首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Collision of the Kohistan island arc with Asia at ~100 Ma resulted in N-S compression within the Neo-Tethys at a spreading center north of the Indo-Pakistani craton. Subsequent India-Asia convergence converted the Neo-Tethyan spreading center into a short-lived subduction zone. The hanging wall of the subduction zone became the Waziristan, Khost and Jalalabad igneous complexes. During the Santonian- Campanian (late Cretaceous), thrusting of the NW IndoPakistani craton beneath Albian oceanic crust and a Cenomanian volcano-sedimentary complex, generated an ophiolite-radiolarite belt. Ophiolite obduction resulted in tectonic loading and flexural subsidence of the NW Indian margin and sub-CCD deposition of shelf-derived olistostromes and turbidites in the foredeep. Campanian-Maastriehtian calci- clastic and siliciclastic sediment gravity flows derived from both margins filled the foredeep as a huge allochthon of Triassic-Jurassic rise and slope strata was thrust ahead of the ophiolites onto the Indo-Pakistani craton. Shallow to intermediate marine strata covered the foredeep during the late Maastrichtian. As ophiolite obduction neared completion during the Maastrichtian, the majority of India-Asia convergence was accommodated along the southern margin of Asia. During the Paleocene, India was thrust beneath a second allochthon that included open marine middle Maastrichtian colored mélange which represents the Asian Makran-Indus-Tsangpo accretionary prism. Latérites that formed on the eroded ophiolites and structurally higher colored mélange during the Paleocene wei’e unconformably overlapped by upper Paleocene and Middle Eocene shallow marine limestone and shale that delineate distinct episodes of Paleocene collisional and Early Eocene post-collisional deformation.  相似文献   

2.
The Papuan Ultramafic Belt (PUB) ophiolite is former oceanic crust and upper mantle emplaced onto continental crust in Papua New Guinea (PNG) in a zone of general convergence between the Pacific and Australian plates. The metamorphic sole beneath the ophiolite is best exposed in the Musa–Kumusi divide and comprises a 40- to 300-m-thick body of granulite and amphibolite facies rocks. Geochronological studies on the metamorphic sole, using amphiboles from the granulites and amphibolites, yield measured K–Ar ages ranging from 65.0±0.7 to 57.2±0.6 Ma and average 40Ar–39Ar direct total fusion ages ranging from 67.0±0.7 to 59.5±0.2 Ma. Five of the six 40Ar–39Ar plateau ages, derived from age spectra, lie between 58.6±0.2 and 57.8±0.2 Ma, with an overall mean age of 58.3±0.4 Ma. The large spread in measured K–Ar and 40Ar–39Ar total fusion ages is thought to be caused by the presence of variable amounts of excess argon. The mean plateau age for five samples of 58.3±0.4 Ma is interpreted to mark the time of cooling of the metamorphic sole following peak metamorphism. We suggest that the development of the metamorphic sole and emplacement of the PUB ophiolite onto the PNG crust occurred in a relatively short time interval in the Paleocene.  相似文献   

3.
Ophiolites are widespread along the Bangong-Nujiang suture zone, northern Tibet. However, it is still debated on the formation ages and tectonic evolution process of these ophiolites. The Zhongcang ophiolite is a typical ophiolite in the western part of the Bangong-Nujiang suture zone. It is composed of serpentinized peridotite, cumulate and isotropic gabbros, massive and pillow basalts, basaltic volcanic breccia, and minor red chert. Zircon SHRIMP Ue Pb dating for the isotropic gabbro yielded weighted mean age of 163.4 ± 1.8 Ma. Positive zircon ε Hf(t) values(+15.0 to +20.2) and mantle-like σ~(18)O values(5.29 ±0.21)% indicate that the isotropic gabbros were derived from a long-term depleted mantle source. The isotropic gabbros have normal mid-ocean ridge basalt(N-MORB) like immobile element patterns with high Mg O, low TiO_2 and moderate rare earth element(REE) abundances, and negative Nb,Ti, Zr and Hf anomalies. Basalts show typical oceanic island basalt(OIB) geochemical features, and they are similar to those of OIB-type rocks of the Early Cretaceous Zhongcang oceanic plateau within the Bangong-Nujiang Ocean. Together with these data, we suggest that the Zhongcang ophiolite was probably formed by the subduction of the Bangong-Nujiang Ocean during the Middle Jurassic. The subduction of the Bangong-Nujiang Tethyan Ocean could begin in the Earlye Middle Jurassic and continue to the Early Cretaceous, and finally continental collision between the Lhasa and Qiangtang terranes at the west Bangong-Nujiang suture zone probably has taken place later than the Early Cretaceous(ca. 110 Ma).  相似文献   

4.
青藏高原北部东昆仑德尔尼蛇绿岩由变质橄榄岩、基性超基性堆晶岩、辉绿岩墙群和基性喷出岩组成。变质橄榄岩主要为纯橄岩、方辉橄榄岩、二辉橄榄岩、含长二辉橄榄岩和含石榴石二辉橄榄岩,岩石中残余尖晶石的Cr’值(=100×Cr/(Cr+Al))为30~57,Mg’值(=100×Mg/(Mg+Fe2+))为50~75,指示一个富Al和Mg成分系列。变质橄榄岩有一个相对窄的成分,其Mg’值为89.1~91.3,Al2O3含量1%~4%,REE轻度亏损,表明其为经历了中、低程度部分熔融的残余地幔物质。含石榴石二辉橄榄岩中的石榴石为钙铁榴石,富Ca和Fe,贫Mg和Al(And95%~97%,Pyr0.27%~5.06%,Gro0~2.62%),为变质成因。堆晶岩包括纯橄岩、异剥橄榄岩、(石榴石)辉石岩和辉长岩。堆晶纯橄岩与层状杂岩伴生,偶含少量斜长石。异剥橄榄岩由橄榄石、透辉石和少量斜长石组成。层状辉长岩-辉石岩杂岩由透辉石和斜长石组成,两种矿物交替形成层状堆积层理。石榴石辉石岩或异剥钙榴岩呈团块状产于变质橄榄岩中,其中的石榴石为钙铝榴石(Gro69.19%~89.93%;And9.12%~18.84%;Br0.73%~11.63%),也属变质成因。辉绿岩墙显示LREE亏损,(La/Sm)N=0.5~0.8,HREE呈近平坦型分布,Eu正异常(δEu1.2~1.6)。玄武岩的REE模式与MORB类似,(La/Sm)N=0.5~0.9,显示不同程度的Eu负异常。熔  相似文献   

5.
Although all oceanic arcs grow through the addition of subduction-generated magmas, the geology of the northern Philippines demonstrates that a major contribution to arc crustal growth can come from repeated, episodic, intra-arc, back-arc, and/or fore-arc oceanic crust generation with subsequent preservation of the basic–ultrabasic units in the arc complex. At least five episodes of oceanic crust generation are represented in the northern Philippines by preserved ophiolitic sequences and recent intra-arc seafloor spreading. Each episode is distinct in age as confirmed by modern dating techniques, with the ages ranging from pre(?)-Jurassic to Quaternary. Although the Philippines is widely regarded as an amalgamation of allochthonous terranes, a review of the available data shows that there is currently no compelling evidence that these ophiolites are of exotic origin and that they have been tectonically accreted to the Philippine arc complex. Rather, the evidence suggests that most—and possibly all—of the ophiolites were generated as back-arc, fore-arc, or intra-arc crust within the Philippine arc complex. Hence, there is a close spatial association of several ophiolitic terranes of diverse ages spanning 150 Myr that formed as part of the arc complex. Such an association may have arisen from episodic generation of oceanic crust during periods of local extension in a suprasubduction zone setting, which has experienced changing and possibly overlapping subduction from the east and west sides (in the current reference frame). Disruption of the ophiolitic basement terranes has been, and continues to be, effected primarily by wrench faulting. This style of arc growth has implications for the paleotectonic interpretation of ancient ophiolite-arc terranes in continents and the petrologic evolution of island arcs.  相似文献   

6.
《Geodinamica Acta》2013,26(5):375-388
The structure of the southernmost domain of the Ossa Morena Zone in Portugal (south sector of the Iberian Autochthonous Terrane) is strongly controlled by earlier deformation events. The first two deformation events correspond to tangential strain regimes, marked by subhorizontal milonitic foliations. These events seem to be directly related with the obduction/subduction process during the Variscan ocean closure and the emplacement of the Beja-Acebuches Oceanic Terrane. In this domain (Évora-Beja Domain), the upper tectono-stratigraphic unit (Moura Phyllonitic Complex) is mainly represented by phyllites and corresponds to a strongly imbricated complex, involving several layers of autochthonous sequence (mainly rocks of a volcano-sedimentary complex), but it also includes dismembered and scattered slices of ophiolites. The widespread greenschists facies overprint an earlier high-pressure metamorphic event (blueschists in the central sector of Évora-Beja Domain and eclogites in the western sector). With regard to its geochemical signature, the Moura Phyllonitic Complex includes amphibolites ranging from N-MORB to T/P-MORB (ophiolitic slices) and mafic alkaline and peralkaline metavolcanics (autochthonous slices). At macroscopic scale, the autochthonous sequence of the Évora-Beja Domain is almost complete in the eastern region, with a stratigraphic sequence ranging from Precambrian to Silurian/Lower Devonian. Towards WSW, the Moura Phyllonitic Complex progressively become tectonically discordant on the sequence below, just near the suture, where it superposes Precambrian levels. The overall evidences (tectonic, metamorphic and geochemical) allow the conclusion that the Moura Phyllonitic Complex is an accretionary complex related with the obduction process during earlier times of the variscan ocean closure.  相似文献   

7.
The mantle section of the Tethyan-type Othris Ophiolite, Greece, records tectono-magmatic processes characteristic of both mid-ocean ridges and supra-subduction zones. The Othris Ophiolite is a remnant of the Jurassic Neotethys Ocean, which existed between Eurasia and Gondwanaland. Othris peridotites range from fertile plagioclase lherzolites to depleted harzburgites. Abundances of Al2O3 and CaO show well-defined inverse linear correlations with MgO, suggesting that the Othris peridotites formed as residua from variable degrees of partial melting.

Peridotites from the Fournos Kaïtsa and western Katáchloron sub-massifs are similar to abyssal peridotites and can be explained by a multistage model with some melting in the garnet stability field followed by moderate degrees of anhydrous near-fractional melting in the spinel stability field. In contrast, the peridotites from the Metalleio, Eretria, and eastern Katáchloron sub-massifs, and the Vourinos ophiolite are highly depleted and have extremely low concentrations of Al2O3 and heavy rare earth elements. These peridotites have enriched light REE contents compared to the middle REE. These residua are best modelled by hydrous melting due to a flux of slab-derived fluid to the mantle wedge during melting.

The occurrence of both styles of melting regimes within close spatial and temporal association in the same ophiolite is explained by intra-oceanic thrusting and forced subduction initiation at (or near) a mid-ocean ridge. Thus, the Othris Ophiolite, and probably Tethyan-type ophiolites in general, represent a transient phase of plate tectonic reorganisation rather than quasi-steady state plate tectonics.  相似文献   


8.
The Enganepe ophiolite, Polar Urals was formed at 670 Ma and records a diverse geochemical association of tholeiite, arc-tholeiite, adakite, and OIB-like lithologies. This constrains the tectonic setting of the protolith of the ophiolite to an oceanic island-arc, with ridge-trench interaction most readily explaining the diverse compositions. The initiation of intra-ocean subduction and the development of the Enganepe island arc off the eastern margin of Baltica probably pre-dated the formation of the Enganepe ophiolite, i.e. prior to 670 Ma. The timing of island-arc magmatism is similar in age to that recorded off Avalon in the Cadomian arc. We propose that the active margin of Baltica in the Vendian is an extension of the Cadomian arc. This requires the northeast margin of Baltica (present-day coordinates) to have been in a southerly position in the Vendian, in agreement with proposed tectonic reconstructions. Consequently, the post-Rodinia continental amalgamation, Pannotia, had active ocean-continent convergence along its entire southerly (west Avalonia and Amazonian cratons) margin at the time of its break-up.  相似文献   

9.
The Mid-Tertiary (Mid-Eocene to earliest Miocene) Misis–Andırın Complex documents tectonic-sedimentary processes affecting the northerly, active margin of the South Tethys (Neotethys) in the easternmost Mediterranean region. Each of three orogenic segments, Misis (in the SW), Andırın (central) and Engizek (in the NE) represent parts of an originally continuous active continental margin. A structurally lower Volcanic-Sedimentary Unit includes Late Cretaceous arc-related extrusives and their Lower Tertiary pelagic cover. This unit is interpreted as an Early Tertiary remnant of the Mesozoic South Tethys. The overlying melange unit is dominated by tectonically brecciated blocks (>100 m across) of Mesozoic neritic limestone that were derived from the Tauride carbonate platform to the north, together with accreted ophiolitic material. The melange matrix comprises polymict debris flows, high- to low-density turbidites and minor hemipelagic sediments.The Misis–Andırın Complex is interpreted as an accretionary prism related to the latest stages of northward subduction of the South Tethys and diachronous continental collision of the Tauride (Eurasian) and Arabian (African) plates during Mid-Eocene to earliest Miocene time. Slivers of Upper Cretaceous oceanic crust and its Early Tertiary pelagic cover were accreted, while blocks of Mesozoic platform carbonates slid from the overriding plate. Tectonic mixing and sedimentary recycling took place within a trench. Subduction culminated in large-scale collapse of the overriding (northern) margin and foundering of vast blocks of neritic carbonate into the trench. A possible cause was rapid roll back of dense downgoing Mesozoic oceanic crust, such that the accretionary wedge taper was extended leading to gravity collapse. Melange formation was terminated by underthrusting of the Arabian plate from the south during earliest Miocene time.Collision was diachronous. In the east (Engizek Range and SE Anatolia) collision generated a Lower Miocene flexural basin infilled with turbidites and a flexural bulge to the south. Miocene turbiditic sediments also covered the former accretionary prism. Further west (Misis Range) the easternmost Mediterranean remained in a pre-collisional setting with northward underthrusting (incipient subduction) along the Cyprus arc. The Lower Miocene basins to the north (Misis and Adana) indicate an extensional (to transtensional) setting. The NE–SW linking segment (Andırın) probably originated as a Mesozoic palaeogeographic offset of the Tauride margin. This was reactivated by strike-slip (and transtension) during Later Tertiary diachronous collision. Related to on-going plate convergence the former accretionary wedge (upper plate) was thrust over the Lower Miocene turbiditic basins in Mid–Late Miocene time. The Plio-Quaternary was dominated by left-lateral strike-slip along the East Anatolian transform fault and also along fault strands cutting the Misis–Andırın Complex.  相似文献   

10.
The Nidar ophiolite complex is exposed within the Indus suture zone in eastern Ladakh, India. The suture zone is considered to represent remnant Neo-Tethyan Ocean that closed via subduction as the Indian plate moved northward with respect to the Asian plate. The two plates ultimately collided during the Middle Eocene. The Nidar ophiolite complex comprises a sequence of ultra-mafic rocks at the base, gabbroic rocks in the middle and volcano-sedimentary assemblage on the top. Earlier studies considered the Nidar ophiolite complex to represent an oceanic floor sequence based on lithological assemblage. However, present study, based on new mineral and whole rock geochemical and isotopic data (on bulk rocks and mineral separates) indicate their generation and emplacement in an intra-oceanic subduction environment. The plutonic and volcanic rocks have nearly flat to slightly depleted rare earth element (REE) patterns. The gabbroic rocks, in particular, show strong positive Sr and Eu anomalies in their REE and spidergram patterns, probably indicating plagioclase accumulation. Depletion in high field strength elements (HFSE) in the spidergram patterns may be related to stabilization of phases retaining the HFSE in the subducting slab and / or fractional crystallization of titano-magnetite phases. The high radiogenic Nd- and low radiogenic Sr-isotopic ratios for these rocks exclude any influence of continental material in their genesis, implying an intra-oceanic environment.

Nine point mineral–whole rock Sm–Nd isochron corresponds to an age of 140 ± 32 Ma with an initial 143Nd/144Nd of 0.513835 ± 0.000053 (ENd t = + 7.4). This age is consistent with the precise Early Cretaceous age of Hauterivian (132 ± 2 to 127 ± 1.6 Ma) to Aptian (121 ± 1.4 to 112 ±1.1 Ma) for the overlying volcano-sedimentary (radiolarian bearing chert) sequences based on well-preserved radiolarian fossils (Kojima, S., Ahmad, T., Tanaka, T., Bagati, T.N., Mishra, M., Kumar, R. Islam, R., Khanna, P.P., 2001. Early Cretaceous radiolarians from the Indus suture zone, Ladakh, northern India. In: News of Osaka Micropaleontologists (NOM), Spec. Vol., 12, 257–270.) and cooling ages of 110–130 Ma based on 39Ar/40Ar for Nidar–Spontang ophiolitic rocks (Mahéo, G., Berttrand, H., Guillot, S., Villa, I. M., Keller, F., Capiez, P., 2004. The South Ladakh Ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with implications for the closure of the Neo-Tethys. Chem. Geol., 203, 273–303.). As these gabbroic and volcanic rocks are interpreted to be arc related, the new Sm–Nd age data may indicate that intra-ocean subduction in the Neo-Tethyan ocean may have started much before  140 ± 32 Ma as this date is interpreted as the age of crystallization of the arc magma. Present and published age data on the arc magmatic rocks from the Indus suture zone may collectively indicate episodic magmatism with increasing maturity of the arc from more basic (during ~ 140 ± 32 Ma) when the arc was immature through intermediate (andesitic/granodioritic) at ~ 100 Ma to more felsic (rhyolitic/dioritic) magmatism at ~ 50–45 Ma, when the Indian and the Asian plates collided.  相似文献   


11.
对新疆北部蛇绿岩及相关问题的思考和认识   总被引:12,自引:9,他引:12  
蛇绿岩是作为大陆古板块划分及洋壳存在的重要佐证,同时也是许多地质问题争论的焦点之一。关于新疆北部地区大地构造单元的划分,尽管从不同理论、不同专业角度进行了许多研究和论述,但也因对区内蛇绿岩的认识不同而仍存在诸多争议。本文针对以区内蛇绿岩形成时代来确定洋盆出现所存在的一些可变因素的阐述,提出在新疆北部地区于震旦纪-石炭纪期间可能只存在一个水域相通的统一大洋~准噶尔-天山洋的认识。并以此为基点,对新疆北部地区的构造单元进行了初步划分,划分出两个被动陆缘带和三个弧盆带,同时将其构造演化概括为陆壳拉张(Z—C)、洋盆形成(O-S)及洋盆消减(D—C)三个阶段。  相似文献   

12.
The chrome ores of the abandoned Eretria mine of the East Othris ophiolite occur within a pervasively serpentinized and sheared harzburgite body. They consist of massive chromitites with mylonitic fabric in imbricate shaped pods. Modal analyses of these ores average at about 90–95% chromian spinel (Cr-spinel) and 5–10% secondary silicates. Chromian spinel compositions vary in Cr# [Cr/(Cr + Al) × 100] and Mg# [Mg/(Mg + Fe2+) × 100] from 44 to 62 and from 59 to 81, respectively. Trace element (Ti, Ni, V, Mn, Zn, Sc, Co and Ga) contents in Cr-spinel do not show significant variations from grain cores to grain boundaries. However, Cr-spinel compositions show depletions in Ti, Zn and Sc when compared to the composition of accessory Cr-spinel from typical mid-ocean ridge basalts (MORB). Mineral inclusions hosted in Cr-spinel comprise a range of (hydrous and anhydrous) silicate and base metal (BM) minerals occasionally intergrown with phosphate minerals and rare intermetallic compounds. A number of these inclusions have Cr-spinel rims with higher Cr# (63–68) than those of the enclosing Cr-spinel grains.The absence of dunite sheaths around chromitites is interpreted as an artifact of dunite structural obliteration during prolonged ductile shearing within harzburgite. The microtextural characteristics of a number of inclusions in Cr-spinel imply that they were initially fully molten. Furthermore, primary hydrosilicate (amphibole, phlogopite) inclusions in Cr-spinel indicate that chromitites crystallized from a water-bearing melt. Chromian spinel rims around silicate inclusions probably represent early crystals generated from a primitive magma produced by melting of a depleted mantle source.Geochemical calculations demonstrate that the parental melts of chromitites had intermediate affinity between MORB and arc-related magmas. Our preferred hypothesis for the genesis of the Eretria chromitites is that they were formed from a melt originated within the hydrated mantle wedge beneath a nascent forearc basin during subduction initiation.  相似文献   

13.
西藏丁青弧前蛇绿岩的地球化学特征   总被引:9,自引:4,他引:9  
刘文斌  钱青等 《岩石学报》2002,18(3):392-400
丁青蛇绿岩位于班化湖-丁青-怒江蛇绿岩带的东段,其地幔岩出露规模是该带中最大的。本文报道的丁青蛇绿岩主要由地幔橄榄岩、堆晶岩、辉长岩和斜长花岗岩组成。蛇绿岩剖面上覆硅岩中的放射虫化石是早株罗世和晚三叠世诺利克期的,中侏罗统砂岩和砾岩不整合覆盖在蛇绿岩之上,由此确定丁青蛇绿岩是晚三叠-早侏罗世的,在中株罗世之前侵位,丁青蛇绿岩属于玻安岩系,玻安岩的特点是富Si、Mg和大离子亲石元素(LILE),贫高场强元素(Ti、P、Zr、Y、Yb和Nb)。丁青蛇绿岩的堆晶岩、辉长岩和辉绿岩均具“U”型REE分布,暗示丁青玻安岩是由于亏损的地幔源岩和来自消减带的水和流体两组分的混合形成的。丁青玻安岩的地球化学特征类似西太平洋第三纪玻安岩,而明显不同于MORB的地球化学性质, 表明丁青玻安岩应当形成于洋内岛弧的弧前环境,属于弧前蛇绿岩。  相似文献   

14.
新疆东准噶尔克拉麦里蛇绿岩地球化学:洋脊俯冲的产物   总被引:5,自引:5,他引:5  
新疆东准噶尔克拉麦里蛇绿岩中的镁铁质岩兼具有洋中脊玄武岩(MORB)和岛弧拉斑玄武岩(IAB)的特征,岩石地球化学特征表现为轻稀土(LREE)亏损、平坦或略微富集,不同程度地亏损高场强元素(HFSE)而富集大离子亲石元素(LILE),成分上非常相似于受洋脊俯冲影响的 Chile Ridge 和 Cocos Ridge 玄武岩。可以认为其可能形成于受洋脊俯冲影响的岛弧或弧前扩张环境。相对较高的ε_(Nd)(t)(7.2~9.8)、低 Nb/Zr、Ta/Yb 比值,说明在洋脊俯冲的影响下,其源区可能存在有至少三种组分:弧下地幔、来自消减板片流体和俯冲沉积物、MORB 地幔。  相似文献   

15.
提要:帮果日—波库蛇绿岩带位于雅鲁藏布江缝合带的最西段,由帮果日蛇绿岩和波库混杂岩构成,呈北西展布,长128 km,宽5~10 km。帮果日蛇绿岩由方辉橄榄岩和二辉橄榄岩构成,岩石由橄榄石(Fo=85.2~88.0,平均86.6)、顽火辉石(Mg#=89.3~94.3,平均91.2)、透辉石(Mg#=92.0~94.9,平均93.1)构成,以高铝(Al2O3=0.96%~2.10%)、高钛(Ti=173~261μg/g)为特征,微量元素含量与MOR地幔岩的接近,亏损REE,ΣREE仅为球粒陨石的33%~71%,估算其为原始地幔经过6%~12%部分熔融的产物。波库混杂岩基质由板岩、粉砂质板岩构成,岩块有橄榄岩、辉长岩、硅质岩、砂岩、灰岩等。通过对帮果日蛇绿岩同位素测年结果、波库混杂岩之中硅质岩岩块放射虫化石的研究,确定帮果日—波库蛇绿岩带形成于晚白垩世,是新特提斯洋俯冲消减的产物;帮果日蛇绿岩代表了新特提斯洋洋壳的残留,属典型的MOR型蛇绿岩。  相似文献   

16.
黄照强  张显峰 《岩石学报》2010,26(12):3589-3596
本文通过对西藏雅鲁藏布江缝合带泽当-罗布莎地区蛇绿岩套的主要岩石组成和蚀变矿物的标准波谱吸收特征分析,比较了标准光谱库的相应岩性光谱吸收特征和ASTER数据波段特征之间的关系,采用连续统去除、比值法和光谱角制图法对ASTER影像数据进行处理及相关岩性和矿物提取。结果表明,蛇绿岩组分岩性中亚铁离子和Fe-OH,Mg-OH的可见-短波红外吸收特征显著,而且有一个宽波长范围的Si-O热红外光谱特征,基于这些光谱特征采用ASTER数据和比值法与光谱角制图法可有效地识别蛇绿岩的主要岩性和相关矿物成分及其空间分布,结果与地质资料基本吻合。  相似文献   

17.
We present new geochemical analyses of minerals and whole rocks for a suite of mafic rocks from the crustal section of the Othris Ophiolite in central Greece. The mafic rocks form three chemically distinct groups. Group 1 is characterized by N-MORB-type basalt and basaltic andesite with Na- and Ti-rich clinopyroxenes. These rocks show mild LREE depletion and no HFSE anomalies, consistent with moderate degrees (~15%) of anhydrous partial melting of depleted mantle followed by 30–50% crystal fractionation. Group 2 is represented by E-MORB-type basalt with clinopyroxenes with higher Ti contents than Group 1 basalts. Group 2 basalts also have higher concentrations of incompatible trace elements with slightly lower HREE contents than Group 1 basalts. These chemical features can be explained by ~10% partial melting of an enriched mantle source. Group 3 includes high MgO cumulates with Na- and Ti-poor clinopyroxene, forsteritic olivine, and Cr-rich spinel. The cumulates show strong depletion of HFSE, low HREE contents, and LREE enrichments. These rocks may have formed by olivine accumulation from boninitic magmas. The petrogenesis of the N-MORB-type basalts and basaltic andesites is in excellent agreement with the melting conditions inferred from the MOR-type peridotites in Othris. The occurrence of both N- and E-MORB-type lavas suggests that the mantle generating the lavas of the Othris Ophiolite must have been heterogeneous on a comparatively fine scale. Furthermore, the inferred parental magmas of the SSZ-type cumulates are broadly complementary to the SSZ-type peridotites found in Othris. These results suggest that the crustal section may be genetically related to the mantle section. In the Othris Ophiolite mafic rocks recording magmatic processes characteristic both of mid-ocean ridges and subduction zones occur within close spatial association. These observations are consistent with the formation of the Othris Ophiolite in the upper plate of a newly created intra-oceanic subduction zone. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
In the Veria-Naousa ophiolitic complex (north Greece), rodingite appears mainly in the form of cross cutting dykes within serpentinised peridotites. It is distinguished into three types, based upon the provenance of its protoliths, textural characteristics, mineralogical assemblages and geochemical affinities. Type I rodigites were derived from boninitic diabasic protoliths and their mineralogical assemblage include garnet + clinopyroxene + chlorite. Type II rodingites were formed at the expense of gabbroic precursors, comprising clinopyroxene + garnet + vesuvianite ± quartz, whereas Type III rodingites replaced diabasic tholeiitic protoliths comprising of garnets + vesuvianite + clinopyroxene + chlorite. Rodingitisation resulted in desilification, decrease of alkalies, Al, Fe, Mg and increase in Ca contents. In Type I rodingites the MREE (middle rare earth elements) and HREE (heavy rare earth elements) were slightly reduced. Type II rodingites experienced LREE (light rare earth elements) depletions, whereas MREE and HREE remained fairly stable. Restricted mobility of REE in Type III rodingites is assigned to shallow-level rodingitisation under decreasing pH.Rodingitisation occured in two distinct stages at fore-arc settings. The first stage occured under mildly oxidising conditions and enhanced CO2/H2O ratios. This stage affected the protoliths of all rodingite types. The second rodingitisation stage occured under more oxidising conditions and lower CO2/H2O ratios, which corresponds to the exhumation stage of the serpentinite-rodingite formations. Types II and III rodingites were subjected to further rodingitisation under the increasing influence of slab-derived hydrous phases at shallower depths, leading to the formation of late-stage andradite and vesuvianite. All stages of rodingitisation are estimated to have occurred under relatively moderate temperatures and pressure (~300 to 450 °C; ~2–6 kbar respectively).  相似文献   

19.
In the Lesser Caucasus and NE Anatolia, three domains are distinguished from south to north: (1) Gondwanian-derived continental terranes represented by the South Armenian Block (SAB) and the Tauride–Anatolide Platform (TAP), (2) scattered outcrops of Mesozoic ophiolites, obducted during the Upper Cretaceous times, marking the northern Neotethys suture, and (3) the Eurasian plate, represented by the Eastern Pontides and the Somkheto-Karabagh Arc. At several locations along the northern Neotethyan suture, slivers of preserved unmetamorphozed relics of now-disappeared Northern Neotethys oceanic domain (ophiolite bodies) are obducted over the northern edge of the passive SAB and TAP margins to the south. There is evidence for thrusting of the suture zone ophiolites towards the north; however, we ascribe this to retro-thrusting and accretion onto the active Eurasian margin during the latter stages of obduction. Geodynamic reconstructions of the Lesser Caucasus feature two north dipping subduction zones: (1) one under the Eurasian margin and (2) farther south, an intra-oceanic subduction leading to ophiolite emplacement above the northern margin of SAB. We extend our model for the Lesser Caucasus to NE Anatolia by proposing that the ophiolites of these zones originate from the same oceanic domain, emplaced during a common obduction event. This would correspond to the obduction of non-metamorphic oceanic domain along a lateral distance of more than 500?km and overthrust up to 80?km of passive continental margin. We infer that the missing volcanic arc, formed above the intra-oceanic subduction, was dragged under the obducting ophiolite through scaling by faulting and tectonic erosion. In this scenario part of the blueschists of Stepanavan, the garnet amphibolites of Amasia and the metamorphic arc complex of Erzincan correspond to this missing volcanic arc. Distal outcrops of this exceptional object were preserved from latter collision, concentrated along the suture zones.  相似文献   

20.
锆石SHRIMP测年对狮泉河蛇绿岩形成和俯冲的时间约束   总被引:7,自引:6,他引:7  
用锆石SHRIMP方法测定了狮泉河蛇绿混杂岩带中蛇绿岩的堆晶橄榄辉石岩、闪长岩墙和辉长闪长岩墙的U-Pb年龄,提供了狮泉河蛇绿岩形成和俯冲的时间约束。堆晶橄榄辉石岩的等时线年龄为193.1±3.2Ma,指示狮泉河带始于早侏罗世拉开形成洋壳;闪长岩墙的等时线年龄为165.8±1.7Ma、辉长闪长岩墙的等时线年龄为163.35±0.75Ma,可能代表了狮泉河带开始由扩张转化为俯冲消减的时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号