首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Astrometric Very Long Baseline Interferometry (VLBI) observations of maser sources in the Milky Way are used to map the spiral structure of our galaxy and to determine fundamental parameters such as the rotation velocity (Θ0) and curve and the distance to the Galactic center (R0). Here, we present an update on our first results, implementing a recent change in the knowledge about the Solar motion. It seems unavoidable that the IAU recommended values for R0 and Θ0 need a substantial revision. In particular the combination of 8.5 kpc and 220 km s–1 can be ruled out with high confidence. Combining the maser data with the distance to the Galactic center from stellar orbits and the proper motion of Sgr A* gives best values of R0 = 8.3 ± 0.23 kpc and Θ0 = 239 or 246±7 km s–1, for Solar motions of V = 12.23 and 5.25 km s–1, respectively. Finally, we give an outlook to future observations in the Bar and Spiral Structure Legacy (BeSSeL) survey (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Based on currently available observations of 28 maser sources in 25 star-forming regions with measured trigonometric parallaxes, proper motions, and radial velocities, we have constructed the rotation curve of the Galaxy. Taking different distances to the Galactic center R 0, we have estimated the peculiar velocity of the Sun, the angular velocity of Galactic rotation, and its three derivatives. For R 0 = 8 kpc, we have found the circular velocity of the Sun to be V 0 = 243 ± 16 km s−1, which corresponds to a revolution period of 202 ± 10 Myr. We have obtained the Oort constants A = 16.9 ± 1.2 km s−1 kpc−1 and B = −13.5 ± 1.4 km s−1 kpc−1. Our simulation of the influence of a spiral density wave has shown that the peculiar velocity of the Sun with respect to the local standard of rest and the component (V )LSR depend significantly on the Sun’s phase in the spiral wave.  相似文献   

3.
Bobylev  V. V.  Bajkova  A. T. 《Astronomy Letters》2019,45(6):331-340

We have studied a sample containing ~6000 OB stars with proper motions and trigonometric parallaxes from the Gaia DR2 catalogue. The following parameters of the angular velocity of Galactic rotation have been found: Ω0 = 29.70 ± 0.11 km s-1 kpc-1, Ω'0 = -4.035 ± 0.031 km s-1 kpc-2, and Ω 0 = 0.620 ± 0.014 km s-1 kpc-3. The circular rotation velocity of the solar neighborhood around the Galactic center is V0 = 238 ± 5 km s-1 for the adopted Galactocentric distance of the Sun R0 = 8.0 ± 0.15 kpc. The amplitudes of the tangential and radial velocity perturbations produced by the spiral density wave are fθ = 4.4 ± 1.4 kms-1 and fR = 5.1 ± 1.2 kms-1, respectively; the perturbation wavelengths are λθ = 1.9 ± 0.5 kpc and λR = 2.1 ± 0.5 kpc for the adopted four-armed spiral pattern. The Sun's phase in the spiral density wave is χ = -178° ± 12°.

  相似文献   

4.
In this paper, the fourth in a series, we examine again one of the implications of the Lin‐Shu density‐wave theory, specifically, the noncircular systematic motion of the Galactic objects. Our previous investigation is extended by analyzing simultaneously both the line‐of‐sight and transversal velocities of a sample of open clusters for which velocities, distances and ages are available. The ordinary equations of the Oort‐Lindblad theory of galactic differential rotation are used. The minor effects caused by the two‐dimensional tightly‐wound density waves are also taken into account. The published data of 242 currently known optically visible clusters having distances r < 3 kpc from the Sun and ‐200 < z < 200 pc from the Galactic plane, and ages 2 × 108 < t < 2 × 109 yr are collected from Dias et al. (2014), excluding extremely far, high‐velocity, young and old objects in our fitting. The most noteworthy result is the fact that the parameters of Lin–Shu type density waves estimated from two independent line‐of‐sight and transversal along the Galactic longitude velocities are nearly equal. We argue that the resemblance of these Galactic wave structures is so remarkable that no doubt is felt as to the theory's truth with respect to these data. The results obtained allow us to conclude that several low‐m trailing density‐wave patterns with different number of spiral arms m (say, m = 1, 2, 3, and 4), pitch angles (about 5°, 8°, 11°, and 14°, respectively) and amplitudes of the perturbed gravitational potential may coexist in the Galaxy. The latter suggests the asymmetric multiarm, not well‐organized (“flocculent”) spiral structure of the system. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The results of numerical simulations of the Gould Belt motion for the 2D (a ring in the Galactic plane) and 3D (a spherical shell outside the Galactic plane) cases are presented. Particles of the expanding shell interact with each other within the framework of the N-body problem. The Galactic potential has been borrowed from Flynn et al. (1996). The total mass of the shell is 1.5 × 106 M in accordance with the estimate from Bobylev (2006). The initial mutual distances and velocities of the shell components are chosen in such a way that the shell reaches the present-day sizes of the Gould Belt in 30–60 Myr. In the 2D case, the ring is shown to be stretched with time into a rotating ellipse, which is consistent with the results from Blaauw (1952) obtained by other methods. In the 3D case, the projections of the initially spherical shell onto the Galactic plane are also rotating ellipses. A vertical oscillation of the Gould Belt components relative to the Galactic plane, a flattening of the spherical shell, and its inclination to the Galactic plane after a certain time interval have been revealed.  相似文献   

6.
We determined the locations of Galactic spiral arm segments for various age groups from the available data on the positions, ages, radial velocities, and proper motions of 440 δ Cephei variables using a previously developed technique. We obtained such parameters of the Galactic spiral structure as the arm pitch angle, , and the pattern speed, ΩP = 21.7 ± 2.8 km s?1 kpc?1, which are comparable to and ΩP = 20.4 ± 2.5 km s?1 kpc?1, respectively, determined previously from open star clusters. Based on the radial velocities and proper motions of the sample stars, we derived the rotation curve of the Galaxy for the range of Galactocentric distances approximately from 6 to 15 kpc. Using the pattern speed, we determined the positions of the corotation region and the inner and outer Lindblad resonances. We estimated the perturbation amplitudes of the Galactic velocity field, f R = ?1.8 ± 2.5 km s?1 and f ? = +4.0 ± 3.4 km s?1.  相似文献   

7.
A sample of O- and B-type stars with Hipparcos astrometric data, ages computed from Strömgren photometry and radial velocities, has been used to characterize the structure, age and kinematics of the Gould Belt system. The local spiral structure of our galaxy is determined from this sample, and also from a sample of Hipparcos Cepheid stars. The Gould Belt, with an orientation with respect to the galactic plane ofi G = 16-22° and ΩG =275-295°, extends up to a distance of 600 pc from the Sun. Roughly the 60-65% of the O and B stars younger than 60 Myr in the solar neighbourhood belong to this structure. Our results indicate that the kinematical behaviour of this system is complex, with an expansion motion in the solar neighbourhood (R<300 pc).In the frame of the Lin's theory, and analysing the O and B stars further than 600 pc and the Cepheids, we found a galactic spiral structure characterized by a 4-arm spiral pattern with the Sun located atψ = 350-355 ± 30° – near the Sagittarius-Carina arm– and outside the corotation circle. The angular rotation speed of the spiral pattern was found to be Ωp = 31-32 ± 4 kms-1 kpc-1.  相似文献   

8.
An updated catalog of 205 observed tangents to the spiral arms (in Galactic longitudes) since 1980 is presented. This represents an addition of 80 arm tangents in 6 years (since 2016). Most arm tangents are observed at telescopes in the radio régime.In this study, the separation of each arm tracer from the dust lane is analysed to obtain the relative speed away from the dust lane (an age gradient). Each arm tracer is observed to be separated from the dust lane, showing an age gradient of about 11.3 ±2 Myr/kpc across the spiral arm – a relative speed away from the dust lane of about 87 ±10 km/s.  相似文献   

9.
The Earth's climate is not constant, and has experienced major changes in the past on all timescales. The causes of these changes, although still incompletely understood, vary according to the timescale considered. Some of the most important causal mechanisms include continental drift, changes in the Earth's orbital parameters, volcanic activity and solar variations. Solar variations have been invoked to explain climatic change on almost all timescales from 1 to 109 yr. Unfortunately, even though the Sun is a prime candidate for explaining many changes in past climate, the use of past climate as a proxy for solar luminosity changes is fraught with difficulty. For example:
  1. In many cases observed changes in climate can be adequately explained without recourse to solar variations as a causal factor. In fact, on the longest timescales the Earth's climate was remarkably similar to today in spite of a considerably lower solar output.
  2. For most timescales of climatic change there are, as yet, no plausible theories giving similar timescale variations in solar activity, so that a vital link between cause and effect is missing.
  3. There are considerable uncertainties in the record of past climates.
  4. On short timescales many proposed solar activity-climate links have failed to stand up to rigorous statistical analysis.
This paper reviews past changes in climate and proposed causal mechanisms on timescales of from 1 to 109 yr. The evidence for solar activity-climate links is discussed with special reference to the above points.  相似文献   

10.
We numerically integrate the equations of motion of the Sun in Galactocentric Cartesian rectangular coordinates for –4.5 Gyr ≤ t ≤ 0 in Newtonian mechanics with two different models for the Cold Dark Matter (CDM) halo, in MOdified Newtonian Dynamics (MOND) and in MOdified Gravity (MOG) without resorting to CDM. The initial conditions used come from the latest kinematical determination of the 3D Sun's motion in the Milky Way (MW) by assuming for the rotation speed of the Local Standard of Rest (LSR) the recent value Θ0 = 268 km s–1 and the IAU recommended value Θ0 = 220 km s–1; the Sun is assumed located at 8.5 kpc from the Galactic Center (GC). For Θ0 = 268 km s–1 the birth of the Sun, 4.5 Gyr ago, would have occurred at large Galactocentric distances (12–27 kpc depending on the model used), while for Θ0 = 220 km s–1 it would have occurred at about 8.8–9.3 kpc for almost all the models used. The integrated trajectories are far from being circular, especially for Θ0 = 268 km s–1, and differ each other with the CDM models yielding the widest spatial extensions for the Sun's orbital path (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We consider the problem of determining the geometric parameters of a Galactic spiral arm from its segment by including the distance to the spiral pole, i.e., the distance to the Galactic center (R0). The question about the number of points belonging to one turn of a logarithmic spiral and defining this spiral as a geometric figure has been investigated numerically and analytically by assuming the direction to the spiral pole (to the Galactic center) to be known. Based on the results obtained, in an effort to test the new approach, we have constructed a simplified method of solving the problem that consists in finding the median of the values for each parameter from all possible triplets of objects in the spiral arm segment satisfying the condition for the angular distance between objects. Applying the method to the data on the spatial distribution of masers in the Perseus and Scutum arms (the catalogue by Reid et al. (2014)) has led to an estimate of R0 = 8.8 ± 0.5 kpc. The parameters of five spiral arm segments have been determined from masers of the same catalogue. We have confirmed the difference between the spiral arms in pitch angle. The pitch angles of the arms revealed by masers are shown to generally correlate with R0 in the sense that an increase in R0 leads to a growth in the absolute values of the pitch angles.  相似文献   

12.
Evidence is found that large terrestrial impacts tend to cluster in discrete episodes, with characteristic separations 25–30 Myr and durations of about 1–2 Myr. The largest impactors are strongly concentrated within such events, and the Cretaceous–Tertiary extinctions occurred within one of them. The evidence also indicates the presence of a weak periodicity, which might be ∼24, ∼35 or ∼42 Myr depending on which peaks are taken as harmonics. The periodicity is most easily explained as a result of the action of the Galactic tide on the Oort comet cloud. The two longer period solutions are consistent with Galactic density estimates and with the current passage of the Solar system through the plane of the Galaxy. Other episodes may be a result of sporadic encounters with spiral arms, nebulae or stars.  相似文献   

13.
Currently available data on the field of velocities V r , V l , V b for open star clusters are used to perform a kinematic analysis of various samples that differ by heliocentric distance, age, and membership in individual structures (the Orion, Carina-Sagittarius, and Perseus arms). Based on 375 clusters located within 5 kpc of the Sun with ages up to 1 Gyr, we have determined the Galactic rotation parameters ω 0 = ?26.0 ± 0.3 km s?1 kpc?1, ω0 = 4.18 ± 0.17 km s?1 kpc?2, ω0 = ?0.45 ± 0.06 km s?1 kpc?3, the system contraction parameter K = ?2.4 ± 0.1 km s?1 kpc?1, and the parameters of the kinematic center R 0 = 7.4 ± 0.3 kpc and l 0 = 0° ± 1°. The Galactocentric distance R 0 in the model used has been found to depend significantly on the sample age. Thus, for example, it is 9.5 ± 0.7 and 5.6 ± 0.3 kpc for the samples of young (≤50 Myr) and old (>50 Myr) clusters, respectively. Our study of the kinematics of young open star clusters in various spiral arms has shown that the kinematic parameters are similar to the parameters obtained from the entire sample for the Carina-Sagittarius and Perseus arms and differ significantly from them for the Orion arm. The contraction effect is shown to be typical of star clusters with various ages. It is most pronounced for clusters with a mean age of ≈100 Myr, with the contraction velocity being Kr = ?4.3 ± 1.0 km s?1.  相似文献   

14.
We present the results of our BV R c I c CCD photometry for six Galactic open star clusters toward the Perseus spiral armperformed at the Special Astrophysical Observatory of the Russian Academy of Sciences. Based on these data and using JHK s photometry from the 2MASS catalog, we have determined the ages, distances, and color excesses for the clusters: 710 Myr, 2960−340+400 pc, 0· m 56 ± 0· m 04 (King 13); 130 Myr, 3010−280+300 pc, 0· m 69 ± 0· m 04 (King 18); 560 Myr, 2630−270+310 pc, 0· m 69 ± 0· m 08 (King 19); 160 Myr, 1750−70+80 pc, 0· m 77 ± 0· m 05 (King 20); 250 Myr, 5220−320+350 pc, 0· m 70 ± 0· m 09 (NGC 136); 320 Myr, 3390−200+210 pc, 0· m 43 ± 0· m 03 (NGC 7245).  相似文献   

15.
The observed distribution of young open clusters is far from uniform. Statistics shows that, when age, spatial distribution and kinematics are considered simultaneously, they tend to appear in clumps. These young cluster groups or families constitute unambiguously coeval, genetically related complexes associated to the underlying spiral structure. In this paper, we derive detailed physical properties for one of them: the Cassiopeia–Perseus family. With a diameter of about 600 pc, it is located 2 kpc from the Sun, embedded in the Perseus arm, and probably includes 10–20 members. It began to form 20–40 Myr ago although we find distinctive evidence for at least three generations of star formation organized in two distinct fronts, with the oldest clusters located at lower Galactic longitude than the youngest. The plane roughly defined by the structure is inclined ~30° to the Galactic disk with most candidate members located below the disk and moving away from it. Our results for this cluster of clusters suggest that, within a coherent cloud complex, the first generation of star formation is triggered by the shock wave induced by a spiral arm. The second and subsequent generations are sustained by ionization fronts and supernova shocks created by the evolution of the first generation of massive stars. In this particular case, the front moves with average velocity of about 70 km/s in the direction of increasing Galactic longitude. The Cassiopeia–Perseus family and related objects appear to be a close relative of the cluster complexes found in the spiral galaxy M51 or perhaps a younger analog of the Gould Belt.  相似文献   

16.
Asteroid 2008 TC3 was characterized in a unique manner prior to impacting Earth's atmosphere, making its October 7, 2008, impact a suitable field test for or validating the application of high‐fidelity re‐entry modeling to asteroid entry. The accurate modeling of the behavior of 2008 TC3 during its entry in Earth's atmosphere requires detailed information about the thermophysical properties of the asteroid's meteoritic materials at temperatures ranging from room temperature up to the point of ablation (~ 1400 K). Here, we present measurements of the thermophysical properties up to these temperatures (in a 1 atm. pressure of argon) for two samples of the Almahata Sitta meteorites from asteroid 2008 TC3: a thick flat‐faced ureilite suitably shaped for emissivity measurements and a thin flat‐faced EL6 enstatite chondrite suitable for diffusivity measurements. Heat capacity was determined from the elemental composition and density from a 3‐D laser scan of the sample. We find that the thermal conductivity of the enstatite chondrite material decreases more gradually as a function of temperature than expected, while the emissivity of the ureilitic material decreases at a rate of 9.5 × 10?5 K?1 above 770 K. The entry scenario is the result of the actual flight path being the boundary to the load the meteorite will be affected with when entering. An accurate heat load prediction depends on the thermophysical properties. Finally, based on these data, the breakup can be calculated accurately leading to a risk assessment for ground damage.  相似文献   

17.
Abstract— Asteroids tens to hundreds of meters in diameter constitute the most immediate impact hazard to human populations, yet the rate at which they arrive at Earth's surface is poorly known. Astronomic observations are still incomplete in this size range; impactors are subjected to disruption in Earth's atmosphere, and unlike the Moon, small craters on Earth are rapidly eroded. In this paper, we first model the atmospheric behavior of iron and stony bodies over the mass range 1–1012 kg (size range 6 cm‐1 km) taking into account deceleration, ablation, and fragmentation. Previous models in meteoritics deal with rather small masses (<105–106 kg) with the aim of interpreting registered fireballs in atmosphere, or with substantially larger objects without taking into account asteroid disruption to model cratering processes. A few earlier attempts to model terrestrial crater strewn fields did not take into account possible cascade fragmentation. We have performed large numbers of simulations in a wide mass range, using both the earlier “pancake” models and also the separated fragments model to develop a statistical picture of atmosphere‐bolide interaction for both iron and stony impactors with initial diameters up to ?1 km. Second, using a compilation of data for the flux at the upper atmosphere, we have derived a cumulative size‐frequency distribution (SFD) for upper atmosphere impactors. This curve is a close fit to virtually all of the upper atmosphere data over 16 orders of magnitude. Third, we have applied our model results to scale the upper atmosphere curve to a flux at the Earth's surface, elucidating the impact rate of objects <1 km diameter on Earth. We find that iron meteorites >5 times 104 kg (2.5 m) arrive at the Earth's surface approximately once every 50 years. Iron bodies a few meters in diameter (105–106 kg), which form craters ?100 m in diameter, will strike the Earth's land area every 500 years. Larger bodies will form craters 0.5 km in diameter every 20,000 years, and craters 1 km in diameter will be formed on the Earth's land area every 50,000 years. Tunguska events (low‐level atmospheric disruption of stony bolides >108 kg) may occur every 500 years. Bodies capable of producing hazardous tsunami (?200 m diameter projectiles) should strike the Earth's surface every ?100,000 years. This data also allows us to assess the completeness of the terrestrial crater record for a given area over a given time interval.  相似文献   

18.
The age pattern across spiral arms is one of the key observational features utilised to study the dynamic nature of the Galaxy’s spiral structure.With the most updated samples of high-mass star formation region(HMSFR)masers,O stars and open clusters,we investigated their distributions and kinematic properties in the vicinity of the Sun.We found that the Sagittarius-Carina Arm traced by HMSFRs,O stars((?)10 Myr)and young open clusters(<30 Myr)seem to deviate gradually towards the Galactic Anticenter(GAC)direction.The Local Arm traced by HMSFRs,O stars,young clusters and also mediumyoung clusters(30-100 Myr)are inclined to gradually deviate toward the Galactic Center(GC)direction.The properties for the Local Arm are supported by a simplified simulation of cluster motions in the Galaxy.Indications of systematic motions in the circular and radial velocities are noticed for the old open clusters(>200 Myr).These results are consistent with the idea that star formation can be triggered by spiral shocks of density waves,and indicate that the corotation radius of the Galaxy is located between the SagittariusCarina Arm and the Local Arm,close to the Solar circle.  相似文献   

19.
Dust filtered from the lower portion of the Camp Century ice core (77°10'N, 61°08'W) has been analyzed for the presence of the cosmic dust indicators iridium and nickel using the neutron activation analysis technique. This study was carried out to test the hypothesis that the climatic change toward the end of the Last Ice Age was triggered by an incursion of nebular material into the Solar System. The analytical results are consistent with this hypothesis. Concentrations of Ir and Ni in the ice were one to two orders of magnitude higher during the latter portion of the Last Ice Age (19,700-14,200 years BP) as compared with current levels. Ir and Ni levels in 6 out of 8 samples suggest a total cosmic dust influx rate of about 0.5?3 times 107 tons/yr to the Earth's surface as compared with about 1?7 x× 105 tons/yr for the current influx. Elemental concentrations in 6 of the 8 dust samples ranged from 6? 96 ppb for Ir and < 60 to 3200 ppm for Ni. It is concluded that a major fraction of this invading dust would have been of submicron size in which case the concentration of light scattering particles would have been sufficient to significantly alter the light transmission properties of the Solar System and substantially affect the Earth's climate. These results mark the first time that cosmic dust deposition rates have been estimated for prehistoric times using the polar ice record.  相似文献   

20.
Abstract– To evaluate kinetic parameters for thermal degradation of organic matter, in situ heating experiments of insoluble organic matter (IOM) and bulk of Murchison (CM2) meteorite were conducted under Fourier transform infrared micro‐spectroscopy combined with a heating stage. Decreases of aliphatic C–H band area under Ar flow were well fitted with Ginstling‐Brounshtein three‐dimensional diffusion model, and the rate constants for decreases of aliphatic C–H were determined. Activation energies Ea and frequency factors A obtained from these rate constants at different temperatures using the Arrhenius equation were Ea = 109 ± 3 kJ mol?1 and A = 8.7 × 104 s?1 for IOM, and Ea = 61 ± 6 kJ mol?1 and A = 3.8 s?1 for bulk, respectively. Activation energy values of aliphatic C–H decrease are larger for IOM than bulk. Hence, the mineral assemblage of the Murchison meteorite might have catalytic effects for the organic matter degradation. Using obtained kinetic expressions, the time scale for metamorphism can be estimated for a given temperature with aliphatic C–H band area, or the temperature of metamorphism can be estimated for a given time scale. For example, using the obtained kinetic parameters of IOM, aliphatic C–H is lost approximately within 200 years at 100 °C and 100 Myr at 0 °C. Assuming alteration period of 7.5 Myr, alteration temperatures could be calculated to be <15 ± 12 °C. Aliphatic C–H decrease profiles in a parent body can be estimated using time–temperature history model. The kinetic expression obtained by the infrared spectral band of aliphatic C–H could be used as an alternative method to evaluate thermal processes of organic matter in carbonaceous chondrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号