共查询到20条相似文献,搜索用时 16 毫秒
1.
沙茨基海隆(Shatsky Rise)是白垩纪早期形成的西北太平洋大火成岩省, 其成因和演化过程目前仍存在较大争议。本次研究对沙茨基海隆白垩纪玄武岩进行了全岩主量、微量元素、Sr-Nd-Pb同位素的分析。沙茨基海隆玄武岩主要属于拉斑玄武岩, 具有较亏损的大离子亲石元素和轻稀土元素以及较富集的重稀土元素的特征, 没有明显的Eu异常(δEu=0.99~1.29), 与正常洋中脊玄武岩(N-MORB)的微量元素配分模式较为相似。然而该系列玄武岩却具有相对较富集的初始87Sr/86Sr(0.702986~0.703991)和143Nd/144Nd(0.513034~0.513194)同位素比值、较富集的207Pb/204Pb(15.439~15.508)和208Pb/204Pb(37.853~38.488)同位素比值, 与富集的洋岛玄武岩(OIB)和岛弧火山岩的同位素成分较为相似, 且源区混入高U/Pb比值(HIMU型)的富集地幔成分。稀土元素部分熔融模拟反演表明沙茨基海隆火山岩的原始岩浆可能起源于尖晶石相二辉橄榄岩源区, 且具有较高程度的部分熔融作用(>10%)。在以上研究基础上, 本文提出地幔柱-洋中脊相互作用模型来解释沙茨基海隆拉斑玄武岩较亏损的不相容元素成分和较富集的同位素成分这一特殊地球化学特征。由于来自扩张洋中脊的强大拉张应力的影响, 地幔柱岩浆物质将流向洋中脊并发生减压部分熔融, 导致不相容元素的高度亏损, 但由于放射成因元素(Sm、Rb和U)的半衰期相对较长, 同位素成分则难以在较短时间内被改变, 因此本文推测沙茨基海隆同位素富集的N-MORB拉斑玄武岩可能是地幔柱-洋中脊相互作用的产物。 相似文献
2.
Ca. 825–720 Ma global continental intraplate magmatism is generally linked to mantle plumes or a mantle superplume that caused rifting and fragmentation of the supercontinent Rodinia. Widespread Neoproterozoic igneous rocks in South China are dated at ca. 825–760 Ma. There is a hot debate on their petrogenesis and tectonic affiliations, i.e., mantle plume/rift settings or collision/arc settings. Such competing interpretations have contrasting implications to the position of South China in the supercontinent Rodinia and in Rodinia reconstruction models.Variations in the bulk-rock compositions of primary basaltic melts can provide first order constraints on the mantle thermal–chemical structure, and thus distinguish between the plume/rift and arc/collision models. Whole-rock geochemical data of 14 mid-Neoproterozoic (825–760 Ma) basaltic successions are reviewed here in order to (1) estimate the primary melts compositions; (2) calculate the melting conditions and mantle potential temperature; and (3) identify the contributions of subcontinental lithosphere mantle (SCLM) and asenthospheric mantles to the generation of these basaltic rocks.In order to quantify the mantle potential temperatures and percentages of decompression melting, the primary MgO, FeO, and SiO 2 contents of basalts are calculated through carefully selecting less-evolved samples using a melting model based on the partitioning of FeO and MgO in olivine. The mid-Neoproterozoic (825–760 Ma) potential temperatures predicted from the primary melts range from 1390 °C to 1630 °C (mostly > 1480 °C), suggesting that most 825–760 Ma basaltic rocks in South China were generated by melting of anomalously hot mantle sources with potential temperatures 80–200 °C higher than the ambient Middle Ocean Ridge Basalt (MORB)-source mantle.The mantle source regions of these Neoproterozoic basaltic rocks have complex histories and heterogeneous compositions. Enriched mantle sources (e.g., pyroxenite and eclogite) are recognized as an important source for the Bikou and Suxiong basalts, suggesting that their generations may have involved recycled components. Trace elements variations show that interactions between asthenospheric mantle (OIB-type mantle) and SCLM played a very important role in generation of the 825–760 Ma basalts. Our results indicate that the SCLM metasomatized by subduction-induced melts/fluids during the 1.0–0.9 Ga orogenesis as a distinct geochemical reservoir that contributed significantly to the trace-elements and isotope inventory of these basalts.The continental intraplate geochemical signatures (e.g., OIB-type), high mantle potential temperatures and recycled components suggest the presence of a mantle plume beneath the Neoproterozoic South China block. We use the available data to develop an integrated plume-lithosphere interaction model for the ca. 825–760 Ma basalts. The early phases of basaltic rocks (825–810 Ma) were most likely formed by melting within the metasomatized SCLM heated by the rising mantle plume. The subsequent continental rift allowed adiabatic decompression partial melting of an upwelling mantle plumes at relatively shallow depth to form the widespread syn-rifting basaltic rocks at ca. 810–800 Ma and 790–760 Ma. 相似文献
3.
Horizontally-shortened, basement-involved foreland orogens commonly exhibit anastomosing networks of bifurcating basement highs (here called arches) whose structural culminations are linked by complex transition zones of diversely-oriented faults and folds. The 3D geometry and kinematics of the southern Beartooth arch transition zone of north-central Wyoming were studied to understand the fold mechanisms and control on basement-involved arches.Data from 1581 slickensided minor faults are consistent with a single regional shortening direction of 065°. Evidence for oblique-slip, vertical axis rotations and stress refraction at anomalously-oriented folds suggests formation over reactivated pre-existing weaknesses. Restorable cross-sections and 3D surfaces, constrained by surface, well, and seismic data, document blind, ENE-directed basement thrusting and associated thin-skinned backthrusting and folding along the Beartooth and Oregon Basin fault systems. Between these systems, the basement-cored Rattlesnake Mountain backthrust followed basement weaknesses and rotated a basement chip toward the basin before the ENE-directed Line Creek fault system broke through and connected the Beartooth and Oregon Basin fault systems. Slip was transferred at the terminations of the Rattlesnake Mountain fault block by pivoting to the north and tear faulting to the south. In summary, unidirectional Laramide compression and pre-existing basement weaknesses combined with fault-propagation and rotational fault-bend folding to create an irregular yet continuous basement arch transition. 相似文献
4.
涠洲岛作为我国最年轻的第四纪火山岩岛,其火山活动表现出多期、多旋回和多喷发中心的特征,但其地幔源区特征和岩浆成因依然存在争议。本文对涠洲岛玄武岩开展了详细的矿物学和全岩主、微量元素及Sr-Nd-Pb同位素研究,以揭示其地幔源区特征和岩浆成因。涠洲岛玄武岩主要为碱性玄武岩,在岩浆上升过程,几乎未受到地壳物质的混染,经历了橄榄石和单斜辉石的分离结晶作用。轻稀土(LREE)富集、重稀土(HREE)亏损,轻、重稀土强烈分馏((La/Yb)N=14.42~28.64),Nb、Ta明显正异常,显示出与洋岛玄武岩(OIB)相似的微量元素和Sr-Nd-Pb同位素特征。Sr-Nd-Pb同位素比值变化较均一,且呈现出亏损地幔端元(DM)与富集地幔端元(EM2)的二元混合趋势。其中,EM2端元可能源于海南地幔柱。Sr/Sr*(1.21~2.36)和Eu/Eu*(1.01~1.11)正异常,指示源区存在再循环辉长岩洋壳组分。结合已有的地震层析成像结果和岩石地球化学数据,得出南海及周缘地区的晚新生代玄武岩的形成受控于海南地幔柱。伴随着海南地幔柱的上升,再循环的辉长岩洋壳经部分熔融与地幔橄榄岩反应生成石榴石辉石岩(贫硅辉石岩),石榴石辉石岩和未反应的地幔橄榄岩混合部分熔融形成涠洲岛玄武岩。 相似文献
5.
The classic hotspot hypothesis [Morgan, W. J., 1971. Convection plumes in the lower mantle. Nature 230, 42–43], which posits that linear volcanic chains are traces of fixed plumes in the mantle on moving lithospheric plates, was instrumental in elevating the plate tectonics paradigm in the 1960s into a modern Earth Science theory. The hypothesis itself, however, remains conjectural because many of its predictions, particularly the simple age-progressive type of volcanism, are not observed in many linear volcanic chains. As an alternative explanation, it is proposed that linear volcanic chains are formed through magmatism along pre-existing lines of weakness such as transform zones and old sutures, or along cracks created by stresses on lithospheric plates. The Marquesas linear volcanic chain in south-central Pacific has geologic features that are consistent with some of the predictions of both hypotheses. To better constrain the origin of this volcanic chain, we collected major and trace element and Sr, Nd, Pb, and He isotopic data from several Marquesan lavas. Our new analyses combined with literature data classify the samples into the well established tholeiitic to mildly alkalic, low 87Sr/ 86Sr, high 143Nd/ 144Nd, shield-building volcanic phase lava group and highly alkalic, high 87Sr/ 86Sr, low 143Nd/ 144Nd, post-shield phase group. Lead isotopes show generally higher 206Pb/ 204Pb ratios and suggest evidence of crustal assimilation for the shield-building phase lavas, consistent with the argument that the shield-building phase volcanism has a lithospheric source component. On the other hand, post-shield phase lavas that are predicted to represent the true composition of the mantle source by the hotspot hypothesis have higher 3He/ 4He ratios and these are coupled to other geochemical tracers. Thus our results show that the Marquesas volcanic chain, similar to many other linear volcanic chains, has a high 3He/ 4He component in its mantle source. The presence of such a distinct source component cannot be easily explained by dispersed upper mantle heterogeneities, but provides a powerful constraint for the hotspot origin of many linear volcanic chains. 相似文献
6.
通过横穿青藏高原近 80 0 0km长的 4条天然地震层析剖面 ,获得 4 0 0km深度以上的地壳和地幔速度图像及地震波各向异性 ,揭示了青藏高原 4 0 0km深度范围内的地壳和地幔结构特征。地幔速度图像显示 ,青藏高原腹地的深地幔中存在以大型低速异常体为特征的地幔羽 ,其可能通过热通道与大面积分布的可可西里新生代高钾碱性火山作用有成因联系 ;阿尔金、康西瓦、金沙江、嘉黎及雅鲁藏布江等走滑断裂可下延至 30 0~ 4 0 0km深度 ,显示了低速高热物质组成的垂向低速异常带特征及大型超岩石圈或地幔剪切带的产出 ;发现康西瓦、东昆仑—金沙江、班公湖—怒江和雅鲁藏布缝合带下部存在不连续的高速异常带 ,可以解释为青藏高原地体拼合及碰撞过程中可能保留的加里东、古特提斯和中特提斯大洋岩石圈“化石”残片 ,是“拆沉”的地球物理证据。印度大陆岩石圈的巨厚俯冲板片以 15~ 2 0°倾角向北插入唐古拉山下 30 0km深处 ,并被高热物质组成的地幔剪切带分开。结合新的横穿喜马拉雅及青藏高原的地幔层析资料 ,提出青藏高原碰撞动力学新模式 :青藏高原南部印度岩石圈板片的翻卷式陆内超深俯冲 ,北缘克拉通向南的陆内俯冲 ,腹地深部的地幔羽上涌 ,以及地幔范围内的高原“右旋隆升”及物质向东及北东方向运动及挤出。 相似文献
7.
In order to provide mantle and crustal constraints during the evolution of the Colombian Andes, Sr and Nd isotopic studies were performed in xenoliths from the Mercaderes region, Northern Volcanic Zone, Colombia. Xenoliths are found in the Granatifera Tuff, a deposit of Cenozoic age, in which mantle- and crustal-derived xenoliths are present in bombs and fragments of andesites and lamprophyres compositions. Garnet-bearing xenoliths are the most abundant mantle-derived rocks, but websterites (garnet-free xenoliths) and spinel-bearing peridotites are also present in minor amounts. Amphibolites, pyroxenites, granulites, and gneisses represent the lower crustal xenolith assemblage. Isotopic signatures for the mantle xenoliths, together with field, petrographic, mineral, and whole-rock chemistry and pressure–temperature estimates, suggest three main sources for these mantle xenoliths: garnet-free websterite xenoliths derived from a source region with low P and T (16 kbar, 1065 °C) and MORB isotopic signature, 87Sr/ 86Sr ratio of 0.7030, and 143Nd/ 144Nd ratio of 0.5129. Garnet-bearing peridotite and websterite xenoliths derived from two different sources in the mantle: i) a source with intermediate P and T (29–35 kbar, 1250–1295 °C) conditions, similar to that of sub-oceanic geotherm, with an OIB isotopic signature ( 87Sr/ 86Sr ratio of 0.7043 and 143Nd/ 144Nd ratio of 0.5129); and ii) another source with P and T conditions similar to those of a sub-continental geotherm (>38 kbar, 1140–1175 °C) and OIB isotopic characteristics ( 87Sr/ 86Sr ratio=0.7041 and 143Nd/ 144Nd ratio=0.5135). 相似文献
8.
The West Siberian Basin (WSB) records a detailed history of Permo-Triassic rifting, extension and volcanism, followed by Mesozoic and Cenozoic sedimentation in a thermally subsiding basin. Sedimentary deposits of Permian age are absent from much of the basin, suggesting that large areas of the nascent basin were elevated and exposed at that time. Industrial seismic and well log data from the basin have enabled extension and subsidence modelling of parts of the basin. Crustal extension ( β) factors are calculated to be in excess of 1.6 in the northern part of the basin across the deep Urengoy graben. 1-D backstripping of the Triassic to Cenozoic sedimentary sequences in this region indicates a period of delayed subsidence during the early Mesozoic. The combination of elevation, rifting and volcanism is consistent with sublithospheric support, such as a hot mantle plume. This interpretation accords with the geochemical data for basalts from the Siberian Traps and the West Siberian Basin, which are considered to be part of the same large igneous province. Whilst early suites from Noril'sk indicate moderate pressures of melting (mostly within the garnet stability field), later suites (and those from the West Siberian Basin) indicate shallow average depths of melting. The main region of magma production was therefore beneath the relatively thin (ca. 50–100 km) lithosphere of the basin, and not the craton on which the present-day exposure of the Traps occurs. The indicated uplift, widespread occurrence of basalts, and short duration of the volcanic province as a whole are entirely consistent with published models involving a mantle plume. The main argument against the plume model, namely lack of any associated uplift, appears to be untenable. 相似文献
9.
峨眉山大陆溢流玄武岩(ECFB)的西南部以丽江、大理和攀枝花三角区为中心的苦橄岩分布区,面积约5×10 4 km2 ,为峨眉地幔柱的轴部区。Sr、Nd、Pb同位素和痕量元素研究表明,大部分火山岩样品落在洋岛火山岩成分范围内,并存在类似FOZO、HIMU和EM - 的三个端元。这说明它们是在地幔柱轴部,由地幔岩和榴辉岩(古玄武质洋壳)组成的源区产生的岩浆形成的。岩浆源区再循环玄武质洋壳的存在可能是该区超大型钒钛磁铁矿床形成的根本原因。少部分分布在洋岛火山岩成分范围之外的样品,一部分属于地幔柱岩浆与地壳混染产物,另一部分低Ti岩石可能与岩石圈反应有关。地幔端元的地球化学特征如下:FOZO端元以白林山苦橄玄武岩(YB-0 1)为代表,低87Sr/86 Sr(0 .70 36 ) ,高1 43Nd/1 44 Nd(0 .5 12 7) ,中等2 0 6 Pb/2 0 7Pb(18.5 6 93) ;Nb/U =36 .6 7,Th/Nb =0 .0 82 ,L a/Nb=0 .91,Zr/Nb=6 .2 3。HIMU端元以丽江苦橄岩(JL - 2 9)为代表,高2 0 6 Pb/2 0 4 Pb(2 0 .6 4 12 )和2 0 7Pb/2 0 4 Pb(15 .74 89) ,低87Sr/86 Sr(0 .70 4 8)。EM - 端元包括两部分:1以二滩苦橄岩-玄武岩(R- 1、3、5、8)为代表,高87Sr/86 Sr(0 .70 73) ,低1 43Nd/1 44 Nd(0 .5 12 3) ,低2 0 6 Pb/2 0 4 Pb(17.996 8)和2 0 8Pb/2 0 4 Pb(37.94 5 0 ) 相似文献
10.
丽江地区的苦橄岩位于峨眉山大火成岩省的西部,其与辉斑玄武岩、无斑玄武岩和玄武质火山碎屑岩共生。苦橄岩中的斑晶主要为富镁橄榄石,其F0含量最高达91.6%,CaO含量最高达0.42%,其内含有少量玻璃包裹体,指示了橄榄石是在熔体中结晶形成的。苦橄岩中的铬尖晶石具有高的Cr#值(73-75)。计算的初始岩浆的MgO含量大约为22wt%,初始熔融的温度为1630-1680℃。研究结果表明,玄武质岩石是苦橄质岩浆通过橄榄石和单斜辉石分离结晶形成的。苦橄岩和玄武岩的Nd-Sr-Pb同位素比值差别不大,只落在一个很小的范围内(如εNd(t)=-1.3 to+4.0)。高的εNd(t)值以及抗蚀变不相容元素的原始地幔标准化图解与洋岛玄武岩相似,并且其重稀土元素特征指示了源区有石榴子石的残余,而且是低部分熔融的产物。同位素比值与抗蚀变不相容元素比值(如Nb/La)的相关性表明,岩浆形成过程中有少量的大陆地壳物质或者相对低εNd(t)组分的大陆岩石圈地幔的混染。因此,总体上,苦橄岩的地球化学特征的研究结果支持了峨眉山大火成岩省是地幔柱头部熔融的成因模型。 相似文献
11.
Broad-band and long period magnetotelluric measurements made at 63 locations along ~500 km long Chikmagalur-Kavali profile,that cut across the Dharwar craton(DC)and Eastern Ghat Mobile Belt(EGMB)in south India,is modelled to examine the lithosphere architecture of the cratonic domain and define tectonic boundaries.The 2-D resistivity model shows moderately conductive features that intersperse a highly resistive background of crystalline rocks and spatially connect to the exposed schist belts or granitic intrusions in the DC.These features are therefore interpreted as images of fossil pathways of the volcanic emplacements associated with the greenstone belt and granite suite formation exposed in the region.A near vertical conductive feature in the upper mantle under the Chitradurga Shear Zone represents the Archean suture between the western and eastern blocks of DC.Although thick(~200 km)cratonic(highly resistive)lithosphere is preserved,significant part of the cratonic lithosphere below the western DC is modified due to plume-continental lithosphere interactions during the Cretaceous—Tertiary period.A west-verging moderately conductive feature imaged beneath EGMB lithosphere is interpreted as the remnant of the Proterozoic collision process between the Indian land mass and East Antarctica.Thin(~120 km)lithosphere is seen below the EGMB,which form the exterior margin of the India shield subsequent to its separation from East Antarctica through rifting and opening of the Indian Ocean in the Cretaceous. 相似文献
12.
天山造山带晚古生代构造争议部分源于对晚古生代岩浆岩的岩石成因及其构造环境认识不足。本文对西天山小哈拉军山辉长岩进行了系统的矿物学、岩石学、地球化学和年代学研究,以探讨其岩石成因、地幔源区特征及其形成的构造背景。锆石U-Pb定年分析结果显示小哈拉军山辉长岩形成于早二叠世早期(295±3Ma)。该辉长岩富含钛磁铁矿(含量高达8vol%以上),并且主要造岩矿物如斜长石、单斜辉石、角闪石均显示出富Fe-Ti的特征,表明其形成于富Fe-Ti的岩浆体系。岩相学特征显示,小哈拉军山辉长岩的斜长石结晶早于单斜辉石和角闪石,由角闪石成分估算的岩浆水含量相对较低,暗示了相对干的初始岩浆体系,并且单斜辉石的Al-Ti含量关系显示出板内岩浆的特征,均表明该辉长岩并非岛弧岩浆产物,应形成于拉张构造环境,因此西天山地区在早二叠世早期已处于碰撞后伸展阶段。另外,该辉长岩的全岩富集大离子亲石元素和轻稀土元素,相对亏损重稀土和高场强元素,全岩εNd(t)略亏损(2.34~3.30),Sr同位素比值变化较大(87Sr/86Sr=0.7045~0.7067),表明岩浆来源于富集的地幔源区,可能与造山带形成之前的俯冲板片组分的交代富集相关。由于西天山地区在早二叠世已处于造山后的伸展阶段,是塔里木大火成岩省范围内地幔柱活动最易于表现的地区,而小哈拉军山辉长岩与相邻的哈拉达拉富V-Ti磁铁矿层状辉长岩具有相似的岩浆源区和矿化特征,并具有密切的时空关系,很可能都为塔里木早二叠世地幔柱活动的产物。 相似文献
13.
The Komati Formation of the Barberton greenstone belt (BGB), South Africa, is composed of both Al-undepleted and -depleted komatiites. The Al-undepleted komatiites are characterised by Al 2O 3/TiO 2 and CaO/Al 2O 3 ratios of 15–18 and 1.1–1.5, respectively, and exhibit chondritic trace element contents and (Gd/Yb) N ratios. In contrast, the Al-depleted komatiites show significantly lower Al 2O 3/TiO 2 ratios of 8–12, highly variable CaO/Al 2O 3 (0.19–2.81) ratios combined with (Gd/Yb) N ratios varying from 1.08 to 1.56. A Sm–Nd whole rock isochron for komatiites of the Komati Formation gives an age of 3657±170 Ma. 147Sm/ 144Nd ratios (0.1704 and 0.1964) are all lower than the chondritic value of 0.1967. The komatiite i,Nd(3.45) values cluster at +1.9±0.7. Trace element distribution indicates that most of the primary geochemical and isotopic features of the komatiites were preserved in line with the conservation of the primary chemical composition of clinopyroxene. High field strength element and rare earth element abundances indicate that crustal contamination and post-crystallisation processes did not disturb the primary features of komatiites. The Sm/Nd and Nb/U ratios of komatiites indicate that the Barberton greenstone belt mantle source has undergone melt extraction prior to komatiite formation. Variations of Al2O3/TiO2, (Gd/Yb)N, Zr/Sm and Sm/Nd ratios of komatiites indicate that a batch melting of slightly depleted mantle source during with garnet and/or clinopyroxene remained in the residue can produce the geochemical isotopic feature of the Barberton greenstone belt komatiites. Typical geochemical fingerprints of subduction-related processes (LILE enrichment, HFSE depletion compared to REE), as known from modern subduction zones, are not observed. Komatiites exhibit Ti/Zr, La/Nb, Nb/U, Sr/Nd and Ba/La ratios comparable to those of oceanic island basalt and mid-ocean ridge basalt. (La/Nb)PMN, (Sm/Yb)PMN, positive δNb values and flat or slightly enriched REE patterns suggest that BGB komatiites are part of an oceanic plateau rather than an oceanic island such as Iceland. Therefore, an oceanic plateau or mid-ocean ridge, in connection with an oceanic plateau, such as Ontong Java plateau or Caribbean–Colombian oceanic plateau, is a suitable tectonic setting for the formation of the BGB komatiites. 相似文献
14.
Abstract During the Eocene-Oligocene, the Indian plate collided with the Kohistan arc along the Main Mantle Thrust (MMT) zone. The structure of the Lower Swat rock sequence, on the Indian plate directly south of the MMT, is a dome with a basement of granitic gneiss and quartz-rich schist unconformably overlain by amphibolitic and calcareous schist. The earliest superposed small-scale folds (F1 & F2) represent a progressive F1/F2 deformation that is associated with a single set of WSW-vergent large-scale folds (termed F2). These folds are inferred to have developed during oblique, WSW-directed overthrusting of the MMT suture complex onto the Lower Swat rock sequence. Metamorphism began during F1/F2 as indicated by an S1 foliation that developed during biotite-grade metamorphism. S1 is preserved as a relict texture in porphyroblasts that grew during a subsequent interkinematic phase during garnet- and higher grade metamorphism. The dominant, regional foliation (S2) developed following the interkinematic phase. S2 is associated with transposition of S1 and rotation or dismemberment of porphyroblasts. Annealing recrystallization followed S2 and continued during F3 thereby destroying or masking possible pre-existing stretching fabrics. Superposed F3 folds are upright and open with N-S axial trends. They may correlate with early doming of the Lower Swat rock sequence and with strike-slip displacement in the northern part of the MMT zone, north of the Lower Swat area. F3 was followed by retrograde metamorphism and development of E-W-trending, S-vergent F4 folds. F4 may be associated with a final phase of southward directed thrusting and inactivity in the MMT zone. Correlation of published 40Ar/ 39Ar ages with the metamorphic fabrics suggests that F1/F2 and F3 occurred in the Eocene, and that F4 developed in the Oligocene. F4 is the earliest indication of southward verging structures on this part of the Indian plate. 相似文献
15.
尽管青藏高原碰撞后超钾质岩石代表了上地幔低度部分熔融的产物,增加了对地幔的了解,但是对青藏高原陆下岩石圈地幔的性质依然缺乏清楚认识,其中一个最主要的问题是高原腹地的超钾质岩石中一直缺少幔源包体和巨晶.本文报导了青藏高原南部赛利普粗面安山岩(具有典型的超钾质岩石特征,年龄约为17Ma)中产出的地幔包体的矿物主量元素成分.包体大小为0.5cm~1.5cm,主要为两类,一类是辉石岩(0px Cpx),另一类为二辉橄榄岩(Ol Opx Cpx±Phl±sp).包体中橄榄石(Mg#=89~90,CaO=0.05%~0.12%,TiO2<0.03%,NiO=0.29%~0.80%),单斜辉石(Mg#=88~91,Al2O3=5.5%~7%),斜方辉石(TiO2=0.05%~0.15%,Al2O3=2%~5%)和尖晶石(Mg#=58~76,Cr#=10~44,Cr2O3=9%~35%,MnO=0.09%~0.24%,FeO=11%~18%,Al2O3=29%~57%,MgO=16%~21%)的成分与中国东部新生代玄武岩中的地幔包体特征一致.包体的温度为990~1140℃、压力为16~20kb,显示的地温曲线与中国东部、东非肯尼亚等世界典型裂谷区的上地幔特征一致,表明青藏高原南部在中新世尽管处于印度与亚洲大陆的挤压汇聚状态,但是仍具有区域性伸展作用存在,这与藏南广泛发育的南北向裂谷和地表高热流是吻合的.包体中含水金云母与石英的出现以及尖晶石成分不均一性等揭示了包体中多期交代作用过程.与金云母共生的尖晶石后期改造作用表明导致藏南上地幔改造的交代流体应是与寄主火山岩成分接近的富K,Si和H2O的流体.藏南地幔包体的深入研究将对揭示青藏高原地幔的成分、状态与深部作用过程以及为更好解释超钾质岩石的成因提供更多的证据. 相似文献
16.
西秦岭新生代钾霞橄黄长岩和碳酸岩具有强烈富集LILE和LREE的特征,经球粒陨石标准化的REE分配模式与OIB十分相似。钾霞橄黄长岩和碳酸岩的(^87Sr/^86Sr)i分别在0.70381~0.70940和0.70529~0.71332之间,^144Nd/^143Nd分别介于0.512404~0.512924和0.512210~0.512928之间。经计算获得多数样品的εNd落在-3.4~5.58范围内,与OIB的εNd值一致。这两类岩石的^208Pb/^204Pb、^207Pb/^204Pb和^206Pb/^204Pb分别为37.613~39.330和38.060~38.995,15.842~16.441和15.545~15.677,以及18.418~22.4和18.149~19.062。采用主量元素MgO—Ni和ε(Nd)-(^87Sr/^86Sr)相关图,以及高场强元素比值Zr/Nb—La/Nb和Ba/La—Ba/Nb相关图以及。^208Pb/^204Pb-^206Pb/^204Pb,^207Pb/^204Pb-^206Pb/^204Pb相关图,一致证明本区火山岩具有与洋岛玄武岩(OIB)相似的地球化学特征,且源区具有EM1和EM11富集端员的混合。但是本区火山岩高的Nb/Ta比和强烈富集Nb等高场强元素,以及较高的^144Nd/^143Nd值,表明该火山岩地球化学具有某种特殊性。结合对西秦岭深部地球物理资料及地质构造背景和演化历史的分析,提出西秦岭新生代钾霞橄黄长岩和碳酸岩的成因与地幔柱的活动有关,源区包含了EM1和EM11富集端员的组分。EM1和EM11富集端员的成因与地幔柱/软流圈流体的作用有关,也与大洋板片的脱水作用和大陆岩石圈的拆层作用有关。该区特殊的大地构造背景和演化历史为上述几种作用的联合提供了可能。它不仅较好地解释了该火山岩地球化学方面的特殊性,及钾霞橄黄长岩与碳酸岩共生的事实,同时也证明新生代火山岩的成因是地幔柱.岩石圈相互作用的产物。 相似文献
17.
Presented in this paper is a high resolution S v-wave velocity and azimuthal anisotropy model for the upper mantle beneath the North Atlantic and surrounding region derived from the analysis of about 9000 fundamental and higher-mode Rayleigh waveforms. Much of the dataset comes from global and national digital seismic networks, but to improve the path coverage a number of instruments at coastal sites in northwest Europe, Iceland and eastern Greenland was deployed by us and a number of collaborators. The dense path coverage, the wide azimuthal distribution and the substantial higher-mode content of the dataset, as well as the relatively short path-lengths in the dataset have enabled us to build an upper mantle model with a horizontal resolution of a few hundred kilometers extending to 400 km depth. Low upper mantle velocities exist beneath three major hotspots: Iceland, the Azores and Eifel. The best depth resolution in the model occurs in NW Europe and in this area low S v-velocities in the vicinity of the Eifel hotspot extend to about 400 km depth. Major negative velocity anomalies exist in the North Atlantic upper mantle beneath both Iceland and the Azores hotspots. Both anomalies are, above 200 km depth, 4–7% slow with respect to PREM and elongated along the mid-Atlantic Ridge. Low velocities extend to the south of Iceland beneath the Reykjanes Ridge where other geophysical and geochemical observations indicate the presence of hot plume material. The low velocities also extend beneath the Kolbeinsey Ridge north of Iceland, where there is also supporting geochemical evidence for the presence of hot plume material. The low-velocity upper mantle beneath the Kolbeinsey Ridge may also be associated with a plume beneath Jan Mayen. The anomaly associated with the Azores extends from about 25°N to 45°N along the ridge axis, which is in agreement with the area influenced by the Azores Plume, predicted from geophysical and geochemical observations. Compared to the anomaly associated with Iceland, the Azores anomaly is elongated further along the ridge, is shallower and decays more rapidly with depth. The fast propagation direction of horizontally propagating S v-waves in the Atlantic south of Iceland correlates well with the east–west ridge-spreading direction at all depths and changes to a direction close to NS in the vicinity of Iceland. 相似文献
18.
The Palaeoproterozoic Bryah, Padbury and Yerrida Basins are situated along the northwestern margin of the Archaean Yilgarn Craton, central Western Australia. These basins form part of the Capricorn Orogen, which developed between 2.0 and 1.8 Ga as a result of the collision between the Archaean Pilbara and Yilgarn cratons. The Bryah, Padbury and Yerrida Basins, which at the present day cover a total area of ca 20 000 km 2, were formerly considered as one geological entity, the Glengarry Basin. These three basins are characterized by distinct stratigraphy, igneous activity, structural and metamorphic history, and mineral deposit types. Igneous activity only affected the Bryah and Yerrida Basins, with voluminous eruptions of tholeiitic magma. In the Bryah Basin tholeiitic volcanic rocks are Mg-rich and have mixed MORB to oceanic island chemical signatures, but with a boninitic (subduction-related) component. In the Yerrida Basin tholeiites are Fe-rich and have chemical signatures that suggest a mixed tectonic environment ranging from oceanic to continental. It is considered possible that this tholeiitic magmatism is related to a mantle plume. Two models for the tectonic evolution of the Bryah, Padbury and Yerrida Basins are proposed: (1) the Bryah and Yerrida Basins were formed in a back-arc setting, whilst the Padbury Basin developed as a retro-arc foreland basin over the Bryah Basin; and/or (2) strike-slip transtension, during and following the Pilbara-Yilgarn collision, created the Bryah and Yerrida strike-slip pull-apart Basins. A change in regional stress regime resulted in the inversion of the basins and the development of a foreland basin in the northwest (Padbury Basin). 相似文献
19.
ABSTRACT South of the Main Mantle Thrust in north Pakistan, rocks of the northern edge of the Indian plate were deformed and metamorphosed during the main southward thrusting phase of the Himalayan orogeny. In the Hazara region, between the Indus and Kaghan Valleys, metamorphic grade increases northwards from chlorite zone to sillimanite zone rocks in a typically Barrovian sequence. Metamorphism was largely synchronous with early phases of the deformation. The metamorphic rocks were subsequently imbricated by late north-dipping thrusts, each with higher grade rocks in the hanging wall than in the footwall, such that the metamorphic profile shows an overall tectonic inversion. The rocks of the Hazara region form one of a number of internally imbricated metamorphic blocks stacked, after the metamorphic peak, on top of each other during the late thrusting. This imbrication and stacking represents an early period of post-Himalayan uplift. 相似文献
20.
六合地区地处扬子克拉通的西缘,前人对该地区下地壳的成分与形成机制尚无系统认识。本文通过研究新生代幔源侵入岩中所携带的深源捕虏体为认识该地区下地壳的成分和形成机制提供了直接证据。该捕虏体为高级正变质岩(麻粒岩相),岩性分别为石榴石透辉岩、石榴石角闪透辉岩、石榴石角闪岩。三者全岩Si O2=43.85%~50.82%,MgO=6.83%~14.77%,Mg#=0.50~0.64,Cr=87.1×10~(-6)~616×10~(-6),Ni=19.7×10~(-6)~143×10~(-6),皆属于低镁石榴石堆晶岩。通过石榴石-单斜辉石Mg-Fe交换地质温度计计算得知石榴石角闪岩的形成温度721~774℃,形成深度为45~47km,石榴石角闪透辉岩和石榴石透辉岩的形成温度803~829℃,形成深度为48~51km,说明三者皆形成于下地壳。捕虏体锆石多为变质锆石,锆石U-Pb年龄分别为259±9Ma和773±23Ma。捕虏体的全岩Sm-Nd等时线年龄分别为251±4Ma和809±64Ma。259Ma的锆石εHf(t)=-5.69~10.3,773Ma的锆石εHf(t)=5.87~17.7。年代学数据和锆石Hf同位素数据表明六合地区下地壳受到新元古代和晚二叠世岩浆底侵作用,同时发生变质作用。新元古代捕虏体富集大离子亲石元素(LILE),如Rb、Ba、Sr。高度亏损高场强元素(HFSE),如Nb、Ta、Ti。εNd(t)=4.36~5.28。表明在新元古代时期,六合地区的地壳受到俯冲弧岩浆底侵,经过批式熔融计算得知底侵岩浆源自地幔石榴石-尖晶石橄榄岩10%~30%部分熔融。晚二叠世捕虏体富集大离子亲石元素(LILE),如Rb、Ba、Sr。轻度亏损高场强元素(HFSE),如Nb、Ta、Ti。εNd(t)=-5.68~2.33。表明在晚二叠世时期,六合地区的地壳受到地幔柱-岩石圈地幔相互作用产生的岩浆底侵,经过批式熔融计算得知底侵岩浆由地幔石榴石-尖晶石橄榄岩10%~20%部分熔融而成。综上所述,在新元古代板块俯冲和晚二叠世地幔柱的分别作用下,六合地区的地壳受到地幔物质的加入形成镁铁质的新生下地壳。 相似文献
|