共查询到20条相似文献,搜索用时 15 毫秒
1.
Mathieu Schuster Philippe Duringer Jean‐Francois Ghienne Patrick Vignaud Alain Beauvilain Hassan Taisso Mackaye Michel Brunet 《地球表面变化过程与地形》2003,28(10):1059-1069
This paper reports on a study dealing with the rhyolitic inselbergs of Hadjer el Khamis that formed palaeoislands during Lake Mega‐Chad events. Field observations have shown that: (1) conglomeratic patches of immature to mature clasts are preserved at the feet of the Hadjer el Khamis inselbergs; (2) in cross‐section, their pro?le reveals a well de?ned cliff–platform junction at a constant elevation (325 m). The monolithological clasts show all degrees of roundness, from angular cobbles to well rounded pebbles. This wide range of maturity suggests a coastal origin for these cobbles. The system was permanently fed with angular clasts, which were progressively worn by waves. Cobbles that were wave‐worked for the longest time are the best rounded. The cliff–platform junction is the result of erosion by waves, which attacked and undercut the inselberg cliffs during Lake Mega‐Chad events. Asymmetrical erosion pro?les moreover suggest a wind regime dominated by SW to NE oriented winds. These interpretations have two implications. The elevation of the cliff–platform junction is an indication of the highest water level of Lake Mega‐Chad at 320–325 m, which is in agreement with other observations elsewhere in the basin. The SW to NE oriented winds show that monsoon‐related winds were prevalent during Lake Mega‐Chad events, suggesting the Inter‐Tropical Convergence Zone was located higher in latitude than today. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
2.
Groundwater modelling with limited data sets: the Chari–Logone area (Lake Chad Basin,Chad) 下载免费PDF全文
One of the most important issues for water resource management is developing strategies for groundwater modelling that are adaptable to data scarcity. These strategies are particularly important in arid and semi‐arid areas where access to data is poor and data collection is difficult, such as the Lake Chad Basin in Africa. In the present study, we establish a numerical groundwater flow model and evaluate the effects of dry and wet periods on groundwater recharge in the Chari–Logone area (96 000 km2) of the Lake Chad Basin. Boundary conditions, flow direction, sources, and sinks for the Chari–Logone local model were obtained by revising and remodelling the Lake Chad Basin regional hydrogeological model (508 400 km2) developed by the BRGM (Bureau de Recherches Géologiques et Minières) in the 1990s. The simulated aquifer water level showed good agreement with observed levels. Aquifer recharge is primarily determined by river–aquifer interactions and mostly occurs in the southern section of the study area. In wet years, groundwater recharge also occurs in the N'Djamena area. The approach we adopted provided relevant results and was useful as an initial step in more detailed modelling of the area. It also proved to be a useful method for groundwater modelling in large semi‐arid and arid regions where available data are scarce. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
3.
Costa Rica is located geographically in the southern part of the Central American Volcanic Front, a zone where interaction between the Mesoamerican and South American cultures occurred in pre-Columbian times. Several volcanoes violently erupted during the Holocene, when the first nomadic human hunters and later settlers were present. Volcanic rocks were the most important geo-resource in making artifacts and as construction materials for pre-Columbian inhabitants. Some pottery products are believed to resemble smoking volcanoes, and the settlements around volcanoes would seem to indicate their influence on daily life. Undoubtedly, volcanic eruptions disrupted the life of early settlers, particularly in the vicinity of Arenal and Irazú volcanoes, where archaeological remains show transient effects and displacement caused by periodical eruptions, but later resilient occupations around the volcanoes. Most native languages are extinct, with the exception of those presently spoken in areas far away from active volcanoes, where no words are related to volcanic phenomena or structures. The preserved legends are ambiguous, suggesting that they were either produced during the early Spanish conquest or were altered following the pre-Columbian period. 相似文献
4.
Sidewall erosion because of rockfalls is one of the most efficient erosional processes in the highest parts of mountain ranges; it is therefore important to quantify sidewall erosion to understand the long-term evolution of mountainous topography. In this study, we analyse how the 10Be concentration of supraglacial debris can be used to quantify sidewall erosion in a glaciated catchment. We first analyse, in a glaciated catchment, the cascade of processes that move a rock from a rockwall to a supraglacial location and propose a quantitative estimate of the number of rockfalls statistically mixed in a supraglacial sand sample. This model incorporates the size of the rockwall, a power law distribution of the size of the rockfalls and the mean glacial transport velocity. In the case of the Bossons glacier catchment (Mont Blanc massif), the 10Be concentrations obtained for supraglacial samples vary from 1.97 ± 0.24 to 23.82 ± 1.68 × 104 atoms g−1. Our analysis suggests that part of the 10Be concentration dispersion is related to an insufficient number of amalgamated rockfalls that does not erase the stochastic nature of the sidewall erosion. In the latter case, the concentration of several collected samples is averaged to increase the number of statistically amalgamated rockfalls. Variable and robust 10Be-derived rockwall retreat rates are obtained for three distinct rockfall zones in the Bossons catchment and are 0.19 ± 0.08 mm year−1, 0.54 ± 0.1 mm year−1 and 1.08 ± 0.17 mm year−1. The mean 10Be retreat rate for the whole catchment (ca. 0.65 mm year−1) is close to the present-day erosion rate derived from other methods. © 2019 John Wiley & Sons, Ltd. 相似文献
5.
Geochemistry and tectonic implications of Proterozoic amphibolites in the northeastern part of the Yeongnam massif, South Korea 总被引:1,自引:0,他引:1
Abstract Amphibolites in the Haenggongni area (Haenggongni amphibolite) and the Okbang area (Okbang amphibolite) in northeastern Yeongnam massif, South Korea occur as a sill-like body or inclusions within the metasedimentary sequences of the Proterozoic Wonnam Group. Major and trace element characteristics demonstrate that both amphibolites have tholeiitic chemical affinity. They are characterized by nearly flat rare earth element (REE) patterns, and low contents of immobile incompatible elements and have low values of Zr/Y, Ti/Y, La/Nb and Ta/Yb ratios, indicating enriched (E)-type mid-oceanic ridge basalt (MORB) affinities for their protoliths. This suggests that amphibolite protoliths formed in an extensional rift setting leading up to ocean opening. In combination with the previous studies in Yeongnam massif, three protolith types of amphibolites are assumed (E-type MORB, within-plate basalt and volcanic arc basalt). They could have been originated in different tectonic settings and/or different episodes. These characteristics are clearly different from the amphibolites in the Gyeonggi massif and Okcheon belt, in which most of the amphibolites show a within-plate basalt affinity that developed in continental rift zone. 相似文献
6.
Xavi Gallach Julien Carcaillet Ludovic Ravanel Philip Deline Christophe Ogier Magali Rossi Emmanuel Malet David Garcia-Sellés 《地球表面变化过程与地形》2020,45(13):3071-3091
In the Mont Blanc massif (European Western Alps), rockfalls are one of the main natural hazards for alpinists and infrastructure. Rockfall activity after the Little Ice Age is well documented. An increase in frequency during the last three decades is related to permafrost degradation caused by rising air temperatures. In order to understand whether climate exerts a long-term control on rockfall occurrence, a selection of paleo-rockfall scars was dated in the Glacier du Géant basin [>3200 m above sea level (a.s.l.)] using terrestrial cosmogenic nuclides. Rockfall occurrence was compared to different climatic and glacial proxies. This study presents 55 new samples (including replicates) and 25 previously-published ages from nine sampling sites. In total, 62 dated rockfall events display ages ranging from 0.03 ± 0.02 ka to 88.40 ± 7.60 ka. Holocene ages and their uncertainties were used to perform a Kernel density function into a continuous dataset displaying rockfall probability per 100 years. Results highlight four Holocene periods of enhanced rockfall occurrence: (i) c. 7–5.7 ka, related to the Holocene Warm Periods; (ii) c. 4.5–4 ka, related to the Sub-boreal Warm Period; (iii) c. 2.3–1.6 ka, related to the Roman Warm Period; and (iv) c. 0.9–0.3 ka, related to the Medieval Warm Period and beginning of the Little Ice Age. Laser and photogrammetric three-dimensional (3D) models of the rock walls were produced to reconstruct the detached volumes from the best-preserved rockfall scars (≤0.91 ± 0.12 ka). A structural study was carried out at the scale of the Glacier du Géant basin using aerial photographs, and at the scale of four selected rock walls using the 3D models. Two main vertical and one horizontal fracture sets were identified. They correspond respectively to alpine shear zones and veins opened-up during long-term exhumation of the Mont Blanc massif. Our study confirms that climate primarily controls rockfall occurrence, and that structural settings, coincident at both the massif and the rock wall scales, control the rock-wall shapes as well as the geometry and volume of the rockfall events. © 2020 John Wiley & Sons, Ltd. 相似文献
7.
Extensional deformation of post ultrahigh-pressure metamorphism and exhumation process of ultrahigh-pressure metamorphic rocks in the Dabie massif, China 总被引:27,自引:0,他引:27
A detailed tectonic analysis demonstrates that the present observed regional tectonic configuration of the ultrahigh-pressure metamorphic terrane in the Dabie massif was mainly formed by the extension processes of the post-Indosinian continent-continent oblique collision between the Sino-Korean and Yangtze cratons and ultrahigh-pressure metamorphism (UHPM). The configuration is characterized by a regional tectonic pattern similar to metamorphic core complexes and by the development of multi-layered detachment zones. On the basis of the identification of compressional and extensional fabrics, it is indicated that the exhumation and uplift of ultrahigh-pressure (UHP) metamorphic rocks from the mantle depth to the surface can be divided into at least three different decompression retrogressive metamorphism and tectonic deformation stages, in which the subhorizontal crustal-scale extensional flow in the middle-lower crust under amphibolite facies conditions is an important geodynamic process in the exhumation of UHP metamorphic rocks. Moreover, the extensional flow is probably driven by delamination and magmatic underplating of thickened lithospheric mantle following the continental oblique collision. 相似文献
8.
9.
Mechanically, many volcanoes may be regarded as elastic inclusions, either softer (with a lower Young's modulus) or stiffer (with a higher Young's modulus) than the host-rock matrix. For example, many central volcanoes (stratovolcanoes, composite volcanoes) are composed of rocks that are softer than the crustal segments that host them. This is particularly clear in Iceland where central volcanoes are mostly made of soft rocks such as rhyolite, pyroclastics, hyaloclastites, and sediments whereas the host rock is primarily stiff basaltic lava flows. Most active central volcanoes also contain fluid magma chambers, and many have collapse calderas. Fluid magma chambers are best modelled as cavities (in three dimensions) or holes (in two dimensions), entire calderas as holes, and the ring faults themselves, which commonly include soft materials such as breccias, as soft inclusions. Many hyaloclastite (basaltic breccias) mountains partly buried in the basaltic lava pile also function as soft inclusions. Modelling volcanoes as soft inclusions or holes, we present three main numerical results. The first, using the hole model, shows the mechanical interaction between all the active central volcanoes in Iceland and, in particular, those forming the two main clusters at the north and south end of the East Volcanic Zone (EVZ). The strong indication of mechanical interaction through shared dykes and faults in the northern cluster of the EVZ is supported by observations. The second model, using a soft inclusion, shows that the Torfajökull central volcano, which contains the largest active caldera in Iceland, suppresses the spreading-generated tensile stress in its surroundings. We propose that this partly explains why the proper rift zone northeast of Torfajökull has not managed to propagate through the volcano. Apparently, Torfajökull tends to slow down the rate of southwest propagation of the rift-zone part of the EVZ. The third model, again using a soft inclusion, indicates how the lateral propagation of a segment of the 1783 Laki fissure became arrested in the slopes of the hyaloclastite mountain Laki. 相似文献
10.
nan Ulusoy Philippe Labazuy Erkan Aydar Orkun Ersoy Evren ubuku 《Journal of Volcanology and Geothermal Research》2008,174(4):269-283
Plio-Quaternary volcanism played an important role in the present physical state of Eastern Anatolia. Mount Nemrut, situated to the west of Lake Van is one of the main volcanic centers in the region, with a spectacular summit caldera 8.5 × 7 km in diameter. The most recent eruptions of the volcano were in 1441, 1597 and 1692. Nemrut Lake covers the western half of the caldera; it is a deep, half-bowl-shaped lake with a maximum depth of 176 m. Numerous eruption centers are exposed within the caldera as a consequence of magma–water interaction. Current activity of Nemrut caldera is revealed as hot springs, fumaroles and a small, hot lake.Self-potential and bathymetric surveys carried out in the caldera were used to characterize the structure of the caldera and the associated hydrothermal fluid circulation. In addition, analyses based on digital elevation models and satellite imagery were used to improve our knowledge about the structure of the caldera. According to SP results, the flanks of the volcano represent “the hydrogeologic zone”, whereas the intra-caldera region is an “active hydrothermal area” where the fluid circulation is controlled by structural discontinuities. There is also a northern fissure zone which exhibits hydrothermal signatures. Nemrut caldera collapsed piecemeal, with three main blocks. Stress controlling the collapse mechanism seems to be highly affected by the regional neotectonic regime. In addition to the historical activity, current hydrothermal and hydrogeologic conditions in the caldera, in which there is a large lake and shallow water table, increase the risk of the quiescent volcano. 相似文献
11.
The objective of the study was to determine which factors regulate zooplankton organisms along Lake Nasser. Temperature, pH, DO, conductivity, turbidity, nutrients, and zooplankton abundance were measured. Twenty-three species of zooplankton were recorded in Lake Nasser included in Copepoda, Cladocera and Rotifera. Copepoda represented the main bulk of the community. The lowest standing stock of zooplankton was noticed during spring due to the highest fish predation during this season associated with the lowest turbidity. Big difference in temperature in Lake Nasser along the year round is considered as a controlling factor related to range of tolerance of species. The oscillation of the lake water level and the different factors affect the standing stock of zooplankton in the lake. Thus, continuous monitoring of Lake Nasser biota should be undertaken to follow the changes in the ecosystem. 相似文献
12.
13.
Hideki Masago 《Island Arc》2000,9(3):358-378
Abstract In the Barchi–Kol area, located at the westernmost part of the Kokchetav ultrahigh pressure (UHP) to high-pressure (HP) massif, northern Kazakhstan, metabasites from the epidote amphibolite (EA) facies to the coesite eclogite (CEC) facies are exposed. Based on the equilibrium mineral assemblages, the Barchi–Kol area is divided into four zones: A, B, C and D. Zone A is characterized by the assemblage: epidote + hornblende + plagioclase + quartz, with minor garnet. Zone B is characterized by the assemblage: garnet + hornblende + plagioclase + quartz + zoisite. Zone C is defined by the appearance of sodic–augite, with typical assemblage: garnet + sodic–augite + tschermakite–pargasite + quartz ± plagioclase ± epidote/clinozoisite. Zone D is characterized by the typical eclogite assemblage: garnet + omphacite + quartz + rutile, with minor phengite and zoisite. Inclusions of quartz pseudomorph after coesite were identified in several samples of zone D. Chemical compositions of rock-forming minerals of each zone were analyzed and reactions between each zone were estimated. Metamorphic P-T conditions of each zone were estimated using several geothermobarometers as 8.6 ± 0.5 kbar, 500 ± 30 °C for zone A; 11.7 ± 0.5 kbar, 700 ± 30 °C for zone B; 12–14 kbar, 700–815 °C for zone C; and 27–40 kbar, 700–825 °C for zone D. 相似文献
14.
Granitoids in the Hida region of Japan encompass two main rock types: younger type‐1 granites and older type‐2 granites. Sensitive high mass‐resolution ion microprobe (SHRIMP) U–Pb zircon dating of older type‐2 granites collected from the Tateyama area show similar ages of 245 ± 2 Ma and 248 ± 5 Ma for two gneissose granites, while a significantly younger intrusion age of 197 ± 3 Ma was determined for the younger type‐1 granites collected from the Hayatsukigawa River which belongs to the Okumayama pluton. A felsic gneiss sample (07HI‐3) collected from the right bank of the Hayatsukigawa River yielded multiple complex ages at 330 ± 6 Ma, indicating the timing of the Hida regional tectono‐thermal events that formed the Hida gneisses; 243 ± 8 Ma, representing the timing of intrusion of the augen granite; and 220 Ma, indicating the timing of regional dextral ductile shearing that caused a repeated recrystallization of metamorphic rocks in the study area. Considering the geochronological data, the rock types and assemblages, basement, and Sr–Nd isotopic constraints, we propose that the Hida Belt separated from the Jiamushi massif, which is located in the eastern margin of the Central Asian Orogenic Belt. 相似文献
15.
An earthquake swarm struck the North Tanzania Divergence, East African Rift over a 2 month period between July and September 2007. It produced approximately 70 M > 4 earthquakes (peak magnitude Mw 5.9), and extensive surface deformation, concurrent with eruptions at the nearby Oldoinyo Lengai volcano. The spatial and temporal evolution of the entire deformation event was resolved by Interferometric Synthetic Aperture Radar (InSAR) observations, owing to a particularly favorable acquisition programming of the Envisat and ALOS satellites, and was verified by detailed ground observations. Elastic modeling based on the InSAR measurements clearly distinguishes between normal faulting, which dominated during the first week of the event, and intermittent episodes of dike propagation, oblique dike opening and dike-induced faulting during the following month. A gradual decline in the intensity of deformation occurred over the final weeks. Our observations and modeling suggest that the sequence of events was initiated by pressurization of a deep-seated magma chamber below Oldoinyo Lengai which opened the way to lateral dike injection, and dike-induced faulting and seismicity. As dike intrusion terminated, silicate magma ascended the volcano conduit, reacted with the carbonatitic magma, and set off a major episode of explosive ash eruptions producing mixed silicate-carbonatitic ejecta. The rise of the silicate magma within the volcano conduit is attributed to bubble growth and buoyancy increase in the magma chamber either due to a temporary pressure drop after the termination of the diking event, or due to the dynamic effects of seismic wave passage from the earthquake swarm. Similar temporal associations between earthquake swarms and major explosive ash eruptions were observed at Oldoinyo Lengai over the past half century. 相似文献
16.
Monsoon and arid regions in the Asia-Africa-Australia(A-A-A) realm occupy more than 60% of the total area of these continents. Geological evidence showed that significant changes occurred to the A-A-A environments of the monsoon and arid regions, the land-ocean configuration in the Eastern Hemisphere, and the topography of the Tibetan Plateau(TP) in the Cenozoic. Motivated by this background, numerical experiments for 5 typical geological periods during the Cenozoic were conducted using a coupled ocean-atmosphere general circulation model to systemically explore the formations and evolutionary histories of the Cenozoic A-A-A monsoon and arid regions under the influences of continental drift and plateau uplift. Results of the numerical experiments indicate that the timings and causes of the formations of monsoon and arid regions in the A-A-A realm were very different. The northern and southern African monsoons existed during the mid-Paleocene, while the South Asian monsoon appeared in the Eocene after the Indian Subcontinent moved into the tropical Northern Hemisphere. In contrast, the East Asian monsoon and northern Australian monsoon were established much later in the Miocene. The establishment of the tropical monsoons in northern and southern Africa, South Asia, and Australia were determined by both the continental drift and seasonal migration of the Inter-Tropical Convergence Zone(ITCZ), while the position and height of the TP were the key factor for the establishment of the East Asian monsoon. The presence of the subtropical arid regions in northern and southern Africa,Asia, and Australia depended on the positions of the continents and the control of the planetary scale subtropical high pressure zones, while the arid regions in the Arabian Peninsula and West Asia were closely related to the retreat of the Paratethys Sea. The formation of the mid-latitude arid region in the Asian interior, on the other hand, was the consequence of the uplift of the TP.These results from this study provide insight to the important roles played by the earth's tectonic boundary conditions in the formations and evolutions of regional climates during geological times. 相似文献
17.
18.
The Betic Cordillera and the Moroccan Rif together form one of the smallest and tightest orogenic arcs on Earth and almost completely close the Mediterranean to the west. For the explanation of the geodynamic evolution of the mountain belt, palaeomagnetic data that generally found clockwise block rotations in the Iberian and anticlockwise rotations in the Moroccan part of the mountain belt, have played a key role in recent works. This palaeomagnetic study has found new constraints on the rotations and timing of the peridotitic bodies outcropping in the key position at the westernmost margin of the mountain belt, in Ceuta and Beni Bousera (Rif, northern Africa).Detailed thermal demagnetization of 115 individually oriented samples from 14 sites was combined with rock magnetic and scanning electron microscopic experiments to analyze the magnetic mineralogy responsible for the remanences and the mechanisms and relative times of their acquisition. In Ceuta, up to three magnetic components, and in Beni Bousera, up to two magnetic components have been found, that are all to be interpreted as chemical remanent magnetizations (CRM). The data suggests the following succession of geodynamic events affecting the peridotites until recent times: (1) after their exhumation and subsequent cooling about 20 Ma ago, they recorded a characteristic remanent magnetization of both normal and reversed polarities, carried by (pseudo-)single-domain magnetite grains; (2) after their dismembering, the Ceuta peridotites were tilted southward by 22–34° about a horizontal or tilted axis (up to plunge 50°) with an azimuth of 72–145° and the Beni Bousera peridotites were rotated anticlockwise by 72.3 ± 12.1° about a vertical axis and (3) both recorded another magnetic signal of normal polarity only, carried by multi-domain magnetite grains; and finally (4) the Ceuta peridotites rotated anticlockwise by 19.7 ± 5.9° about a vertical axis.This study provides the first palaeomagnetic data for the Ceuta peridotites that, with their tilt and recent small net rotation, had a distinct geodynamic evolution from the large net rotations about vertical axes in Beni Bousera and Ronda (Betic Cordillera). Moreover, earlier palaemagnetic data for Beni Bousera is improved, as mixed polarities have been found in the older of the remanences for the first time, and its interpretation as a CRM changes the rotation timing that was proposed previously. The sequence of events exposed in this work are important constraints that need to be incorporated in any geodynamic model of the evolution of the Betic–Rifean mountain belt. 相似文献
19.
20.
Exploiting Maximum Entropy method and ASTER data for assessing debris flow and debris slide susceptibility for the Giampilieri catchment (north‐eastern Sicily,Italy) 下载免费PDF全文
Luigi Lombardo Felix Bachofer Mariaelena Cama Michael Märker Edoardo Rotigliano 《地球表面变化过程与地形》2016,41(12):1776-1789
This study aims at evaluating the performance of the Maximum Entropy method in assessing landslide susceptibility, exploiting topographic and multispectral remote sensing predictors. We selected the catchment of the Giampilieri stream, which is located in the north‐eastern sector of Sicily (southern Italy), as test site. On 1 October 2009, a storm rainfall triggered in this area hundreds of debris flow/avalanche phenomena causing extensive economical damage and loss of life. Within this area a presence‐only‐based statistical method was applied to obtain susceptibility models capable of distinguishing future activation sites of debris flow and debris slide, which where the main source of failure mechanisms for flow or avalanche type propagation. The set of predictors used in this experiment comprised primary and secondary topographic attributes, derived by processing a high resolution digital elevation model, CORINE land cover data and a set of vegetation and mineral indices obtained by processing multispectral ASTER images. All the selected data sources are dated before the disaster. A spatially random partition technique was adopted for validation, generating 50 replicates for each of the two considered movement typologies in order to assess accuracy, precision and reliability of the models. The debris slide and debris flow susceptibility models produced high performances with the first type being the best fit. The evaluation of the probability estimates around the mean value for each mapped pixel shows an inverted relation, with the most robust models corresponding to the debris flows. With respect to the role of each predictor within the modelling phase, debris flows appeared to be primarily controlled by topographic attributes whilst the debris slides were better explained by remotely sensed derived indices, particularly by the occurrence of previous wildfires across the slope. The overall excellent performances of the two models suggest promising perspectives for the application of presence‐only methods and remote sensing derived predictors. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献