首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
秦岭三叠系为东—西向带状展布,与南、北两侧的前三叠系以区域性断裂为界。西宽东窄楔形向东尖灭,向西与巴颜喀喇特提斯复理石建造相连,建造类型独特,以深水相重力流、崩塌堆积、滑混堆积、浊流沉积为主,厚度巨大。塑性流变、纵弯褶皱普遍发育,形变程度显著高于与其比邻的前三叠系,具有裂陷槽沉积和演化特征。裂陷槽裂"开"于中三叠世,"合"于中三叠世晚期—晚三叠世早期。秦岭三叠系特提斯型建造显著有别于中国扬子型台地相三叠系建造,记录了一个环境相对独立、应变域特殊、"开-合"演化旋回完整的构造事件。  相似文献   

2.
此项目是地矿部“七五”期间重点攻关项目“秦巴地区重大基础地质问题和主要矿产成矿规律”中的三级课题“秦巴地区三叠纪地层古生物群的研究Ⅲ”.由中国地质大学(武汉)地质系古生物教研室承担,自1985年至1988年历时四年,全面完成了任务.同时,对晚海西一印支期构造发展史也进行了深入研究.三叠纪是秦岭地质发展史中的一个关键时期,形成大型裂陷槽,发育了巨厚的地槽沉积,在秦岭中东部有大片印支期岩浆岩.西部有发育的印支期火山岩,南秦岭主体属印支褶皱带,北秦岭亦有印支运动,三叠系中还有重要的矿产.因此,对秦岭及邻区三叠系的研究既有理论意义,也有实际价值.  相似文献   

3.
西藏晚三叠世北羌塘前陆盆地构造层序及充填样式   总被引:16,自引:2,他引:16  
晚三叠世北羌塘前陆盆地为处于金沙江缝合带南缘的周缘前陆盆地,其中充填了厚度大于2 500 m的晚三叠世肖茶卡群,自南向北可分出4个沉积相带,显示为北厚南薄的楔形沉积体,具双物源、双古流向以及沉降中心和沉积中心不一致性等特点,以不整合面为界可将其分为2个构造层序,下部构造层序以诺利期复理石建造为特征,上部构造层序以瑞替期磨拉石建造为特征.  相似文献   

4.
松潘甘孜地块与秦岭褶皱带、扬子地台的关系及其发展史   总被引:30,自引:9,他引:30  
松潘甘孜地块存在与否是个有争议的问题。本文论证了地块的古老基底为前震旦纪花岗质岩系。地块与南秦岭褶皱带可能都是古扬子地台的一部分。由于早古生代末的加里东运动造成的裂陷,使地块从扬子地台的西北部解体出来,但这次解体并不彻底,裂陷槽后来逐渐被弥合填平。茅口期开始的峨眉地裂运动使地块再次从扬子地台解体出来,裂陷线大致沿木里、平武一线。这次裂陷是扬子地台周缘及内部同期张裂的一部分,反映扬子地台迅速北移造成的后缘、侧缘及内部的拉张作用,使地块连同南秦岭地区一起与邻区割裂开来。拉丁期时,松潘甘孜地块与南秦岭区整体强烈下陷,直至晚三叠世末晚印支运动将其海槽关闭,全部褶皱隆起成山。  相似文献   

5.
三叠纪充填的一套碳酸盐岩—碎屑岩地层,被划分为两个超层序和5个层序单元。超层序Ⅰ以复理石建造为特征,是金沙江缝合带初始碰撞作用的产物,是唐古拉山地区三叠纪前陆盆地早期挠曲沉降构造活动的沉积响应,标志着晚三叠世诺利期前陆盆地业已形成;超层序Ⅱ以磨拉石与酸性火山岩建造为特征,是前陆盆地晚期冲断抬升构造演化的沉积响应,表明晚三叠世瑞替期来自造山带的沉积物开始越过前陆隆起向隆后盆地迁移。  相似文献   

6.
西秦岭三叠纪沉积盆地演化   总被引:6,自引:3,他引:6       下载免费PDF全文
笔者在概要介绍了西秦岭三叠系的分布与建造特征、沉积环境、生物区系特征,三叠系的构造形变特征以及与相邻地质体的形变差异性的基础上,论述了该区在中三叠世短暂的地质发展演化过程中,由扬子型稳定浅海碳酸盐岩沉积快速演变为特提斯型深海巨厚复理石沉积的演化历史,讨论了特提斯型裂陷槽由裂开接受沉积—关闭结束沉积。快速关闭并褶皱形变这一完整演化过程中的构造特征,总结了三叠系的盆地演化规律。  相似文献   

7.
右江盆地晚古生代-三叠纪盆地转换及其构造意义   总被引:11,自引:0,他引:11  
右江盆地是在南华加里东造山带夷平的基础上经再次裂陷形成的,它的形成与金沙江—红河—马江洋盆关系密切,是该洋盆与扬子板块之间的大陆边缘盆地。早泥盆世晚期—石炭纪随着金沙江—红河—马江洋盆的形成,扬子板块南部边缘开始裂陷,形成特殊的台地与台间海槽相间的大陆边缘裂谷盆地。二叠纪—早三叠世初期随着该洋盆的俯冲消减,形成越北岛弧,右江盆地进入弧后(裂陷)盆地阶段。早三叠世晚期以后,随着该洋盆的闭合和碰撞造山,在红河—马江造山带与扬子板块之间形成以复理石为特征的弧后前陆盆地。因此右江盆地经历了大陆边缘裂谷盆地(早泥盆世晚期—石炭纪)、弧后盆地(二叠纪—早三叠世早期)、弧后前陆盆地(早三叠世晚期—中三叠世)的构造演化阶段。  相似文献   

8.
根据康马地区三叠系吕村组和涅如组新发现的化石及区域地质背景 ,把该区的地层时代分别厘定为中三叠世中晚期至晚三叠世早期和晚三叠世中晚期 ,并认为缺失早三叠世至中三叠世早期的沉积。研究表明康马地区三叠系与二叠系之间为微角度不整合接触 ,是“藏南运动”和“印支伸展运动”共同影响形成的。晚二叠世末至中三叠世早期 ,康马地区露出海面 ,接受剥蚀并形成喀斯特化风化壳。中三叠世末至晚三叠世 ,这一地区发生强烈伸展—裂陷 ,地壳迅速沉降 ,形成被动大陆边缘裂谷盆地 ,发育巨厚的半深海—深海复理石沉积 ,并伴随大量基性岩浆贯入。涅如组下部有两期基性岩侵入 ,早期基性岩床形成于印支晚期 ,晚期穿层侵入形成于燕山早期。  相似文献   

9.
秦岭造山带作为中国中央造山带的重要组成部分,还原其复杂、漫长的演化历史始终是地质科学的研究焦点,也是亟待解决的关键科学问题。前人从构造地质学、变质岩石学等方面展开了丰富的讨论,但始终缺乏造山带内同沉积记录的精细研究。南召盆地作为北秦岭造山带唯一保存的三叠纪的地层,为研究秦岭造山带印支期的构造环境提供了最直接可靠的证据。因此本文基于精细的地质图分析,野外地质观察,利用盆地构造沉降和构造年代格架的分析方法,系统研究三叠纪南召盆地的沉积充填和沉降特征,总结出南召盆地的伸展裂陷沉积序列:底部砾岩向上迅速水体加深,形成以灰黑色页岩为主的深湖相,随后向上变为以黄褐色砂岩夹灰黑色泥岩为特征的湖泊三角洲—辫状河相;明确了快速—缓慢沉降的伸展型盆地沉降特征;厘定了南召地区的8个主要不整合面,其中,中-上三叠统太山庙组的底部为一个763~121.9 Ma的穿时不整合面;确定了南召盆地4期主要演化阶段。研究表明:南召盆地是一个伸展裂陷盆地,形成于加里东运动、印支运动共同作用产生的造山带复合基底之上,发育于印支期北秦岭造山带两次重要隆升事件之间,代表晚三叠世卡尼阶的北秦岭造山带构造活动的暂停。  相似文献   

10.
秦岭三叠纪是该区海相沉积的最后阶段,正确认识其沉积发展史对了解秦岭地区的构造历史有着十分重要的作用。但其研究程度很低。由于缺乏确凿的古生物证据,许多地区(图幅)的三叠系仅分到群或岩组,有的群(如官亭群)的时代、归属不明,在地质图上仅标以临时性代号,图幅之间不能对接。过去由于缺乏完整的地层层序,对该区三叠纪沉积学尤其是岩相古地理学的研究存在着极大困难。李继亮等(1978)、姜春发等(1979)对东秦岭陕西凤县留凤关群作了详细研究后,认为留凤关群为早三叠世复理石(浊积岩)沉积,给人们留下“秦岭三叠系是一套活动类型的复理石沉积”的印象,然事实上不尽然。  相似文献   

11.
The East Qinling and adjacent cratonic regions belong to two geotectonicunits,the Sinokorean Subdomain including the Sinokorean Platform and itssouthern continental margin the North Qinling Belt,and the YangtzeanSubdomain comprising the Yangtze Platform and its northern continental mar-gin the South Qinling Belt.The Qinling region may thus be subdivided into twocontinental margin belts separated from each other by the Proterozoic Qinlingmarine realm,which did not disappear until Late Triassic.The convergentcrustal consumption zone,the megasuture between the two belts,lies betweenthe Fengxian-Shangnan line in the north and the Shanyang-Xijia line in thesouth and was much deformed and displaced through Mesozoic intracratoniccollision and compression.In the northern subdomain the Lower Proterozoic is representedby protoaulacogen volcano-sediments,the inner Tiedonggou Group and theouter marginal Qinling Group,which were folded and metamorphosed in theLuliangian orogeny,a general process of aggregation and s  相似文献   

12.
中国南大陆古地理与Pangea对比   总被引:4,自引:0,他引:4       下载免费PDF全文
中国南大陆为一构造古地理名称,在地理上包括昆仑、秦岭山脉以南的广大地区,泛称中国南方。这些地区在地质历史演化中分属于扬子陆块、华夏陆块、羌塘-昌都陆块、中咱微陆块,也包括由冈瓦纳陆块群裂解出来的拉萨陆块和印度陆块北缘的江孜地区。塔里木陆块和紫达木陆块在中国古大陆的聚合中裂解、漂称,在早古生代末脱离扬子陆块的群体,与华北陆块聚合,因此,中国南大陆古地理的重建,不仅涉及南方各块体的聚合,还涉及中国古大  相似文献   

13.
The Qinling Orogenic belt has been well documented that it was formed by multiple steps of convergence and subsequent collision between the North China and South China Blocks during Paleozoic and Late Triassic times. Following the collision in Late Triassic times, the whole range evolved into an intracontinental tectonic process. The geological, geophysical and geochronological data suggest that the intracontinental tectonic evolutionary history of the Qinling Orogenic Belt allow deduce three stages including strike-slip faulting during Early Jurrassic, N-S compressional deformation during Late Jurassic to Early Cretaceous and orogenic collapse during Late Cretaceous to Paleogene. The strike-slip faulting and the infills in Early Jurassic along some major boundary faults show flower structures and pull-apart basins, related to the continued compression after Late Triassic collision between the South Qinling Belt and the South China Block along the Mianlue suture. Late Jurassic to Early Cretaceous large scale of N-S compression and overthrusting progressed outwards from inner of Qinling Orogen to the North China Block and South China Block, due to the renewed southward intracontinental subduction of the North China Block beneath the Qinling Orogenic Belt and continuously northward subduction of the South China Block, respectively. After the Late Jurassic-Early Cretaceous compression and denudation, the Qinling Orogenic Belt evolved into Late Cretaceous to Paleogene orogen collapse and depression, and formed many large fault basins along the major faults.  相似文献   

14.
The Late Permian–early Middle Triassic strata of the northern West Qinling area, northeastern Tibetan Plateau, are composed of sediment gravity flow deposits. Detailed sedimentary facies analysis indicates these strata were deposited in three successive deep-marine environments. The Late Permian–early Early Triassic strata of the Maomaolong Formation and the lowest part of the Longwuhe Formation define a NW–SE trending proximal slope environment. Facies of the Early Triassic strata composing the middle and upper Longwuhe Formation are consistent with deposition in a base-of-slope apron environment, whereas facies of the Middle Triassic Anisian age Gulangdi Formation are more closely associated with a base-of-slope fan depositional environment. The lithofacies and the spatial–temporal changes in paleocurrent data from these strata suggest the opening of a continental margin back-arc basin system during Late Permian to early Middle Triassic time in the northern West Qinling. U–Pb zircon ages for geochemically varied igneous rocks with diabasic through granitic compositions intruded into these deep-marine strata range from 250 to 234 Ma. These observations are consistent with extensional back-arc basin development and rifting between the Permian–Triassic Eastern Kunlun arc and North China block during the continent–continent collision and underthrusting of the South China block northward beneath the Qinling terrane of the North China block. Deep-marine sedimentation ended in the northern West Qinling by the Middle Triassic Ladinian age, but started in the southern West Qinling and Songpan-Ganzi to the south. We attribute these observations to southward directed rollback of Paleo-Tethys oceanic lithosphere, continued attenuation of the West Qinling on the upper plate, local post-rift isostatic compensation in the northern West Qinling area, and continued opening of a back-arc basin in the southern West Qinling and Songpan-Ganzi. Rollback and back-arc basin development during Late Permian to early Middle Triassic time in the West Qinling area explains: the truncated map pattern of the Eastern Kunlun arc, the age difference of deep-marine sediment gravity flow deposits between the Late Permian–early Middle Triassic northern West Qinling and the late Middle Triassic–Late Triassic southern West Qinling and Songpan-Ganzi, and the discontinuous trace of ophiolitic rocks associated with the Anyemaqen-Kunlun suture.  相似文献   

15.
巴颜喀拉残留洋盆的沉积特征   总被引:6,自引:4,他引:6  
巴颜喀拉盆地垂向沉积序列表明:盆地于早古生代被动陆缘的浅海基础上裂陷、拉开,泥盆纪贯通,早石炭世洋盆扩展为成熟大洋,晚石炭世洋盆北部开始消减、南部继续扩张,晚二叠世-中三叠世进入残留洋阶段,晚三叠世转化为周缘前陆盆地.三叠纪末完全闭合,盆地自形成到消亡为一个连续的沉积和地质构造演化过程。其主体由早中三叠世深海沉积、典型浊积岩复理石和晚三叠世浅海复理石、风暴岩沉积、海相磨拉石构成,北部零星出露了中二叠世海山型沉积,昆南结合带以北有早中三叠世岛弧沉积。以盆地为中心具有向南北两侧陆块双向相背俯冲的极性特点,东西两端的碰撞造山不迟于晚二叠世。总体反映了古特提斯晚二叠世-中三叠世的残留洋盆性质和主洋域之所在。  相似文献   

16.
应用激光烧蚀多接收器电感耦合等离子体质谱仪(LA-ICP-MS)方法,对青藏高原北部卡巴纽尔多地区巴颜喀拉山群碎屑岩系中酸性火山岩夹层岩样进行了锆石U-Pb年龄测定。结果表明,安山质凝灰熔岩(样品B4989-6)年龄加权平均值为(208.1±0.8)Ma,英安岩(样品B4989-3、B4983-1)年龄加权平均值分别为(206.1±1.2)Ma、(208.2±1.3)Ma,石英粗安岩(样品B4978-1)年龄加权平均值为(207.5±1.1)Ma,流纹岩(样品B4965-1)年龄加权平均值为(203.8±1.9)Ma,英安岩(样品B4959-2)年龄加权平均值为(205.1±1.8)Ma,说明该地区巴颜喀拉山群形成于晚三叠世晚期(瑞替期),而非前人认为的早-中三叠世。该套火山(碎屑)岩的测年结果为巴颜喀拉山群三叠纪复理石岩石地层单元的划分和对比提供了新证据。  相似文献   

17.
秦岭-大别新元古代-中生代沉积盆地演化   总被引:1,自引:0,他引:1  
秦岭-大别造山带处于中央造山带的东部,经历了复杂的构造-沉积历史.在系统分析研究区4个二级和13个三级构造单元岩石地层、化石组合、同位素年代学及构造学等资料的基础上,划分出18个沉积盆地类型,并讨论新元古代-中生代构造-沉积演化:(1)新元古代-早古生代:商丹洋以北的北秦岭为岩浆弧和弧前盆地;南秦岭为陆内裂谷-台盆、台地-陆缘裂谷发育阶段;大别-苏鲁为陆内裂谷-台盆台地发育阶段;(2)晚古生代:北秦岭为海陆交互陆表海;勉略洋于泥盆纪开启;南秦岭为弧后陆棚与台盆台地并存发育阶段;(3)三叠纪:陆陆碰撞造山,全区进入前陆盆地发育阶段;(4)侏罗纪-白垩纪:断陷盆地和压陷盆地发育阶段.   相似文献   

18.
《Comptes Rendus Geoscience》2008,340(2-3):139-150
The Qinling–Dabie Belt represents the boundary between the North and South China blocks (NCB, SCB, respectively), where ultrahigh-pressure (UHP) rocks are widespread. A structural study in eastern Qinling and zircon LA ICPMS dating of the migmatites that form the core of the Central Qinling Unit allows us to argue that continental collision occurred in the Silurian, before 400 Ma. In the Late Palaeozoic, from the Devonian to the Permian, the northern margin of SCB experienced a continental rifting. From the Late Permian to Middle Triassic, northward continental subduction of SCB is responsible for the development of a high-pressure metamorphism. The age of the UHP metamorphism remains unsettled yet. A two-time genesis, Early Palaeozoic and Early Triassic, is often preferred, but a single Palaeozoic age followed by a Triassic resetting cannot be ruled out.  相似文献   

19.
三叠纪是秦岭造山带全面碰撞造山的关键时期,随着扬子、秦岭和华北板块分别沿勉略、商丹缝合带的汇聚拼合, 秦岭造山带逐渐形成并从板块构造体制向陆内造山体制转化,同时强烈的造山作用控制着周缘盆地的形成与演化。文章通 过研究区的碎屑岩元素地球化学分析,对河南南召盆地上三叠统的物源区及构造背景特征进行探讨。结果表明,上三叠统 源岩成分主要为上地壳长英质火山岩;源岩经历了中等的化学风化强度,校正后CIA值指示其形成于温暖潮湿的气候和相 对较强的构造活动环境;太山庙组源区构造背景主要为大陆岛弧与活动大陆边缘,太子山组源区构造背景主要为大陆岛弧 与被动大陆边缘。根据南召盆地近源沉积特征和秦岭造山带构造演化过程推断,秦岭造山带和华北南缘是南召盆地晚三叠 世的重要物源区,前期太山庙组物源主要由北秦岭隆升基底提供,后期太子山组物源可能来自南秦岭、北秦岭和华北南缘 沉积再循环。南召盆地上三叠统物源区的转变是晚三叠世秦岭造山带逆冲推覆作用逐渐增强的体现,对研究恢复秦岭构造 带造山隆升过程和周缘盆地盆山系统演化具有重要的意义。  相似文献   

20.
In the Central Orogenic Belt, China, two UHP metamorphic belts are discriminated mainly based on a detailed structural analysis of the Kanfenggou UHP metamorphic fragment exposed in the eastern Qinling orogen, and together with previous regional structural, petrological and geochronological data at the scale of the orogenic domain. The first one corresponds to the South Altun-North QaidamNorth Qinling UHP metarnorphic belt. The other is the Dabie-Sulu UHP and HP metamorphic belts. The two UHP metamorphic belts are separated by a series of tectonic slices composed by the Qiniing rock group, Danfeng rock group and Liuling or Foziling rock group etc. respectively, and are different in age of the peak UHP metamorphism and geodynamic implications for continental deep subduction and collision. Regional field and petrological relationships suggest that the Kanfenggou UHP metamorphic fragment that contains a large volume of the coesite- and microdiamond-bearing eclogite lenses is compatible with the structures recognized in the South Altun and North Qaidam UHP metamorphic fragments exposed in the western part of China, thereby forming a large UHP metamorphic belt up to 1000 km long along the orogen strike. This UHP metamorphic belt represents an intercontinental deep subduction and collision belt between the Yangtze and Sino-Korean cratons, occurred during the Paleozoic. On the other hand, the well-constrained Dabie-Sulu UHP and HP metamorphic belts occurred mainly during Triassic time (250-220 Ma), and were produced by the intracontinental deep subduction and collision within the Yangtze craton. The Kanfenggou UHP metamorphic fragment does not appear to link with the DabieSulu UHP and HP metamorphic belts along the orogen. There is no reason to assume the two UHP metamorphic belts as a single giant deep subduction and collision zone in the Central Orogenic Belt situated between the Yangtze and Sino-Korean cratons. Therefore, any dynamic model for the orogen must ac-count for the development of UHP metarnorphic rocks belonging to the separate two tectonic belts of different age and tectono-metamorphic history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号