首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are clear indications from literary and historical data and from geomorphological data that the eastern coastal areas of peninsular India have been uplifted and parts of the bottom of the Bay of Bengal have subsided. The junctions of these areas of uplift and subsidences are near the coast in the shelf and the continental slope. The intensity and location of these movements seem to change frequently. Many of the rivers of eastern peninsular India follow faulted margins in tectonically highly disturbed zones which have undergone vertical movements since the depositions of rocks of the Cuddapah and Kurnool systems to the recent past. These areas are also associated with deep faults and steep gradients of gravity. It has been also observed that the Mettur, Sattanur and Nagarjunasagar dams in these areas are associated with sporadic seismic activity. In view of the fact that a large number of new civil-engineering works are being undertaken in the river valleys of the areas, which are intended to stand for a long time, it is suggested by the author that detailed geological and geophysical studies of the basement be undertaken in these areas. Also some temporary seismological observatories should be set up in these areas to study their seismicity thoroughly.  相似文献   

2.
孟加拉湾位于印度大陆以东、缅甸-安达曼-苏门答腊以西、孟加拉国南部海上地区,该区存在主动和被动两种不同类型的大陆边缘,并发育众多大陆边缘含油气盆地。根据板块位置和构造特征将其划分为三大类,分别是:被动大陆边缘盆地(马哈纳迪、K-G和高韦里盆地);主动大陆边缘盆地(若开、缅甸中央、马达班、安达曼和北苏门答腊盆地);残留洋盆地(孟加拉盆地)。根据火山岛弧带分布情况进一步将主动大陆边缘盆地划分为:①海沟型——若开盆地;②弧前型——缅甸中央盆地;③弧后型——马达班、安达曼和北苏门答腊盆地。对这些盆地油气勘探情况的统计与分析表明,该区大陆边缘盆地的油气分布主控因素为:烃源岩类型与有机质丰度决定了流体性质与资源强度;大型河流—三角洲形成富油气区;盆地类型、性质及晚期构造活动强度决定区带勘探潜力。  相似文献   

3.
Behera  A. K.  Chakrapani  G. J.  Kumar  S.  Rai  N. 《Natural Hazards》2019,97(3):1209-1230
Natural Hazards - The study dealt with seawater intrusion process in a coastal aquifer system in the Mahanadi river delta region in the east coast of India along the Bay of Bengal. The aquifers of...  相似文献   

4.
The characteristic features of the marine boundary layer (MBL) over the Bay of Bengal during the southwest monsoon and the factors influencing it are investigated. The Bay of Bengal and Monsoon Experiment (BOBMEX) carried out during July–August 1999 is the first observational experiment under the Indian Climate Research Programme (ICRP). A very high-resolution data in the vertical was obtained during this experiment, which was used to study the MBL characteristics off the east coast of India in the north and south Bay of Bengal. Spells of active and suppressed convection over the Bay were observed, of which, three representative convective episodes were considered for the study. For this purpose a one-dimensional multi-level PBL model with a TKE-ε closure scheme was used. The soundings, viz., the vertical profiles of temperature, humidity, zonal and meridional component of wind, obtained onboard ORV Sagar Kanya and from coastal stations along the east coast are used for the study. The temporal evolution of turbulent kinetic energy, marine boundary layer height (MBLH), sensible and latent heat fluxes and drag coefficient of momentum are simulated for different epochs of monsoon and monsoon depressions during BOBMEX-99.The model also generates the vertical profiles of potential temperature, specific humidity, zonal and meridional wind. These simulated values compared reasonably well with the observations available from BOBMEX.  相似文献   

5.
A detailed examination of a Gondwanaland re-assembly of Peninsular India and part of East Antarctica permits several conclusions to be drawn largely from data from the Indian coastal belt, which includes Ceylon. These are that original major granulite metamorphism probably occurred at about 2000 m.y., and that the sinuosity of the granulite belt, now split into two coastal belts, is a later distortion, outlined by anorthosite occurrences in India, which probably occurred between 720 and 450 m.y. Brief mention is made of the continuation of this belt into Madagascar, and of the problem of what lay between Western Australia and India in Gondwanaland.  相似文献   

6.
A detailed analysis of bathymetry and magnetic data of Visakhapatnam-Paradip shelf, east coast of India revealed three major structural lineaments over the shelf/slope of the area. Models derived from the anomalies associated with the trends indicate that trend A represents horst and graben type continental basement while trend B is due to a series of dyke intrusions. Trend C off Chilka lake forms the northward extension of 85°E lineation from deep sea Bengal Fan. A two stage evolution of the eastern continental margin of India has been inferred from the study of this part of the margin, viz., the rift stage evidenced by dyke intrusions of reverse polarity located within the inner part of the shelf and post-rift stage characterized by vertical tectonics in the form of a horst and graben type continental basement. The hotspot related aseismic 85°E ridge further complicated the tectonics of this part of the area.  相似文献   

7.
A combined gravity map over the Indian Peninsular Shield (IPS) and adjoining oceans brings out well the inter-relationships between the older tectonic features of the continent and the adjoining younger oceanic features. The NW–SE, NE–SW and N–S Precambrian trends of the IPS are reflected in the structural trends of the Arabian Sea and the Bay of Bengal suggesting their probable reactivation. The Simple Bouguer anomaly map shows consistent increase in gravity value from the continent to the deep ocean basins, which is attributed to isostatic compensation due to variations in the crustal thickness. A crustal density model computed along a profile across this region suggests a thick crust of 35–40 km under the continent, which reduces to 22/20–24 km under the Bay of Bengal with thick sediments of 8–10 km underlain by crustal layers of density 2720 and 2900/2840 kg/m3. Large crustal thickness and trends of the gravity anomalies may suggest a transitional crust in the Bay of Bengal up to 150–200 km from the east coast. The crustal thickness under the Laxmi ridge and east of it in the Arabian Sea is 20 and 14 km, respectively, with 5–6 km thick Tertiary and Mesozoic sediments separated by a thin layer of Deccan Trap. Crustal layers of densities 2750 and 2950 kg/m3 underlie sediments. The crustal density model in this part of the Arabian Sea (east of Laxmi ridge) and the structural trends similar to the Indian Peninsular Shield suggest a continent–ocean transitional crust (COTC). The COTC may represent down dropped and submerged parts of the Indian crust evolved at the time of break-up along the west coast of India and passage of Reunion hotspot over India during late Cretaceous. The crustal model under this part also shows an underplated lower crust and a low density upper mantle, extending over the continent across the west coast of India, which appears to be related to the Deccan volcanism. The crustal thickness under the western Arabian Sea (west of the Laxmi ridge) reduces to 8–9 km with crustal layers of densities 2650 and 2870 kg/m3 representing an oceanic crust.  相似文献   

8.
The South Indian (Peninsular) Shield which includes both the Eastern and Western Continental Margins of India is not as stable as it was originally thought of. The importance of intraplate seismicity within this Shield has recently been realized with some devastating earthquakes that occurred during the last few decades. It is also significant to note that most of the Precambrian tectonic lineaments in this Shield are oriented in either a NW–SE or W–E direction, joining the eastern offshore. In contrast, the western margin has an elevated coast, associated with a linear coast parallel escarpment, particularly on the southern side, superimposed by Deccan Trap volcanics on the northern side. The fault reactivation and the associated seismicity are hence more predominant on the east coast. Recent geophysical studies delineated land–ocean tectonics (LOTs) over the eastern margin, in some cases associated with moderate seismicity as a result of the compressional stress acting on the Indian Plate. Though the Eastern Continental Margin of India (ECMI) is considered as a passive margin, coastal seismicity due to the reactivation of the pre-existing tectonic lineaments extending offshore represents a potential natural hazard. In this context, the ECMI appears to be much more vulnerable compared to its counterpart on the west.  相似文献   

9.
A seismic hazard map of India and adjacent areas   总被引:1,自引:0,他引:1  
We have produced a probabilistic seismic hazard map showing peak ground accelerations in rock for India and neighboring areas having a 10% probability of being exceeded in 50 years. Seismogenic zones were identified on the basis of historical seismicity, seismotectonics and geology of the region. Procedures for reducing the incompleteness of earthquake catalogs were followed before estimating recurrence parameters. An eastern United States acceleration attenuation relationship was employed after it was found that intensity attenuation for the Indian region and the eastern United States was similar. The largest probabilistic accelerations are obtained in the seismotectonic belts of Kirthar, Hindukush, Himalaya, Arakan-Yoma, and the Shillong massif where values of over 70% g have been calculated.  相似文献   

10.
Mumbai city, the economical capital of India, is located on the west coast of stable intra-plate continental region of Peninsular India which has an experience of significant historical earthquakes in the past. The city stood as the fourth most populous city in the world. Recent seismo-tectonic studies of this city highlighted the presence of active West coast fault and Chiplun fault beneath the Deccan basalt. In the present study, spatial variability of probabilistic seismic hazard for Mumbai region (latitudes of 18.85–19.35°N and longitudes of 72.80–73.15°E at a grid spacing of 0.05°) which includes Mumbai city, Suburban, part of Thane district and Navi Mumbai, in terms of ground motion parameters; peak horizontal acceleration and spectral acceleration at 1.0-s period for 2 and 10 % probability of exceedance in 50 years are generated. The epistemic uncertainty in hazard estimation is accounted by employing seven different ground motion prediction equations developed for worldwide shallow crustal intra-plate environments. Further, the seismic hazard results are deaggregated for Mumbai (latitude 18.94°N, longitude 72.84°E) to understand the relative contributions of earthquake sources in terms of magnitude and distance. The generated hazard maps are compared with the zoning specified by Indian seismic code (IS1893: Part 1 in Indian standard criteria for earthquake-resistant design of structures, Part 1—General provisions and buildings. Bureau of Indian Standards, New Delhi, India, 2002) for rocky site. Present results show an underestimation of potential seismic hazard in the entire study region by non-probabilistic zoning prescribed by IS1893: Part 1 with significantly higher seismic hazard values in the southern part of Navi Mumbai.  相似文献   

11.
The northern part of the Nellore–Khammam schist belt and the Karimnagar granulite belt, which are juxtaposed at high angle to each other have unique U–Pb zircon age records suggesting distinctive tectonothermal histories. Plate accretion and rifting in the eastern part of the Dharwar craton and between the Dharwar and Bastar craton indicate multiple and complex events from 2600 to 500 Ma. The Khammam schist belt, the Dharwar and the Bastar craton were joined together by the end of the Archaean. The Khammam schist belt had experienced additional tectonic events at \(\sim \)1900 and \(\sim \)1600 Ma. The Dharwar and Bastar cratons separated during development of the Pranhita–Godavari (P–G) valley basin at \(\sim \)1600 Ma, potentially linked to the breakup of the Columbia supercontinent and were reassembled during the Mesoproterozoic at about 1000 Ma. This amalgamation process in southern India could be associated with the formation of the Rodinia supercontinent. The Khammam schist belt and the Eastern Ghats mobile belt also show evidence for accretionary processes at around 500 Ma, which is interpreted as a record of Pan-African collisions during the Gondwana assembly. From then on, southern India, as is known today, formed an integral part of the Indian continent.  相似文献   

12.
The foraminifer taxon Bolliella adamsi Banner et Blow, 1959 is found to co-occur with index planktic foraminifer taxa of the Late Pliocene (Zone N21) in a core of 2.60 m at 1300 m water depth off Tuticorin, Bay of Bengal. This taxon has been previously known as a Holocene taxon of the Indo-Pacific province. This study significantly revises the known stratigraphic range of B. adamsi from the Late Pliocene (uppermost part of Zone N21) to the Holocene in the Bay of Bengal area.  相似文献   

13.
A three-dimensional numerical model is described to study theresponse of a coastal ocean excited by a tropical cyclone in the Bay of Bengal. The numericalexperiments have been carried out using the model to understand the dynamics and thermodynamics ofthe ocean due to different cyclonic systems approaching in different directions. In the firstexperiment, the model is used to simulate the vertical thermal structure of the ocean as a response ofpassage of the less intensified 1997 cyclone, which was skirting the east coast of India before crossingthe Bangladesh coast. The simulations are compared with the buoy data available during the storm period.In the next experiment, it is considered an idealized cyclone with hurricane winds movingnormal to the east coast of India crossing between Visakhapatnam and Kakinada to evolve thermalstructure and currents of the ocean. A net decrease of the SST of 6–7 °C is simulated whenthe severe cyclonic storm moved over the coastal ocean.  相似文献   

14.
Most of the countries around the North Indian Ocean are threatened by storm surges associated with severe tropical cyclones. The destruction due to the storm surge flooding is a serious concern along the coastal regions of India, Bangladesh, Myanmar, Pakistan, Sri Lanka, and Oman. Storm surges cause heavy loss of lives and property damage to the coastal structures and losses of agriculture which lead to annual economic losses in these countries. About 300,000 lives were lost in one of the most severe cyclones that hit Bangladesh (then East Pakistan) in November 1970. The Andhra Cyclone devastated part of the eastern coast of India, killing about 10,000 persons in November 1977. More recently, the Chittagong cyclone of April 1991 killed 140,000 people in Bangladesh, and the Orissa coast of India was struck by a severe cyclonic storm in October 1999, killing more than 15,000 people besides enormous loss to the property in the region. These and most of the world’s greatest natural disasters associated with the tropical cyclones have been directly attributed to storm surges. The main objective of this article is to highlight the recent developments in storm surge prediction in the Bay of Bengal and the Arabian Sea.  相似文献   

15.
We have determined the concentration and isotopic composition of Os and Sr in the estuarine waters from the Godavari delta in Peninsular India. Additionally, we have obtained the concentration and isotopic composition of Os and Al concentration in selected suspended particulate matter recovered on 0.45 μm filters. The Na, K, Mg, and Ca concentrations of water samples obtained along salinity gradients from two distributary channels in the delta display a general two component mixing between river- and sea-water. The data also reveal that Al behaves non-conservatively and is affected by interactions with suspended particulates. The 87Sr/86Sr ratio of the riverine end member is 0.716303 and shows a linear decrease with salinity to seawater value and Sr isotope systematics indicate that its behavior is conservative in the estuary.The 187Os/188Os ratio of the Godavari river end-member is 1.24 and within error of the average eroding upper continental crust. The concentration and isotopic composition of Os through the two salinity transects shows that its behavior in the Godavari estuary is complex and non-conservative. By comparing the Al/Os ratios and Os isotopes in the waters with those of the suspended particulate we find that both Os gains and losses occur in the water column. However, in one of the distributaries (Vasishta) the Os concentration of suspended load increases and that of dissolved load decreases with increasing salinity towards the Bay of Bengal end-member. We infer that there is removal of seawater Os at higher salinities. The estimated mean residence time of Os in the oceans is 37 ± 14 (2σ) kyr. A comparison of the Os concentration of the Bay of Bengal and the Indian Ocean waters indicates that the rainout rate of Os in Bay of Bengal is 30% faster than that in the open ocean and suggests that the observed discrepancy between the mean residence time calculated from mass balance considerations and that estimated from the relaxation of the Os isotopic ratio in marine record may not be real as the relaxation time experiments likely estimate the residence time for a basin/sub-basin and not for the entire ocean.  相似文献   

16.
Arsenic contamination in groundwater affecting West Bengal (India) and Bangladesh is a serious environmental problem. Contamination is extensive in the low-lying areas of Bhagirathi–Ganga delta, located mainly to the east of the Bhagirathi River. A few isolated As-contaminated areas occur west of the Bhagirathi River and over the lower parts of the Damodar river fan-delta. The Damodar being a Peninsular Indian river, the arsenic problem is not restricted to Himalayan rivers alone. Arsenic contamination in the Bengal Delta is confined to the Holocene Younger Delta Plain and the alluvium that was deposited around 10,000–7,000 years bp, under combined influence of the Holocene sea-level rise and rapid erosion in the Himalaya. Further, contaminated areas are often located close to distribution of abandoned or existing channels, swamps, which are areas of surface water and biomass accumulation. Extensive extraction of groundwater mainly from shallow aquifers cause recharge from nearby surface water bodies. Infiltration of recharge water enriched in dissolved organic matter derived either from recently accumulated biomass and/or from sediment organic matter enhanced reductive dissolution of hydrated iron oxide that are present mainly as sediment grain coatings in the aquifers enhancing release of sorbed arsenic to groundwater.  相似文献   

17.
BOBMEX-Pilot was organised from 23rd October–11th November, 1998 when the seasonal trough had already shifted to south Bay of Bengal. The activity during this period was marked by the development of a monsoon depression from 26th–29th October that weakened over the sea; onset of northeast monsoon along the east coast of India on 29th October; a low pressure area that formed on 2nd November over southwest Bay off Sri Lanka — southTamilnadu coast; and another cyclonic circulation that formed towards the end of the BOBMEX-Pilot period. This paper describes the development of these synoptic systems through synoptic charts and satellite data.  相似文献   

18.
Seismic hazard in mega city Kolkata, India   总被引:2,自引:1,他引:1  
The damages caused by recent earthquakes in India have been a wake up call for people to take proper mitigation measures, especially the major cities that lie in the high seismic hazard zones. Kolkata City, with thick sediment deposit (∼12 km), one of the earliest cities of India, is an area of great concern as it lies over the Bengal Basin and lies at the boundary of the seismic zones III and IV of the zonation map of India. Kolkata has been affected by the 1897 Shillong earthquake, the 1906 Calcutta earthquake, and the 1964 Calcutta earthquake. An analysis on the maximum magnitude and b-value for Kolkata City region is carried out after the preparation of earthquake catalog from various sources. Based on the tectonic set-up and seismicity of the region, five seismic zones are delineated, which can pose a threat to Kolkata in the event of an earthquake. They are broadly classified as Zone 1: Arakan-Yoma Zone (AYZ), Zone 2: Himalayan Zone (HZ), Zone 3: Shillong Plateau Zone (SPZ), Zone 4: Bay of Bengal Zone (BBZ), and Zone 5: Shield Zone (SZ). The maximum magnitude (m max) for Zones 1, 2, 3, 4, and 5 are 8.30 ± 0.51, 9.09 ± 0.58, 9.20 ± 0.51, 6.62 ± 0.43 and 6.61 ± 0.43, respectively. A probability of 10% exceedance value in 50 years is used for each zone. The probabilities of occurrences of earthquakes of different magnitudes for return periods of 50 and 100 years are computed for the five seismic zones. The Peak Ground Acceleration (PGA) obtained for Kolkata City varies from 0.34 to 0.10 g.  相似文献   

19.
A coupled coastal-bay estuarine numerical model is described and applied to investigate the combination of wind-estuarine driven circulation off the Orissa coast. The model is based on coupling of a 2-dimensional estuarine model with a 3-dimensional coastal-bay model. The models are linked through the elevation at the interface. Using the coupled model, the numerical experiments are carried out to elicit the dynamical linking between the estuarine outflow and the coastal ocean to simulate the ensuing adjoining coastal circulation. During the southwest monsoon, it is noticed that the estuarine discharge from the northern head-bay river system and the river systems that join the Bay of Bengal along the Orissa coast would sufficiently modify the coastal circulation along the coast. Numerical experiments are also carried for the model simulation of surges generated by the 1999 Orissa cyclone. It is shown that the estuarine system would influence significantly on surge development and associated inundation through the rivers.  相似文献   

20.
Bhardwaj  Pankaj  Singh  Omvir  Yadav  R. B. S. 《Natural Hazards》2020,101(1):275-295
Natural Hazards - Tropical cyclones (TCs) of the Bay of Bengal (BoB) cause catastrophic loss over the coasts at the time of landfall in India, Bangladesh, Myanmar and Sri Lanka. To strengthen...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号