for the LRM map. This shows that the WLC model exhibited higher performance than the LRM model.  相似文献   

14.
Of the natural hazards in Turkey, landslides are the second most devastating in terms of socio-economic losses, with the majority of landslides occurring in the Eastern Black Sea Region. The aim of this study is to use a statistical approach to carry out a landslide susceptibility assessment in one area at great risk from landslides: the Sera River Basin located in the Eastern Black Sea Region. This paper applies a multivariate statistical approach in the form of a logistics regression model to explore the probability distribution of future landslides in the region. The model attempts to find the best fitting function to describe the relationship between the dependent variable, here the presence or absence of landslides in a region and a set of independent parameters contributing to the occurrence of landslides. The dependent variable (0 for the absence of landslides and 1 for the presence of landslides) was generated using landslide data retrieved from an existing database and expert opinion. The database has information on a few landslides in the region, but is not extensive or complete, and thus unlike those normally used for research. Slope, angle, relief, the natural drainage network (including distance to rivers and the watershed index) and lithology were used as independent parameters in this study. The effect of each parameter was assessed using the corresponding coefficient in the logistic regression function. The results showed that the natural drainage network plays a significant role in determining landslide occurrence and distribution. Landslide susceptibility was evaluated using a predicted map of probability. Zones with high and medium susceptibility to landslides make up 38.8 % of the study area and are located mostly south of the Sera River Basin and along streams.  相似文献   

15.
The main purpose of this paper is to present the use of multi-resource remote sensing data, an incomplete landslide inventory, GIS technique and logistic regression model for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Landslide location polygons were delineated from visual interpretation of aerial photographs, satellite images in high resolutions, and verified by selecting field investigations. Eight factors, including slope angle, slope aspect, elevation, distance from drainages, distance from roads, distance from main faults, seismic intensity and lithology were selected as controlling factors for earthquake-triggered landslide susceptibility mapping. Qualitative susceptibility analyses were carried out using the map overlaying techniques in GIS platform. The validation result showed a success rate of 82.751 % between the susceptibility probability index map and the location of the initial landslide inventory. The predictive rate of 86.930 % was obtained by comparing the additional landslide polygons and the landslide susceptibility probability index map. Both the success rate and the predictive rate show sufficient agreement between the landslide susceptibility map and the existing landslide data, and good predictive power for spatial prediction of the earthquake-triggered landslides.  相似文献   

16.
The October 2005 earthquake triggered several thousand landslides in the Lesser Himalaya of Kashmir in northern Pakistan and India. Analyses of ASTER satellite imagery from 2001 were compared with a study undertaken in 2005; the results show the extent and nature of pre- and co-/post-seismic landsliding. Within a designated study area of ~2,250 km2, the number of landslides increased from 369 in 2001 to 2,252 in October 2005. Assuming a balanced baseline landsliding frequency over the 4 years, most of the new landslides were likely triggered by the 2005 earthquake and its aftershocks. These landslides mainly happened in specific geologic formations, along faults, rivers and roads, and in shrubland/grassland and agricultural land. Preliminary results from repeat photographs from 2005 and 2006 after the snowmelt season reveal that much of the ongoing landsliding occurred along rivers and roads, and the extensive earthquake-induced fissuring. Although the susceptibility zoning success rate for 2001 was low, many of the co-/post-seismic landsliding in 2005 occurred in areas that had been defined as being potentially dangerous on the 2001 map. While most of the area in 2001 was (very) highly susceptible to future landsliding, most of the area in 2005 was only moderate to low susceptible, that is, most of the landsliding in 2005 actually occurred in the potentially dangerous areas on the 2001 map. This study supports the view that although susceptibility zoning maps represent a powerful tool in natural hazard management, caution is needed when developing and using such maps.  相似文献   

17.
川藏铁路是我国目前正在规划建设的重要铁路干线之一,地处地形和地质条件极为复杂的青藏高原东部,复杂的地质背景与脆弱的地质环境造成川藏铁路沿线及邻区地质灾害极为发育,严重威胁着川藏铁路的规划建设。在对地质灾害易发性评价方法分析的基础上,首先对传统的地质灾害易发性评价频率比方法进行改进,克服了传统通用方法中频率比值分布的不连续性,提高了各地质灾害影响因子敏感性的区分度,并减小了因子分级的主观性。利用ROC曲线与空间熵的定量对比验证表明,改进频率比法的地质灾害易发性评价模型优于传统方法。根据地质灾害的发育分布特征,选取地面高程、地形坡度、地形坡向、地形曲率、地形起伏度、工程地质岩组、地震动峰值加速度、断裂密度、水系距离、道路距离、降水量与植被指数等影响地质灾害的主要因素,结合地质灾害调查数据,首先分析各影响因子的地质灾害敏感性,并进一步对川藏铁路沿线及邻区的地质灾害易发性进行评价和分区。评价结果表明,研究区地质灾害的发育分布主要受控于断裂、水系和道路等线状要素,以及地形坡度和地形起伏度等地形地貌因素,并且断裂密度和地形起伏度相较其他因子具有更大的地质灾害敏感性区分度。地质灾害极高易发区和高易发区主要分布于大型水系两岸、道路两侧的高山河谷沿线的狭窄地带,使沿河谷与已有道路规划展布的川藏铁路面临着严重的地质灾害威胁,铁路规划建设部门应加强该地带的地质灾害排查、防治和线路优化工作。  相似文献   

18.
Owing to fragile geo-morphology, extreme climatic conditions, and densely populated settlements and rapid development activities, West Java Province is the most landslide hazardous area in Indonesia. So, a landslide risk map for this province bears a great importance such as for land-use planning. It is however widely accepted that landslide risk analysis is often difficult because of the difficulties involved in landslide hazard assessment and estimation of consequences of future landslide events. For instance, lack of multi-temporal inventory map or records of triggering events is often a major problem in landslide hazard mapping. In this study, we propose a simple technique for converting a landslide susceptibility map into a landslide hazard map, which we have employed for landslide risk analysis in one ideally hazardous part of volcanic mountains in West Java Province. The susceptibility analysis was carried out through correlation between past landslides and eight spatial parameters related to instability, i.e. slope, aspect, relative relief, distance to river, geological units, soil type, land use and distance to road. The obtained susceptibility map was validated using cross-time technique, and was collaborated with the frequency-area statistics to respond to ‘when landslide will occur’ and ‘how large it will be’. As for the judgment of the consequences of future landslides, expert opinion was used considering available literature and characteristic of the study area. We have only considered economic loss in terms of physical damage of buildings, roads and agricultural lands for the landslide risk analysis. From this study, we understand the following: (1) the hazard map obtained from conversion of the susceptibility map gives spatial probability and the area of an expected landslide will be greater than 500m2 in the next 2 years, (2) the landslide risk map shows that 24% of the total area is in high risk; 30% in moderate risk; 45% in low risk and no risk covers only 1% of the total area, and (3) the loss will be high in agricultural lands, while it will be low in the road structures and buildings.  相似文献   

19.
Landslides every year impose extensive damages to human beings in various parts of the world; therefore, identifying prone areas to landslides for preventive measures is essential. The main purpose of this research is applying different scenarios for landslide susceptibility mapping by means of combination of bivariate statistical (frequency ratio) and computational intelligence methods (random forest and support vector machine) in landslide polygon and point formats. For this purpose, in the first step, a total of 294 landslide locations were determined from various sources such as aerial photographs, satellite images, and field surveys. Landslide inventory was randomly split into a testing dataset 70% (206 landslide locations) for training the different scenarios, and the remaining 30% (88 landslides locations) was used for validation purposes. To providing landslide susceptibility maps, 13 conditioning factors including altitude, slope angle, plan curvature, slope aspect, topographic wetness index, lithology, land use/land cover, distance from rivers, drainage density, distance from fault, distance from roads, convergence index, and annual rainfall are used. Tolerance and the variance inflation factor indices were used for considering multi-collinearity of conditioning factors. Results indicated that the smallest tolerance and highest variance inflation factor were 0.31 and 3.20, respectively. Subsequently, spatial relationship between classes of each landslide conditioning factor and landslides was obtained by frequency ratio (FR) model. Also, importance of the mentioned factors was obtained by random forest (RF) as a machine learning technique. The results showed that according to mean decrease accuracy, factors of altitude, aspect, drainage density, and distance from rivers had the greatest effect on the occurrence of landslide in the study area. Finally, the landslide susceptibility maps were produced by ten scenarios according to different ensembles. The receiver operating characteristics, including the area under the curve (AUC), were used to assess the accuracy of the models. Results of validation of scenarios showed that AUC was varying from 0.668 to 0.749. Also, FR and seed cell area index indicators show a high correlation between the susceptibility classes with the landslide pixels and field observations in all scenarios except scenarios 10RF and 10SVM. The results of this study can be used for landslides management and mitigation and development activities such as construction of settlements and infrastructure in the future.  相似文献   

20.
A landslide susceptibility assessment for İzmir city (Western Turkey), which is the third biggest city of Turkey, was performed by a logistic regression method. A database of landslide characteristics was prepared using detailed field surveys. The major landslides in the study area are generally observed in the field, dominated by weathered volcanics, and 39.63% of the total landslide area is in this unit. The parameters of lithology, slope gradient, slope aspect, distance to drainage, distance to roads and distance to fault lines were used as variables in the logistic regression analysis. The effect of each parameter on landslide occurrence was assessed from the corresponding coefficients that appear in the logistic regression function. On the basis of the obtained coefficients, lithology plays the most important role in determining landslide occurrence and distribution. Slope gradient has a more significant effect than the other geomorphological parameters, such as slope aspect and distance to drainage. Using a predicted map of probability, the study area was classified into five categories of landslide susceptibility: very low, low, moderate, high and very high. Whereas 49.65% of the total study area has very low susceptibility, very high susceptibility zones make up 11.69% of the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号