首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over warm, shallow coral reefs the surface radiation and energy fluxes differ from those of the open ocean and result in modification to the marine atmospheric boundary layer via the development of convective internal boundary layers. The complex interrelationships between the surface energy balance and boundary-layer characteristics influence local weather (wind, temperature, humidity) and hydrodynamics (water temperature and currents), as well as larger scale processes, including cloud field properties and precipitation. The nature of these inter-relationships has not been accurately described for coral reef environments. This study presents the first measurements of the surface energy balance, radiation budget and boundary layer thermodynamics made over a coral reef using an eddy-covariance system and radiosonde aerological profiling of the lower atmosphere. Results show that changes in surface properties and the associated energetics across the ocean-reef boundary resulted in modification to the marine atmospheric boundary layer during the Austral winter and summer. Internal convective boundary layers developed within the marine atmospheric boundary layer over the reef and were found to be deeper in the summer, yet more unstable during the winter when cold and drier flow from the mainland enhances heat and moisture fluxes to the atmosphere. A mixed layer was identified in the marine atmospheric boundary layer varying from 375 to 1,200 m above the surface, and was deeper during the summer, particularly under stable anticyclonic conditions. Significant cloud cover and at times rain resulted in the development of a stable stratified atmosphere over the reef. Our findings show that, for Heron Reef, a lagoonal platform reef, there was a horizontal discontinuity in surface energy fluxes across the ocean-reef boundary, which modified the marine atmospheric boundary layer.  相似文献   

2.
Different parameterizations of subgrid-scale fluxes are utilized in a nonhydrostatic and anelastic mesoscale model to study their influence on simulated Arctic cold air outbreaks. A local closure, a profile closure and two nonlocal closure schemes are applied, including an improved scheme, which is based on other nonlocal closures. It accounts for continuous subgrid-scale fluxes at the top of the surface layer and a continuous Prandtl number with respect to stratification. In the limit of neutral stratification the improved scheme gives eddy diffusivities similar to other parameterizations, whereas for strong unstable stratifications they become much larger and thus turbulent transports are more efficient. It is shown by comparison of model results with observations that the application of simple nonlocal closure schemes results in a more realistic simulation of a convective boundary layer than that of a local or a profile closure scheme. Improvements are due to the nonlocal formulation of the eddy diffusivities and to the inclusion of heat transport, which is independent of local gradients (countergradient transport).  相似文献   

3.
In this study the role of atmospheric boundary layer schemes in climate models is investigated. Including a boundary layer scheme in an Earth system model of intermediate complexity (EMIC) produces only minor differences in the estimated global distribution of sensible and latent heat fluxes over land (upto about 15% of the net radiation at the surface). However, neglecting of boundary layer processes, such as the development of a well-mixed layer over land or the impact of stability on the exchange coefficient in the surface layer, leads to erroneous surface temperatures, especially in convective conditions with low wind speeds. As these conditions occur frequently, introducing a boundary layer scheme in an EMIC gives reductions in June-July-August averaged surface temperature of 1–2 °C in wet areas, to 5–7 °C in desert areas. Even a relatively simple boundary layer scheme provides reasonable estimates of the surface fluxes and surface temperatures. Detailed schemes that solve explicitly the turbulent fluxes within the boundary layer are only required when vertical profiles of potential temperature are needed.  相似文献   

4.
Wind profiles,momentum fluxes and roughness lengths at Cabauw revisited   总被引:1,自引:1,他引:1  
We describe the results of an experiment focusing on wind speed and momentum fluxes in the atmospheric boundary layer up to 200 m. The measurements were conducted in 1996 at the Cabauw site in the Netherlands. Momentum fluxes are measured using the K-Gill Propeller Vane. Estimates of the roughness length are derived using various techniques from the wind speed and flux measurements, and the observed differences are explained by considering the source area of the meteorological parameters. A clear rough-to-smooth transition is found in the wind speed profiles at Cabauw. The internal boundary layer reaches the lowest k-vane (20 m) only in the south-west direction where the obstacle-free fetch is about 2 km. The internal boundary layer is also reflected in the roughness lengths derived from the wind speed profiles. The lower part of the profile (< 40 m) is not in equilibrium and no reliable roughness analysis can be given. The upper part of the profile can be linked to a large-scale roughness length. Roughness lengths derived from the horizontal wind speed variance and gustiness have large footprints and therefore represent a large-scale average roughness. The drag coefficient is more locally determined but still represents a large-scale roughness length when it is measured above the local internal boundary layer. The roughness length at inhomogeneous sites can therefore be determined best from drag coefficient measurements just above the local internal boundary layers directly, or indirectly from horizontal wind speed variance or gustiness. In addition, the momentum and heat fluxes along the tower are analysed and these show significant variation with height related to stability and possibly surface heterogeneity. It appears that the dimensionless wind speed gradients scale well with local fluxes for the variety of conditions considered, including the unstable cases.  相似文献   

5.
A numerical two-dimensional model based on higher-order closure assumptions is developed to simulate the horizontal microclimate distribution over an irrigated field in arid surroundings. The model considers heat, mass, momentum, and radiative fluxes in the soil-plant-atmosphere system. Its vertical domain extends through the whole planetary boundary layer. The model requires temporal solar and atmospheric radiation data, as well as temporal boundary conditions for wind-speed, air temperature, and humidity. These boundary conditions are specified by an auxiliary mesoscale model and are incorporated in the microscale model by a nudging method. Vegetation parameters (canopy height, leaf-angle orientation distribution, leaf-area index, photometric properties, root-density distribution), soil texture, and soil-hydraulic and photometric properties are considered.The model is tested using meteorological data obtained in a drip-irrigated cotton field located in an extremely arid area, where strong fetch effects are expected. Four masts located 50 m before the leading edge of the field and 10, 30, and 100 m inward from the leading edge are used to measure various meteorological parameters and their horizontal and vertical gradients.Calculated values of air and soil temperatures, wind-speed, net radiation and soil, latent, and sensible heat fluxes agreed well with measurements. Large horizontal gradients of air temperature are both observed and measured within the canopy in the first 40 m of the leading edge. Rate of evapotranspiration at both the upwind and the downwind edges of the field are higher by more than 15% of the midfield value. Model calculations show that a stable thermal stratification is maintained above the whole field for 24 h. The aerodynamic and thermal internal boundary layer (IBL) growth is proportional to the square root of the fetch. This is also the observed rate of growth of the thermal IBL over a cool sea surface.  相似文献   

6.
利用美国中尺度数值模式WRF,选取两个局地(QNSE、MYJ)闭合和两个非局地(YSU、ACM2)闭合的边界层参数化方案对台风“莎莉嘉”(2016)进行了4组模拟试验,结果表明,不同边界层方案对台风路径影响较小,但对台风强度和结构有明显的影响,就本个例研究而言,非局地闭合边界层方案明显优于局地闭合边界层方案。台风强度的差异是热力和动力共同作用的影响。局地闭合方案模拟的地表焓通量、水汽通量和动量通量更大,台风偏强;局地闭合方案模拟的边界层高度更高、边界层顶的夹卷过程更强、垂直混合更强、台风暖心结构更强,从而台风也更强。台风强度的差异和台风结构的变化密切相关。   相似文献   

7.
Flow in the stable boundary layer is examined at four contrasting sites with greater upwind surface roughness. The surface heterogeneity is disorganized and in some cases weak as commonly occurs. With low wind speeds, the vertical divergence (or convergence) of the momentum and heat fluxes can be large near the surface in what is normally assumed to be the surface layer where such divergence is neglected. For the two most heterogeneous sites, a shallow “new” boundary layer is captured by the tower observations, analogous to an internal boundary layer but more complex. Above the new boundary layer, the magnitudes of the downward fluxes of heat and momentum increase with height in a transition layer, reach a maximum, and then decrease with height in an overlying regional boundary layer. Similar structure is observed at the site with rolling terrain where the shallow new boundary layer at the surface is identified as cold-air drainage generated by the local slope above which the flow undergoes transition to an overlying regional flow. Significant flux divergence near the surface is generated even over an ice floe for low wind speeds and in a shallow Ekman layer that forms during the polar night. For higher wind speeds, the magnitude of the downward fluxes decreases gradually with height at all levels as in a traditional boundary layer.  相似文献   

8.
The problem of boundary conditions for the variances and covariances of scalar quantities (e.g., temperature and humidity) at the underlying surface is considered. If the surface is treated as horizontally homogeneous, Monin–Obukhov similarity suggests the Neumann boundary conditions that set the surface fluxes of scalar variances and covariances to zero. Over heterogeneous surfaces, these boundary conditions are not a viable choice since the spatial variability of various surface and soil characteristics, such as the ground fluxes of heat and moisture and the surface radiation balance, is not accounted for. Boundary conditions are developed that are consistent with the tile approach used to compute scalar (and momentum) fluxes over heterogeneous surfaces. To this end, the third-order transport terms (fluxes of variances) are examined analytically using a triple decomposition of fluctuating velocity and scalars into the grid-box mean, the fluctuation of tile-mean quantity about the grid-box mean, and the sub-tile fluctuation. The effect of the proposed boundary conditions on mixing in an archetypical stably-stratified boundary layer is illustrated with a single-column numerical experiment. The proposed boundary conditions should be applied in atmospheric models that utilize turbulence parametrization schemes with transport equations for scalar variances and covariances including the third-order turbulent transport (diffusion) terms.  相似文献   

9.
A simple time-dependent one-dimensional model of the planetary boundary layer (PBL) is described and used to examine the degree to which model design decisions affect model output variables. The model's sensitivity to changes in the environmental conditions is also explored. Averages of the surface fluxes, near-ground wind speeds and other PBL properties from 48 h simulations are compared to control runs. The model-calculated surface fluxes are most sensitive, in decreasing order of importance, to the vertical grid spacing, the form of closure between the surface temperature and the atmosphere, the use of vertical diffusivity smoothing, the choice of maximum time step and choice of turbulence closure scheme. These fluxes are relatively insensitive to mixing-length scaling or choice of implicit time step weighting factor. Sensitivity to changes in soil type exceeds any of the design criteria tested. The modeled fluxes are moderately sensitive to small variations in the horizontal pressure gradient, to unsteadiness in the geostrophic wind and to variations in surface roughness. They are relatively insensitive to uncertainties in local vertical velocities and small (25%) variations applied separately to soil thermal diffusivity or heat capacity. The sensitivity of the average PBL depth (Z i ) to model and environmental changes are similar to those of surface fluxes except thatZ i is more sensitive to changes in mixing length, albedo and imposed vertical velocity then are the surface fluxes.  相似文献   

10.
Numerical analysis of flux footprints for different landscapes   总被引:5,自引:0,他引:5  
Summary A model for the canopy – planetary boundary layer flow and scalar transport based on E- closure was applied to estimate footprint for CO2 fluxes over different inhomogeneous landscapes. Hypothetical heterogeneous vegetation patterns – forest with clear-cuts as well as hypothetical heterogeneous relief – a bell-shaped valley and a ridge covered by forest were considered. The distortions of airflow caused by these heterogeneities are shown – the upwind deceleration of the flow at the ridge foot and above valley, acceleration at the crest and the flow separation with the reversed flow pattern at lee slopes of ridge and valley. The disturbances induce changes in scalar flux fields within the atmospheric surface layer comparing to fluxes for homogeneous conditions: at a fixed height the fluxes vary as a function of distance to disturbance. Correspondingly, the flux footprint estimated from model data depends on the location of the point of interest (flux measurement point) and may significantly deviate from that for a flat terrain. It is shown that proposed method could be used for the choice of optimal sensor position for flux measurements over complex terrain as well as for the interpretation of data for existing measurement sites. To illustrate the latter the method was applied for experimental site in Solling, Germany, taking into account the complex topography and vegetation heterogeneities. Results show that in certain situations (summer, neutral stratification, south or north wind) and for a certain sensor location the assumptions of idealized air flow structure could be used for measurement interpretation at this site, though in general, extreme caution should be applied when analytical footprint models are used in the interpretation of flux measurements over complex sites.  相似文献   

11.
边界层过程对"98·7"长江流域暴雨预报影响的数值试验研究   总被引:12,自引:2,他引:10  
通过ETA模式对"98@7"长江流域暴雨过程的数值试验研究,讨论了行星边界层过程对暴雨数值预报的影响,结果表明边界层过程在这次暴雨预报中有重要作用.具体结论为:(1)降水大范围落区是受大尺度流场所决定的,但边界层过程对暴雨预报具有重要的作用;(2)不考虑边界层过程会影响对天气系统的正确预报,包括影响大气低层的运动场、水汽及大气不稳定度,从而影响暴雨的预报;(3)从时间层次上看,由于地表通量有着显著的日变化,边界层过程的作用不仅与暴雨本身发生发展及消亡的阶段有关,也与各阶段的时间(白天或夜间)有联系;(4)在空间范围内,边界层过程对大气的影响是通过大气流场重新分布来影响降水的环境条件,故地表通量分布和低层流场的相互配置作用十分重要.长江南北的情况有所不同,长江流域南侧区是地表通量的大值区,也是长江流域雨区水汽和不稳定能量的源区,它对长江流域的暴雨可能有着更为重要的作用.  相似文献   

12.
This paper reports on measurements of sensible and latent heat and CO2 fluxes made over an irrigated potato field, growing next to a patch of desert. The study was conducted using two eddy correlation systems. One measurement system was located within the equilibrium boundary layer 800 m downwind from the edge of the potato field. The other measurement system was mobile and was placed at various downwind positions to probe the horizontal transition of vertical scalar fluxes. Latent (LE) and sensible (H) heat fluxes, measured at 4 m above the surface, exhibited marked variations with downwind distance over the field. Only after the fetch to height ratio exceeded 75 to 1 didLE andH become invariant with downwind distance. When latent and sensible heat fluxes were measured upwind of this threshold, significant advection of humidity-deficit occurred, causing a vertical flux divergence ofH andLE.The measured fluxes of momentum, heat, and moisture were compared with predictions from a second-order closure two-dimensional atmospheric boundary layer model. There is good agreement between measurements and model predictions. A soil-plant-atmosphere model was used to examine nonlinear feedbacks between humidity-deficits, stomatal conductance and evaporation. Data interpretation with this model revealed that the advection of hot dry air did not enhance surface evaporation rates near the upwind edge of the potato field, because of negative feedbacks among stomatal conductance, humidity-deficits, andLE. This finding is consistent with results from several recent studies.  相似文献   

13.
A new method for deduction of the sensible heat flux is validated with three sets of published SODAR (sound detection and ranging) data. Although the related expressions have previously been confirmed by the author with surface layer data, they have not yet been validated with observations from the boundary layer before this work. In the study, selected SODAR data are used to test the method for the convective boundary layer. The sensible heat flux (SHF) retrieved from SODAR data is found to decrease linearly with height in the mixed layer. The surface sensible heat fluxes derived from the deduced sensible heat flux profiles under convective conditions agree well with those measured by the eddy correlation method. The characteristics of SHF profiles deduced from SODAR data in different places reflect the background meteorology and terrain. The upper part of the SHF profile (SHFP) for a complicated terrain is found to have a different slope from the lower part. It is suggested that the former reflects the advective characteristic of turbulence in upwind topography. A similarity relationship for the estimation of SHFP in a well mixed layer with surface SHF and zero-heat-flux layer height is presented.  相似文献   

14.
桑建国  刘丽杰 《高原气象》1990,9(3):245-255
本文采用二阶闭合的湍流边界层模式,进行一系列数值试验以模拟边界层中连续线源的扩散状况。试验表明:无论在稳定的或不稳定的边界层中,高源的扩散能力都低于低源;在稳定层中,粗糙地表上的大气扩散能力高于光滑表面;在相同风速和地表净辐射情况下,粗糙表面上的大气扩散能力反而低于光滑表面;对流边界层中存在反梯度输送,因而K理论的应用受到限制。试验还表明,修正的Kazanski-Monin参数可能比Monin-Obukhov长度更能反映大气的扩散能力。  相似文献   

15.
A large-eddy simulation (LES) study is presented that investigates the spatial variability of temporal eddy covariance fluxes and the systematic underestimation of representative fluxes linked to them. It extends a prior numerical study by performing high resolution simulations that allow for virtual measurements down to 20 m in a convective boundary layer, so that conditions for small tower measurement sites can be analysed. It accounts for different convective regimes as the wind speed and the near-surface heat flux are varied. Moreover, it is the first LES imbalance study that extends to the stable boundary layer. It reveals shortcomings of single site measurements and the necessity of using horizontally-distributed observation networks. The imbalances in the convective case are attributed to a locally non-vanishing mean vertical advection due to turbulent organised structures (TOS). The strength of the TOS and thus the imbalance magnitude depends on height, the horizontal mean wind and the convection type. Contrary to the results of a prior study, TOS cannot generally be responsible for large energy imbalances: at low observation heights (corresponding to small towers and near-surface energy balance stations) the TOS related imbalances are generally about one order of magnitude smaller than those in field experiments. However, TOS may cause large imbalances at large towers not only in the case of cellular convection and low wind speeds, as found in the previous study, but also in the case of roll convection at large wind speeds. In the stably stratified boundary layer for all observation heights neither TOS nor significant imbalances are observed. Attempting to reduce imbalances in convective situations by applying the conventional linear detrending method increases the systematic flux underestimation. Thus, a new filter method is proposed.  相似文献   

16.
Based on turbulence theory,a 1.5-order closure turbulence model is established.The model incorporating with theground surface energy budget equation is constructed by means of a vertical one-dimensional(1-D)40-levelgrid-mesh.The numerical results reveal the 24-h evolution of the clear planetary boundary layer comparing with theWangara boundary layer data of days 33—34.The model also takes into account some physical processes of radiativetransfer and baroclinicity,revealing some important characteristics observed in the boundary layer,especially for theevolution of the mixed layer and low-level jet.The calculated results are in good agreement with the observational data.On the other hand,we also run the high-resolution model of the planetary boundary layer in the Mesoscale Model Ver-sion 4(MM4)with the same physical processes and initial conditions.The results show that the high-resolution modelcan not reveal those important characteristics as the 1.5-order closure model did.In general,it is shown that the 1.5-or-der closure turbulence model based on turbulence theory is better in rationality and reality.  相似文献   

17.
An efficient, pianetary boundary layer (PBL) model is developed and validated with empirical data for applications in general circulation models (GCMs). The purpose of this PBL model is to establish the turbulent surface fluxes as a function of the principal external PBL parameters in a numerically efficient way. It consists of a surface layer and a mixed layer matched together with the conditions of constant momentum and heat flux at the interface. An algebraic solution to the mean momentum equations describes the mixed-layer velocity profile and thus determines the surface wind vector. The velocity profile is globally valid by incorporating the effect of variable Coriolis force without becoming singular at the equator. Turbulent diffusion depends on atmospheric stability and is modeled in the surface layer by a drag law and with first-order closure in the mixed layer. Radiative cooling in the stably stratified PBL is considered in a simple manner. The coupled system is solved by an iterative method. In order to preserve the computational efficiency of the large-scale model, the PBL model is implemented into the GISS GCM by means of look-up tables with the bulk PBL Richardson number, PBL depth, neutral drag coefficient, and latitude as independent variables.A validation of the PBL model with observed data in the form of Rossby number similarity theory shows that the internal feedback mechanisms are represented correctly. The model, however, underpredicted the sensible heat-flux. A subsequent correction in the turbulence parameterization yields better agreement with the empirical data. The behavior of the principal internal PBL quantities is presented for a range of thermal stabilities and latitudes.  相似文献   

18.
A procedure for the dynamic initialization of wind and temperature fields within the atmospheric boundary layer (ABL) is presented. The procedure uses transilient turbulence theory to assess the turbulent fluxes from observed wind and temperature data, which are used to estimate the eddy transfer coefficients, so enabling a local closure ABL model to be integrated forward in time to a new steady state. The method has been applied to initialize kytoon data taken at Kharagpur (22.3° N, 87.2° E) during the MONTBLEX field programme. Results of a case study for 17 June 1990 are discussed.  相似文献   

19.
A bulk boundary-layer model is developed to predict surface fluxes and conditions in the well-mixed layer between the surface and the lower troposphere. The model includes the effects of all the dominant processes, including advection, in a dry boundary layer. The numerical model is compared with theoretical predictions for the growth of an internal boundary layer, and it is used to simulate the generation of a sea breeze by the diurnal cycle of radiative heating.  相似文献   

20.
The Growth of the Planetary Boundary Layer at a Coastal Site: a Case Study   总被引:2,自引:1,他引:1  
A lidar system is used to determine the diurnal evolution of the planetary boundary layer (PBL) height on a summer day characterized by anticyclonic conditions. The site is located some 15 km distant from the sea, on a peninsula in south-east Italy. Contrary to expectations, the PBL height, after an initial growth consequent to sunrise, ceases to increase about 2 h before noon and then decreases and stabilizes in the afternoon. An interpretation of such anomalous behaviour is provided in terms of trajectories of air parcels towards the lidar site, which are influenced by the sea breeze, leading to a transition from a continental boundary layer to a coastal internal boundary layer. The results are analyzed using mesoscale numerical model simulations and a simple model that allows for a more direct interpretation of experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号