首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fluid depletion within a compacting reservoir can lead to significant stress and strain changes and potentially severe geomechanical issues, both inside and outside the reservoir. We extend previous research of time‐lapse seismic interpretation by incorporating synthetic near‐offset and full‐offset common‐midpoint reflection data using anisotropic ray tracing to investigate uncertainties in time‐lapse seismic observations. The time‐lapse seismic simulations use dynamic elasticity models built from hydro‐geomechanical simulation output and a stress‐dependent rock physics model. The reservoir model is a conceptual two‐fault graben reservoir, where we allow the fault fluid‐flow transmissibility to vary from high to low to simulate non‐compartmentalized and compartmentalized reservoirs, respectively. The results indicate time‐lapse seismic amplitude changes and travel‐time shifts can be used to qualitatively identify reservoir compartmentalization. Due to the high repeatability and good quality of the time‐lapse synthetic dataset, the estimated travel‐time shifts and amplitude changes for near‐offset data match the true model subsurface changes with minimal errors. A 1D velocity–strain relation was used to estimate the vertical velocity change for the reservoir bottom interface by applying zero‐offset time shifts from both the near‐offset and full‐offset measurements. For near‐offset data, the estimated P‐wave velocity changes were within 10% of the true value. However, for full‐offset data, time‐lapse attributes are quantitatively reliable using standard time‐lapse seismic methods when an updated velocity model is used rather than the baseline model.  相似文献   

3.
Depletion or injection into a reservoir implies stress changes and strains in the reservoir and its surroundings. This may lead to measurable time-shifts for seismic waves propagating in the subsurface. To better understand the offset dependence of time-shifts in the overburden, we have systematically quantified the time-shifts of three different overburden shales in controlled laboratory tests. These experiments may be viewed as an analogue to the time-shifts recorded from seismic field surveys. For a range of different stress paths, defined as the ratio between the horizontal and the vertical stress changes, the changes of the P-wave velocities in different directions were measured such that the offset dependence of time-shifts for different stress paths could be studied. The time-shifts are stress path dependent, which is particularly pronounced at large offsets. For all stress paths, the time-shifts exhibit a linearly decreasing trend with increasing offset, that is, a negative offset gradient. At zero offset, for which the ray path is normal to the bedding, the time-shifts are similar for all investigated stress paths. The isotropic stress path is associated with the smallest offset gradient of the time-shifts. In contrast, the constant-mean-stress path shows the largest gradient with a flip in the polarity of the time-shifts for the largest offsets. The separate contributions from the strain and velocity changes to the time-shifts were also quantified. The time-shifts for the isotropic stress path are dominated by the contribution from velocity changes at all offsets. In contrast, the strain contributes significantly to the time-shifts at small offsets for the constant-mean-stress path. This shows that the offset dependence in pre-stack seismic data may be a key to understand the changes of subsurface stresses, pore pressure and strain upon depletion or injection. To utilize this knowledge from laboratory experiments, calibrated rock physics models and correlations are needed to constrain the seismic time-shifts and to obtain an adequately updated geological model reflecting the true anisotropic nature of the subsurface. This may have important implications for improved recovery and safety, particularly in mature fields.  相似文献   

4.
By applying seismic inversion, we can derive rock impedance from seismic data. Since it is an interval property, impedance is valuable for reservoir characterization. Furthermore, the decomposition of the impedance into two fundamental properties, i.e. velocity and density, provides a link to the currently available rock‐physics applications to derive quantitative reservoir properties. However, the decomposition is a challenging task due to the strong influence of noise, especially for seismic data with a maximum offset angle of less than 30°. We present a method of impedance decomposition using three elastic impedance data derived from the seismic inversion of angle stacks, where the far‐stack angle is 23.5°. We discuss the effect of noise on the analysis as being the most significant cause of making the decomposition difficult. As the result, the offset‐consistent component of noise mostly affects the determination of density but not the velocities (P‐ and S‐wave), whereas the effect of the random component of noise occurs equally in the determination of the velocities and density. The effect is controlled by the noise enhancement factor 1/A, which is determined by a combination of stack angles. Based on the results of the analysis, we show an innovative method of decomposition incorporating rock‐physics bounds as constraints for the analysis. The method is applied to an actual data set from an offshore oilfield; we demonstrate the result of analysis for sandbody detection.  相似文献   

5.
Fluid flow in many hydrocarbon reservoirs is controlled by aligned fractures which make the medium anisotropic on the scale of seismic wavelength. Applying the linear‐slip theory, we investigate seismic signatures of the effective medium produced by a single set of ‘general’ vertical fractures embedded in a purely isotropic host rock. The generality of our fracture model means the allowance for coupling between the normal (to the fracture plane) stress and the tangential jump in displacement (and vice versa). Despite its low (triclinic) symmetry, the medium is described by just nine independent effective parameters and possesses several distinct features which help to identify the physical model and estimate the fracture compliances and background velocities. For example, the polarization vector of the vertically propagating fast shear wave S1 and the semi‐major axis of the S1‐wave normal‐moveout (NMO) ellipse from a horizontal reflector always point in the direction of the fracture strike. Moreover, for the S1‐wave both the vertical velocity and the NMO velocity along the fractures are equal to the shear‐wave velocity in the host rock. Analysis of seismic signatures in the limit of small fracture weaknesses allows us to select the input data needed for unambiguous fracture characterization. The fracture and background parameters can be estimated using the NMO ellipses from horizontal reflectors and vertical velocities of P‐waves and two split S‐waves, combined with a portion of the P‐wave slowness surface reconstructed from multi‐azimuth walkaway vertical seismic profiling (VSP) data. The stability of the parameter‐estimation procedure is verified by performing non‐linear inversion based on the exact equations.  相似文献   

6.
A series of time‐lapse seismic cross‐well and single‐well experiments were conducted in a diatomite reservoir to monitor the injection of CO2 into a hydrofracture zone, based on P‐ and S‐wave data. A high‐frequency piezo‐electric P‐wave source and an orbital‐vibrator S‐wave source were used to generate waves that were recorded by hydrophones as well as 3‐component geophones. During the first phase the set of seismic experiments was conducted after the injection of water into the hydrofractured zone. The set of seismic experiments was repeated after a time period of seven months during which CO2 was injected into the hydrofractured zone. The questions to be answered ranged from the detectability of the geological structure in the diatomic reservoir to the detectability of CO2 within the hydrofracture. Furthermore, it was intended to determine which experiment (cross‐well or single‐well) is best suited to resolve these features. During the pre‐injection experiment, the P‐wave velocities exhibited relatively low values between 1700 and 1900 m/s, which decreased to 1600–1800 m/s during the post‐injection phase (?5%). The analysis of the pre‐injection S‐wave data revealed slow S‐wave velocities between 600 and 800 m/s, while the post‐injection data revealed velocities between 500 and 700 m/s (?6%). These velocity estimates produced high Poisson's ratios between 0.36 and 0.46 for this highly porous (~50%) material. Differencing post‐ and pre‐injection data revealed an increase in Poisson's ratio of up to 5%. Both velocity and Poisson's ratio estimates indicate the dissolution of CO2 in the liquid phase of the reservoir accompanied by an increase in pore pressure. The single‐well data supported the findings of the cross‐well experiments. P‐ and S‐wave velocities as well as Poisson's ratios were comparable to the estimates of the cross‐well data. The cross‐well experiment did not detect the presence of the hydrofracture but appeared to be sensitive to overall changes in the reservoir and possibly the presence of a fault. In contrast, the single‐well reflection data revealed an arrival that could indicate the presence of the hydrofracture between the source and receiver wells, while it did not detect the presence of the fault, possibly due to out‐of‐plane reflections.  相似文献   

7.
Filters for migrated offset substacks are designed by partial coherence analysis to predict ‘normal’ amplitude variation with offset (AVO) in an anomaly free area. The same prediction filters generate localized prediction errors when applied in an AVO‐anomalous interval. These prediction errors are quantitatively related to the AVO gradient anomalies in a background that is related to the minimum AVO anomaly detectable from the data. The prediction‐error section is thus used to define a reliability threshold for the identification of AVO anomalies. Coherence analysis also enables quality control of AVO analysis and inversion. For example, predictions that are non‐localized and/or do not show structural conformity may indicate spatial variations in amplitude–offset scaling, seismic wavelet or signal‐to‐noise (S/N) ratio content. Scaling and waveform variations can be identified from inspection of the prediction filters and their frequency responses. S/N ratios can be estimated via multiple coherence analysis. AVO inversion of seismic data is unstable if not constrained. However, the use of a constraint on the estimated parameters has the undesirable effect of introducing biases into the inverted results: an additional bias‐correction step is then needed to retrieve unbiased results. An alternative form of AVO inversion that avoids additional corrections is proposed. This inversion is also fast as it inverts only AVO anomalies. A spectral coherence matching technique is employed to transform a zero‐offset extrapolation or near‐offset substack into P‐wave impedance. The same technique is applied to the prediction‐error section obtained by means of partial coherence, in order to estimate S‐wave velocity to P‐wave velocity (VS/VP) ratios. Both techniques assume that accurate well ties, reliable density measurements and P‐wave and S‐wave velocity logs are available, and that impedance contrasts are not too strong. A full Zoeppritz inversion is required when impedance contrasts that are too high are encountered. An added assumption is made for the inversion to the VS/VP ratio, i.e. the Gassmann fluid‐substitution theory is valid within the reservoir area. One synthetic example and one real North Sea in‐line survey illustrate the application of the two coherence methods.  相似文献   

8.
The laboratory ultrasonic pulse‐echo method was used to collect accurate P‐ and S‐wave velocity (±0.3%) and attenuation (±10%) data at differential pressures of 5–50 MPa on water‐saturated core samples of sandstone, limestone and siltstone that were cut parallel and perpendicular to the vertical borehole axis. The results, when expressed in terms of the P‐ and S‐wave velocity and attenuation anisotropy parameters for weakly transversely isotropic media (ɛ, γ, ɛQ, γQ) show complex variations with pressure and lithology. In general, attenuation anisotropy is stronger and more sensitive to pressure changes than velocity anisotropy, regardless of lithology. Anisotropy is greatest (over 20% for velocity, over 70% for attenuation) in rocks with visible clay/organic matter laminations in hand specimens. Pressure sensitivities are attributed to the opening of microcracks with decreasing pressure. Changes in magnitude of velocity and attenuation anisotropy with effective pressure show similar trends, although they can show different signs (positive or negative values of ɛ, ɛQ, γ, γQ). We conclude that attenuation anisotropy in particular could prove useful to seismic monitoring of reservoir pressure changes if frequency‐dependent effects can be quantified and modelled.  相似文献   

9.
双相介质的AVO正演模拟   总被引:12,自引:11,他引:1       下载免费PDF全文
岩石的孔隙度、流体饱和度等信息是影响地震波振幅随炮检距变化(AVO)的重要因素.本文在实验给定了岩石的物性参数(孔隙度及孔隙流体的不同相态),利用Gassmann方程计算储层条件下的纵、横波速度,通过模拟不同类型的孔隙流体的地震响应,研究双相介质中流体成分的变化对地震反射波AVO的影响.  相似文献   

10.
The analysis of seismic ambient noise acquired during temporary or permanent microseismic monitoring campaigns (e.g., improved/enhanced oil recovery monitoring, surveillance of induced seismicity) is potentially well suited for time‐lapse studies based on seismic interferometry. No additional data acquisition required, ambient noise processing can be automatized to a high degree, and seismic interferometry is very sensitive to small medium changes. Thus there is an opportunity for detection and monitoring of velocity variations in a reservoir at negligible additional cost and effort. Data and results are presented from an ambient noise interferometry study applied to two wells in a producing oil field in Romania. Borehole microseismic monitoring on three component geophones was performed for four weeks, concurrent with a water‐flooding phase for improved oil recovery from a reservoir in ca. 1 km depth. Both low‐frequency (2 Hz–50 Hz) P‐ and S‐waves propagating through the vertical borehole arrays were reconstructed from ambient noise by the virtual source method. The obtained interferograms clearly indicate an origin of the ambient seismic energy from above the arrays, thus suggesting surface activities as sources. It is shown that ambient noise from time periods as short as 30 seconds is sufficient to obtain robust interferograms. Sonic log data confirm that the vertical and horizontal components comprise first arrivals of P‐wave and S‐waves, respectively. The consistency and high quality of the interferograms throughout the entire observation period further indicate that the high‐frequency part (up to 100 Hz) represents the scattered wave field. The temporal variation of apparent velocities based on first‐arrival times partly correlates with the water injection rate and occurrence of microseismic events. It is concluded that borehole ambient noise interferometry in production settings is a potentially useful method for permanent reservoir monitoring due to its high sensitivity and robustness.  相似文献   

11.
Amplitude variation with offset (AVO) analysis and waveform inversion are techniques used to determine qualitative or quantitative information on gas hydrates and free gas in sediments. However, the quantitative contribution of gas hydrates to the acoustic impedance contrast observed at the bottom‐simulating reflector and the reliability of quantitative AVO analyses are still topics of discussion. In this study, common‐midpoint gathers from multichannel wide‐angle reflection seismic data, acquired offshore Costa Rica, have been processed to preserve true amplitude information at the bottom‐simulating reflector for a quantitative AVO analysis incorporating angles of incidence of up to 60°. Corrections were applied for effects that significantly alter the observed amplitudes, such as the source directivity. AVO and rock‐physics modelling indicate that free gas immediately beneath the gas‐hydrate stability zone can be detected and low concentrations can be quantified from AVO analysis, whereas the offset‐dependent reflectivity is not sensitive to gas‐hydrate concentrations of less than about 10% at the base of the gas‐hydrate stability zone. Bulk free‐gas saturations up to 5% have been determined from the reflection seismic data assuming a homogeneous distribution of free gas in the sediment. Assuming a patchy distribution of free gas increases the estimated concentrations up to 14%. There is a patchy occurrence of bottom‐simulating reflectors south‐east of the Nicoya Peninsula on the continental margin, offshore Costa Rica. AVO analysis indicates that this phenomenon is related to the local presence of free gas beneath the gas‐hydrate stability zone, probably related to a focused vertical fluid flow. In areas without bottom‐simulating reflectors, the results indicate that no free gas is present.  相似文献   

12.
We measured in the laboratory ultrasonic compressional and shear‐wave velocity and attenuation (0.7–1.0 MHz) and low‐frequency (2 Hz) electrical resistivity on 63 sandstone samples with a wide range of petrophysical properties to study the influence of reservoir porosity, permeability and clay content on the joint elastic‐electrical properties of reservoir sandstones. P‐ and S‐wave velocities were found to be linearly correlated with apparent electrical formation factor on a semi‐logarithmic scale for both clean and clay‐rich sandstones; P‐ and S‐wave attenuations showed a bell‐shaped correlation (partial for S‐waves) with apparent electrical formation factor. The joint elastic‐electrical properties provide a way to discriminate between sandstones with similar porosities but with different clay contents. The laboratory results can be used to estimate sandstone reservoir permeability from seismic velocity and apparent formation factor obtained from co‐located seismic and controlled source electromagnetic surveys.  相似文献   

13.
Elastic full waveform inversion of seismic reflection data represents a data‐driven form of analysis leading to quantification of sub‐surface parameters in depth. In previous studies attention has been given to P‐wave data recorded in the marine environment, using either acoustic or elastic inversion schemes. In this paper we exploit both P‐waves and mode‐converted S‐waves in the marine environment in the inversion for both P‐ and S‐wave velocities by using wide‐angle, multi‐component, ocean‐bottom cable seismic data. An elastic waveform inversion scheme operating in the time domain was used, allowing accurate modelling of the full wavefield, including the elastic amplitude variation with offset response of reflected arrivals and mode‐converted events. A series of one‐ and two‐dimensional synthetic examples are presented, demonstrating the ability to invert for and thereby to quantify both P‐ and S‐wave velocities for different velocity models. In particular, for more realistic low velocity models, including a typically soft seabed, an effective strategy for inversion is proposed to exploit both P‐ and mode‐converted PS‐waves. Whilst P‐wave events are exploited for inversion for P‐wave velocity, examples show the contribution of both P‐ and PS‐waves to the successful recovery of S‐wave velocity.  相似文献   

14.
As seismic data quality improves, time‐lapse seismic data is increasingly being called upon to interpret and predict changes during reservoir development and production. Since pressure change is a major component of reservoir change during production, a thorough understanding of the influence of pore pressure on seismic velocity is critical. Laboratory measurements show that differential pressure (overburden minus fluid pressure) does not adequately determine the actual reservoir conditions. Changes in fluid pressure are found to have an additional effect on the physical properties of rocks. The effective‐stress coefficient n is used to quantify the effect of pore pressure compared to confining pressure on rock properties. However, the current practice in time‐lapse feasibility studies, reservoir‐pressure inversion and pore‐pressure prediction is to assume that n= 1. Laboratory measurements, reported in both this and previous research show that n can be significantly less than unity for low‐porosity rocks and that it varies with porosity, rock texture and wave type. We report the results of ultrasonic experiments to estimate n for low‐porosity sandstones with and without microcracks. Our results show that, for P‐waves, n is as low as 0.4 at a differential pressure of 20 MPa (about 3000 psi) for a low‐porosity sandstone. Thus, in pore‐pressure inversion, an assumption of n= 1 would lead to a 150% underestimation of the pore pressure. Comparison of the effective‐stress coefficient for fractured and unfractured samples suggests that the presence of microfractures increases the sensitivity of P‐wave velocity to pore pressure, and therefore the effective‐stress coefficient. Our results show that the effective‐stress coefficient decreases with the differential pressure, with a higher differential pressure resulting in a lower effective‐stress coefficient. While the effective‐stress coefficient for P‐wave velocity can be significantly less than unity, it is close to one for S‐waves.  相似文献   

15.
针对西湖凹陷富煤环境下储层刻画精度低问题,本文结合煤层AVO截距、梯度特征,提出一种基于AVO信息约束的匹配追踪技术,压制煤层强反射引起的岩性假象,凸显储层真实、有效信号。该方法首先利用煤层4类AVO负强截距P、正强梯度G特点,构建煤层地震敏感因子P - G,放大煤层地震响应,并压制非煤层强振幅影响,实现煤层位置精细定位;在此基础上,将该煤层地震信息作为匹配追踪需要分解、重构的原始信号,利用复地震道分析技术提高信号快速匹配分解的效率,完成煤层强反射解耦。模型试算及实际资料应用表明:匹配追踪技术在精细定位煤层地震响应基础上,提高了匹配追踪算法去煤层强振幅效率;煤层解耦后地震数据较好地凸显储层横向展布变化,提高主力气层的纵向刻画精度。   相似文献   

16.
Pore-pressure depletion causes changes in the triaxial stress state. Pore-pressure depletion in a flat reservoir, for example, can be reasonably approximated as uniaxial compaction, in which the horizontal effective stress change is smaller than the vertical effective stress. Furthermore, the stress sensitivity of velocities can be angle-dependent. Therefore, time-lapse changes in reservoir elastic anisotropy are expected as a consequence of production, which can complicate the interpretation of the 4D seismic response. The anisotropic 4D seismic response caused by pore-pressure depletion was investigated using existing core velocity measurements. To make a direct comparison between the anisotropic 4D seismic response and the isotropic response based only on vertical velocities, pseudoisotropic elastic properties were utilized, and the two responses were compared in terms of a dynamic rock physics template. A comparison of the dynamic rock physics templates indicates that time-lapse changes in reservoir elastic anisotropy have a noticeable impact on the interpretation of 4D seismic data. Changes in anisotropy as a result of pore-pressure depletion cause a time-lapse amplitude variation with offset response as if there is a reduction in VP/VS (i.e., pseudoisotropic VP/VS decreases), although the vertical VP/VS increases. The impact of time-lapse changes in anisotropy on the amplitude variation with offset gradient was also investigated, and the time-lapse anisotropy was found to enhance changes in the amplitude variation with offset gradient for a given case.  相似文献   

17.
动校正拉伸是地震资料处理的一个基本问题,解决拉伸问题的处理方法是切除.现代地震数据大多为长排列采集,动校正拉伸更为严重.依据褶积模型和Fourier变换的基本性质,本文给出频谱代换无拉伸动校正方法.算法实现就是将CMP道集变换到频率域,取参考道的相位谱替换其它偏移距道的相位,同时保持其振幅谱不变,再做Fourier反变换就得到动校正后的地震剖面.通过其实现过程可知该方法不需要地下介质的速度信息,算法可完全自动实现,且具有较高的计算效率.频谱代换无拉伸动校正可适用于任何偏移距的地震资料,而且还可有效保持地震资料的AVO效应.理论模拟数据及其叠加结果显示频谱代换法的有效性和实用性,同时该方法具有较强的抗随机噪音能力.  相似文献   

18.
多波时移地震AVO反演研究   总被引:49,自引:15,他引:34       下载免费PDF全文
数值模拟了油藏含油饱和度与有效压力变化时移地震AVO的响应,确定利用时移地震AVO区分油藏参数的变化、实现油藏定量解释的可行性.从Aki等 AVO近似方程出发,详细推导了P_P波和P_S转换波时移地震AVO计算公式.结合岩石物理近似关系和本文推导的时移地震AVO计算公式,推导了利用多波时移地震AVO反演油藏含油饱和度和压力变化的方程.数据试验表明,文中推导的多波时移地震AVO方程能较好地反演油藏含油饱和度变化和有效压力变化,实现油藏定量解释.  相似文献   

19.
Large changes in seismic reflection amplitude have been observed around injectors, and result from the decrease in elastic‐wave velocity due to the increase in pore pressure in the reservoir. In contrast, the velocity change resulting from the decrease in pore pressure in depleting reservoirs is observed to be smaller in magnitude. Elastic‐wave velocities in sandstones vary with stress due to the presence of stress‐sensitive grain boundaries within the rock. Grain‐boundary stiffness increases non‐linearly with increasing compressive stress, due to increased contact between opposing faces of the boundary. This results in a change in velocity due to a decrease in pore pressure that is smaller than the change in velocity caused by an increase in pore pressure, in agreement with time‐lapse seismic observations. The decrease in porosity resulting from depletion is not fully recovered upon re‐pressurization, and this leads to an additional steepening of the velocity vs. effective stress curve for injection relative to depletion. This difference is enhanced by any breakage of cement or weakening of grain contacts that may occur during depletion and by the reopening or formation of fractures or joints and dilation of grain boundaries that may occur during injection.  相似文献   

20.
Tuning is the effect of interference between the reflections from the top and bottom of a thin layer on the amplitude of the composite reflection. For a homogeneous sandstone reservoir containing an oil column overlying brine, interference between the reflection from the top reservoir and the oil/water contact is a function of the height of the oil column. If the properties of the sandstone do not vary across the oil/water contact, the SS, PS and SP reflection coefficients from the oil/water contact are small in comparison to the PP reflection coefficient. This allows analytic expressions for the effective PP and PS reflection coefficients from the reservoir to be derived that include all P‐wave multiples within the oil column. For a given source/receiver offset, the component of the wavevector inside the oil column normal to the interface is larger for the PPPP reflection than for the PPPS reflection, due to the asymmetry in the raypath for the PPPS reflection. The PPPS reflection is therefore useful for determining oil‐column heights larger than that discriminated by the PPPP reflection, especially when used at wider offsets. A convenient classification of the AVO response of hydrocarbon‐bearing sandstone reservoirs overlain by shale is the scheme of Rutherford and Williams. Class 1 sands have higher acoustic impedance for normal incidence than the overlying shale, Class 2 sands have nearly the same acoustic impedance as the shale and Class 3 sands have lower acoustic impedance. Synthetic shot gathers calculated for these three classes as a function of oil‐column height show that a combination of the PPPP and the PPPS amplitudes can be plotted as a tuning trajectory, which can be used to determine the oil‐column height. This method is most sensitive for reservoirs that belong to AVO classes 1 and 2, and therefore may be useful in AVO analysis of Class 1 and 2 reservoirs where the traditional AVO indicators (developed for Class 3 reservoirs) do not work very well. These results demonstrate the usefulness of shear waves recorded in the marine environment at wide offsets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号