首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Celestial Mechanics and Dynamical Astronomy - Orbit elements for the two Martian satellites Phobos and Deimos have been determined from 80 television photographs of the satellites taken by the...  相似文献   

2.
Ralph J. Turner 《Icarus》1978,33(1):116-140
A model of the Martian satellite Phobos was constructed at a scale of 1:60 000 using 25 Mariner 9 photorecords and a solar-simulation technique. Measurements of the crater diameters D, depths d, ratios dD, longitude and latitude locations of the centers, IAU designations, crater shapes, and rim class are given in a catalog of 260 depressions. An open-ended indexing of the craters is based on their locations by octant and diameter magnitude. Six craters were found with sharply defined rims. At least 28 craters have raised rims. The range of the dD ratios is from 0.002 to 0.26, with a mean dD of 0.10. The mean diameter of Stickney is interpreted to be 11.1 km, its minimum 9.6 km, and the diameter of Hall 5.9 km. A 100-m contour-interval topographic map has been drawn from measurements of the model. This is rendered on an elliptical form of a Lambert equal-area polar projection. The topographic map made it possible to estimate vector lengths from the center of Phobos to vertices on a 6-frequency octahedron that fits the sattelite. A mean radius of 11.0 km results from averaging the vector lengths to the 146 well-distributed vertices of the polyhedron. A volume of 5620 km3 is deduced.  相似文献   

3.
HiRISE has been producing a large number of scientifically useful color products of Mars and other planetary objects. The three broad spectral bands, coupled with the highly sensitive 14 bit detectors and time delay integration, enable detection of subtle color differences. The very high spatial resolution of HiRISE can augment the mineralogic interpretations based on multispectral (THEMIS) and hyperspectral datasets (TES, OMEGA and CRISM) and thereby enable detailed geologic and stratigraphic interpretations at meter scales. In addition to providing some examples of color images and their interpretation, we describe the processing techniques used to produce them and note some of the minor artifacts in the output. We also provide an example of how HiRISE color products can be effectively used to expand mineral and lithologic mapping provided by CRISM data products that are backed by other spectral datasets. The utility of high quality color data for understanding geologic processes on Mars has been one of the major successes of HiRISE.  相似文献   

4.
M. Noland  J. Veverka 《Icarus》1977,30(1):212-223
At least three large areas on the surface of Phobos are covered by a dark material of complex texture which scatters light according to the Hapke-Irvine Law. The average 20° to 80° intrinsic and disc-integrated phase coefficients of this material are βi = 0.020 ± 0.001 mag/deg and β = 0.033 mag/deg, respectively. These values are slightly greater than the values found for Deimos in Paper II (preceding article). On the largest scale the surface of Phobos is rougher than the surface of Deimos, perhaps accounting for the slightly greater phase coefficients. Contrary to the situation on Deimos, no definite regions of intrinsically brighter material are apparent on Phobos. This difference could account for the slightly lower average reflectance of Phobos relative to Deimos. No evidence for large exposures of solid rock has been found in the three areas studied.  相似文献   

5.
Peter Thomas 《Icarus》1979,40(2):223-243
Viking Orbiter images have provided nearly complete coverage of the two satellites of Mars and have been used to construct maps of the surface features of Phobos and Deimos. The satellites have radically different appearances although nearly all features on both objects were formed directly or indirectly by impact cratering. Phobos has an extensive network of linear depressions (grooves) that probably were formed indirectly by the largest impact recorded on Phobos. Deimos lacks grooves as well as the large number of ridges that occur on Phobos. Craters on Deimos have substantial sediment fill; those on Phobos have none. Evidence of downslope movement of debris is prominent on Deimos but is rare on Phobos. Many of the differences between Phobos and Deimos may be caused by modest differences in mechanical properties. However, the lack of a very large crater on Deimos may be responsible for its lack of grooves.  相似文献   

6.
This article provides the main scientific objectives and characteristics of the Phobos-Soil project, intended to fly to the Martian satellite Phobos, deliver its soil samples to the Earth, as well as explore Phobos, Mars, and the Martian environment with onboard scientific instruments. We give the basic parameters of the ballistic scenario of the mission, spacecraft, and some scientific problems to be solved with the help of the scientific instruments installed on the spacecraft.  相似文献   

7.
We have observed the leading and trailing hemispheres of Phobos from 1.65 to 3.5 μm and Deimos from 1.65 to 3.12 μm near opposition. We find the trailing hemisphere of Phobos to be brighter than its leading hemisphere by 0.24±0.06 magnitude at 1.65 μm and brighter than Deimos by 0.98±0.07 magnitude at 1.65 μm. We see no difference larger than observational uncertainties in spectral slope between the leading and trailing hemispheres when the spectra are normalized to 1.65 μm. We find no 3-μm absorption feature due to hydrated minerals on either hemisphere to a level of ∼5-10% on Phobos and ∼20% on Deimos. When the infrared data are joined to visible and near-IR data obtained by previous workers, our data suggest the leading (Stickney-dominated) side of Phobos is best matched by T-class asteroids. The spectral slope of the trailing side of Phobos and leading side of Deimos are bracketed by the D-class asteroids. The best laboratory spectral matches to these parts of Phobos are mature lunar soils and heated carbonaceous chondrites. The lack of 3-μm absorption features on either side of Phobos argues against the presence of a large interior reservoir of water ice according to current models of Phobos' interior (F. P. Fanale and J. R. Salvail 1989, Geophys. Res. Lett.16, 287-290; Icarus88, 380-395).  相似文献   

8.
M. Noland  J. Veverka 《Icarus》1976,28(3):401-403
Using Mariner 9 results on the shapes, rotation periods and photometric functions of Phobos and Deimos we calculate approximate orbital lightcurves for the two Martian satellites. The prediction is that both Phobos and Deimos should show orbital brightness fluctuations detectable from Earth. For Phobos the detectable amplitude is predicted to be about 0.1 mag; for Deimos, 0.2 mag.  相似文献   

9.
This paper considers morphologic signatures of mass-wasting processes on the surface of Phobos. Two types of downslope movement of material are distinguished: (i) intracrater volume landslides inside impact craters and (ii) downslope near-surface movement of material. Crater statistics for the Stickney area (based on new images of Phobos) showed that the landslide in the crater Stickney could have been formed after resurfacing of the outer rim of the crater in the process of meteorite bombardment. An estimate of the volume of the landslide in Stickney (1–2 km3) and simulation of its movement allowed us to classify the landslide as a long-runout one. The possibility of forming a hummocky topographic relief to the east of Stickney due to the crater ejecta and the emplacement of the frontal part of the long-runout landslide is discussed.  相似文献   

10.
P. Thomas  J. Veverka 《Icarus》1977,30(3):595-597
The preliminary conclusion of the Mariner 9 Television Team that the surfaces of Phobos and Deimos are saturated with craters larger than 0.2 km in diameter is reconsidered on the basis of more extensive and uniform crater counts. For Phobos, it is verified that the surface appears saturated with craters larger than 1 km in diameter. For craters smaller than 1 km, the data points fall below the saturation curve, and it is not clear that all the departure can be explained in terms of loss of resolution. For Deimos, because of the paucity of craters visible in the Mariner 9 images, a statistically meaningful crater density curve cannot be constructed. Definitive crater density curves for subkilometer craters can only be established once additional imagery at a resolution of better than 100 m is obtained. Such imagery will be provided by the 1976 Viking Orbiters.  相似文献   

11.
M. Noland  J. Veverka  J.B. Pollack 《Icarus》1973,20(4):490-502
We have used the Mariner 9 A-camera system to measure the polarization (P) of Phobos and Deimos at large phase angles (α). For Deimos, P = +22 ± 4% at α = 74°; for Phobos P = +20.5 ± 4% at α = 77°, and P = +24.5 ± 4% at α = 81°. These measurements refer to orange light at about 0.57 μm. A comparison with laboratory measurements of powdered rock samples indicates that the observations are consistent with the presence of regoliths on the satellites.  相似文献   

12.
It has been suggested that slope fluctuations on the scale of pixel dimensions could be determined by statistical photoclinometry. A closer study of the surface of Phobos reveals variations in the scattering properties of single particles and micro-structures formed by the particles. In the present context, the photoclinometric method of brightness moments is extended to account for these variations by allowing statistical fluctuations in the phase function of the assumed Lommel-Seeliger scattering law. The mean slope on the investigated regions of Phobos has been found to vary from approximately 12 degrees on a 61m scale to approximately 7 degrees on a 216-272m scale. On the same scales, a value of the order of 2% has been obtained for the standard deviation of the scattering phase function. Hints of a fractal-like scale-invariance have been noticed in the covariance function of brightness.  相似文献   

13.
In November 2005, we observed the moons of Mars using the Arecibo 2380-MHz (13-cm) radar, obtaining a result for the OC radar albedo of Phobos (0.056±0.014) consistent with its previously reported radar albedo and implying an upper bound on its near-surface bulk density of . We detected Deimos by radar for the first time, finding its OC radar albedo to be 0.021±0.006, implying an upper bound on its near-surface density of , consistent with a high-porosity regolith. We briefly discuss reasons for these low radar albedos, Deimos' being possibly the lowest of any Solar System body yet observed by radar.  相似文献   

14.
Analysis of disk resolved images of Phobos obtained by the Phobos 2 spacecraft allows us to study the surface scattering law and albedo variations. From low phase angle images we find variations in local geometric albedo approximately 10%, with a correlation length approximately 1km. The scattering law is reasonably well matched by the recent proposed LPI (Lumme et al. 1990a) model, which allows us to deduce a small scale (approximately 1 mm) surface roughness (approximately 0.5), defined here as the rms. tangent of the local surface normal relative to the mean surface normal in the Duxbury (1991) model of Phobos. This value is very close to what has been found for Mercury and the Moon.  相似文献   

15.
Donald M. Hunten 《Icarus》1979,37(1):113-123
It is suggested that Phobos and Deimos are carbonaceous asteroids captured by drag in an extended protoatmosphere of solar composition. The time scales for regularization of the orbital parameters are estimated, and found to be of the order of a few years. The atmosphere is modeled as a slowly-rotating condensation in the solar nebula; the surface pressure should be a few tenths of a bar. Capture and evolution by such an atmosphere are found to be improbable. The odds are greatly improved if the atmosphere is rapidly rotating or if the pressure is 1 to 2 orders of magnitude greater. Escape of the atmosphere, after removal of the nebular pressure, takes a few years, depending on the solar heat input. But it relaxes much more quickly to a state with negligible density at satellite altitudes. This relaxation is taken as the event that leaves the satellites in stable orbits. Previous candidates presumably were added to the solid body of Mars, and later ones were not captured.  相似文献   

16.
The nonintuitive dynamical environment of Phobos and Deimos is explored using a three-dimensional numerical model. Surface gravity, escape speeds, and ejecta impact contours are calculated, both for the satellites at their present orbit distances and for orbit distances they may have had in the past. Impact loci for Stickney ejecta are computed and compared with the observed groove locations in order to evaluate a possible secondary impact origin for the grooves on Phobos. Possible effects of the dynamical environment on shaping the satellites' surfaces are discussed.  相似文献   

17.
Several of the most fundamental and feasible geophysical problems partially related to the Phobos-Grunt mission have been analyzed based on the available works. The assumed results will form the informational basis for the development of the cosmogony of planets’ small satellites and asteroids. Correspondingly, the aims of the experiment are to study the internal structure and energy state of Phobos; to analyze the manifestation of pulsed effects and fields, including the registration of seismic signals and wave fields of Phobos; and to measure the long-period oscillations on the surface of Phobos in the range of 10−5–10 Hz. Studying Phobos gives an example of specific problems peculiar to small bodies of the Solar System: specific features of cratering, grooves, and morphological structures. The registration of gas-dust streams extends the knowledge of the space-time structure of the Solar System and its objects and processes and will confirm that stellar systems can constantly interact. The physical principles of the registration of seismic fields and signals are briefly described, and the instrumental basis for cosmogonic seismology is comparatively presented. It has been indicated that the piezoelectric and electrodynamic systems of the desired signal registration complete each other, and it is desirable to use both systems if 2- and 3-D registration systems are applied. The seismometric instrumentation of the Phobos spacecraft has been considered. The device’s physical characteristics, block diagrams, energy consumption, and information content are presented. The seismoacoustic (HF) device unit and its advantages during the registration of very weak signals owing to the use of the mechanical transformer effect are described in more detail. The seismic system created can ensure the solution of the scientific problems of the mission to Phobos, including the study of the internal structure, origin, depth structures, and external impacts of the field, corpuscular, and micrometeorite types.  相似文献   

18.
Phobos' proximity to the Roche limit, and some of its consequences deserving attention by the Phobos' mission, are the subject of this note.  相似文献   

19.
The Auguste experiment onboard the Phobos spacecraft was devoted to solar occultation spectroscopy of the Martian atmosphere in the ultraviolet through infrared wavelength region. Despite the short duration of the space mission and problems associated largely with a fault in the solar pointing system, data have been obtained on the chemical composition and aerosol content in the atmosphere of Mars at sunset early in the summer at equatorial latitudes (in the northern hemisphere). This paper presents a somewhat detailed review of the experiment performed, the data obtained, and their interpretation, and compares these data with new results. Ozone traces were detected at altitudes of 40–60 km, and, in one case, an ozone profile was obtained. Nine profiles of water vapor content at altitudes between 12 and 50 km were obtained from absorption data in the 1.87-m band. At altitudes of 23–25 km, the mean H2O concentration profile falls steeply to the value of 3 ppm, but at lower altitudes the relative H2O content is approximately constant (130 ppm). The overall content of water vapor is estimated as 8.3+2.5 -1.5 m of settled water. The temperature profile for the saturated atmosphere yields a cooling rate of 2 ± 1 K/km at altitudes from 25 to 35 km. The atmospheric extinction profiles were measured at altitudes from 10 to 50 km at the wavelengths 1.9 and 3.7 m. The atmosphere is transparent up to 25–33 km; below this level radiation is attenuated by dust; it is also possible that a layer of water ice clouds is present at altitudes of 20–25 km. High-altitude transparent ( 0.03) clouds consisting supposedly of water ice were observed in 5 of 38 cases at altitudes z 50 km. The optical depth 0 of the atmosphere was estimated to be 0.2 ± 0.1, and constraints on the form of the size distribution of dust particles were established. Spectral features in the 3.7 m range have been previously attributed to formaldehyde; its content is substantially higher than the limits deduced from new ground-based observations. The spectrum in the 3.7 m range is discussed and other unsettled problems are pointed out.  相似文献   

20.
Due to the tides, the orbits of Phobos and Triton are contracting. While their semi major axes are decreasing, several possibilities of secular resonances involving node, argument of the pericenter and mean motion of the Sun will take place. In the case of Mars, if the obliquity (ε), during the passage through some resonances, is not so small, very significant variations of the inclination will appear. In one case, capture is almost certain provided that ε?20°. For Triton there are also similar situations, but capture seems to be not possible, mainly because in S1 state, Triton's orbit is sufficiently inclined (far) with respect to the Neptune's equator. Following Chyba et al. (Astron. Astrophys. 219 (1989) 123), a simplified equation that gives the evolution of the inclination versus the semi major axis, is derived. The time needed for Triton crash onto Neptune is longer than that one obtained by these authors, but the main difference is due to the new data used here. In general, even in the case of non-capture passages, some significant jumps in inclination and in eccentricities are possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号