首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present monitoring analysis of 8 XMM‐Newton observations of the Seyfert 2 galaxy Mrk 3, spanning a period of ∼19 months. The continuum flux in the 3–12 keV band remains constant during this observing period. The X‐ray spectrum is well described, in agreement with previous works, by a highly absorbed (N H > 1024 cm–2) power law model, with a photon index Γ = 1.9 and a strong reflection component. A strong Fe Kα line at 6.4 keV with an equivalent width of ∼500 eV is detected in the X‐ray spectrum. When we consider the co‐added spectrum we also detect a weaker emission line at 7.4 keV corresponding to neutral Ni Kα emission and weak evidence for the presence of an ionized Fe Kα line at 6.7 keV. Direct comparison with the results obtained from an earlier XMM‐Newton observation of Mrk 3, shows a decrease in the continuum flux of ∼30 per cent followed by a similar decrease in the reflected component. Both emission line components at 6.4 and 6.7 keV do not vary. However we find that an alternative model where the N H varies by 20 per cent is also plausible. In this case both the continuum and the reflected emission do not change. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
I present updated compilations of both observational data and theoretical predictions concerning excess line width and sizes in astrophysical bodies. After removing two well-known broadening mechanisms (thermal width and width due to large scale motions such as expansion), I analyse statistically the excess line widthW excess. The excess line width shows a changing behavior with object sizeR, of the formW excess ~R q. Taking all objects together, I find thatq = 0.55 with s.d. = 0.05. This resultextends previous studies to cover 5 decades in sizes, from 0.01 pc up to 1000 pc. Taking only objects withR < 1 pc, I find thatq = 0.7 with s.d.=0.1, while taking only objects withR > 1 pc givesq = 0.5 with s.d.=0.1; thus a steeper (not flatter) value ofq at smallR may be possible. Previous claims to derive a law for objects of sizesR > 1 kpc are discussed, in relation to the problem of removing obvious large scale motions from the observed line width. Thus several models with predictedq values between 0 and 1 can be eliminated, and the remaining ones could allow weak magnetic effects on the line widths.  相似文献   

3.
Nearly ten years ago Kwan and Krolik (1979, 1981) published the firstsuccessful photoionization model of the Broad Line Region of Active Galactic Nuclei, the so-called ‘Standard Model’. Since then several efforts have been made to obtain better results using more sophisticated models. Anopen issue is that photoionization models are generally computed startingfrom the assumption that the emission line spectrum is produced by a single-slab cloud with a ‘standard’ hydrogen density nH = 109.5 cm-3, but it seems more likely that a range of densities is present in the Broad Line Region. Purpose of this paper is to review the results given by single-cloud models using the most recent photoionization code, Cloudy 84, and to investigate if the addition of one or more components with different densities does affect the line ratios. To this aim we compute the emission line ratios produced by photoionized single-slab clouds for a wide range of hydrogen densities (nH = 109.5−1013 cm−3), ionization parameters (U = 10−4− 10−0.5) and column densities (NH = 1023−1025 cm−2). Two or more populations of clouds are then combined and the resulting emission line spectrum is compared with a sample of mean observed line ratios. We find that the addition to the standard component of clouds having different densities and located at different positions from the central source introduces many changes in the line ratios, and that these changes are in the direction of a better agreement with the observed emission line ratios.  相似文献   

4.
Using the recently completed Giant Meterwave Radio Telescope, we have detected the HI 21 cm-line absorption from the peculiar galaxy C153 in the galaxy cluster Abell 2125. The HI absorption is at a redshift of 0.2533, with a peak optical depth of 0.36. The full width at half minimum of the absorption line is 100 km s−1. The estimated column density of atomic Hydrogen is 0.7×1022(T s /100) cm−2. The HI absorption is redshifted by ∼400km s−1 compared to the [OIII] emission line from this system. We attribute this to an infalling cold gas or to an out-flowing ionised gas, or to a combination of both as a consequence of tidal interactions of C153 with either a cluster galaxy or the cluster potential.  相似文献   

5.
Photometric and spectroscopic characteristics of the WN5+O6 binary system, V444 Cyg, were studied. The Wilson‐Devinney (WD) analysis, using new BV observations carried out at the Ankara University Observatory, revealed the masses, radii, and temperatures of the components of the system as MWR = 10.64 M, MO = 24.68 M, RWR = 7.19 R, RO = 6.85 R, TWR = 31 000 K, and TO = 40000 K, respectively. It was found that both components had a full spherical geometry, whereas the circumstellar envelope of the WR component had an asymmetric structure. The OC analysis of the system revealed a period lengthening of 0.139 ± 0.018 syr–1, implying a mass loss rate of (6.76 ± 0.39) ×10–6 M yr–1 for the WR component. Moreover, 106 IUE‐NEWSIPS spectra were obtained from NASA's IUE archive for line identification and determination of line profile variability with phase, wind velocities and variability in continuum fluxes. The integrated continuum flux level (between 1200–2000 Å) showed a mild and regular increase from orbital phase 0.00 up to 0.50 and then a decrease in the same way back to phase 0.00. This is evaluated as the O component making a constant and regular contribution to the system's UV light as the dominant source. The C IV line, originating in the circumstellar envelope, had the highest velocity while N IV line, originating in deeper layers of the envelope, had the lowest velocity. The average radial velocity calculated by using the C IV line (wind velocity) was found as 2326 km s–1 (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Any calibration of the present value of the Hubble constant (H 0) requires recession velocities and distances of galaxies. While the conversion of observed velocities into true recession velocities has only a small effect on the result, the derivation of unbiased distances which rest on a solid zero point and cover a useful range of about 4–30 Mpc is crucial. A list of 279 such galaxy distances within v < 2,000 km s−1 is given which are derived from the tip of the red-giant branch (TRGB), from Cepheids, and/or from supernovae of type Ia (SNe Ia). Their random errors are not more than 0.15 mag as shown by intercomparison. They trace a linear expansion field within narrow margins, supported also by external evidence, from v = 250 to at least 2,000 km s−1. Additional 62 distant SNe Ia confirm the linearity to at least 20,000 km s−1. The dispersion about the Hubble line is dominated by random peculiar velocities, amounting locally to <100 km s−1 but increasing outwards. Due to the linearity of the expansion field the Hubble constant H 0 can be found at any distance >4.5 Mpc. RR Lyr star-calibrated TRGB distances of 78 galaxies above this limit give H 0 = 63.0 ± 1.6 at an effective distance of 6 Mpc. They compensate the effect of peculiar motions by their large number. Support for this result comes from 28 independently calibrated Cepheids that give H 0 = 63.4 ± 1.7 at 15 Mpc. This agrees also with the large-scale value of H 0 = 61.2 ± 0.5 from the distant, Cepheid-calibrated SNe Ia. A mean value of H 0 = 62.3 ± 1.3 is adopted. Because the value depends on two independent zero points of the distance scale its systematic error is estimated to be 6%. Other determinations of H 0 are discussed. They either conform with the quoted value (e.g. line width data of spirals or the D n σ method of E galaxies) or are judged to be inconclusive. Typical errors of H 0 come from the use of a universal, yet unjustified P–L relation of Cepheids, the neglect of selection bias in magnitude-limited samples, or they are inherent to the adopted models.  相似文献   

7.
We present preliminary results from a 150 ks Suzaku observation of the Seyfert 1 galaxy NGC 3516. Suzaku 's wide bandpass has enabled us to deconvolve the broadband emitting and absorbing components in this object, breaking model degeneracies inherent in previous, smaller‐bandpass spectra. The primary power‐law continuum is absorbed by an ionized absorber as well as a partial‐covering absorber; the column density of the ionized absorber has increased by a factor of ∼3 since XMM‐Newton observations in 2001. We detect a soft power‐law component which may be scattered emission. We confirm the presence of the broad Fe line, finding a eV equivalent width line that indicates emission extending down to a few Schwarzschild radii. Models which exclude either the broad line or the partial‐covering absorber are rejected. Suzaku 's high effective area and low background near 6 keV also allow us to resolve the narrow Fe K emission line; we find a FWHM velocity width near 4000 km s–1, commensurate with Broad Line Region velocities. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
New BVRI observations for 40 and spectrophotometric measurements for 3 F to G LMC supergiant candidates (and 3 galactic F to G supergiants) are presented. The errors of the BVRI data are 0.01 to 0.03 mag in most cases. The wavelength range of the spectra is 3400 to 6400 Å, their resolution 10 Å. The mean error of the fluxes is 0.03 mag. Spectral indices measuring the strengths of the Hβ, Hγ, Hδ, NaD and CaII H+K lines, the CHα0 and CNβ0 bands, of the Balmer jump and the slope of the continuum redwards are discussed as measures of effective temperature and luminosity on the basis of galactic stars with accurate MK types and parallaxes. The Hγ line and the continuum gradient are very good temperature criteria, the CHα0 band and especially the Balmer jump for luminosity. The luminosity classification given for F to G supergiant candidates in the LMC in the literature is often doubtful. 5 of the 3 stars observed spectrophotometrically turn out to be probably galactic foreground dwarfs on the basis both of the Balmer jump and the comparison of their flux distributions with synthetic ones based on the Kurucz model atmospheres. Surface gravities derived purely on the basis of flux distributions and such ones given by models of stellar evolution agree with each other for dwarfs and giants only. For supergiants the former are about 1.0 dex higher than the latter. As a consequence effective temperatures and metallicities given by these two methods deviate from each other for such stars, too. The intrinsic colours and temperatures of galactic and LMC supergiants do not differ. With absolute magnitudes up to -9.6 mag the upper luminosity limit in the LMC does not exceed that in the Galaxy, where Ia-0 supergiants have MV of up to -9.5 mag. The metallicities of the supergiants show a rather large scatter. Nevertheless the mean metallicities of 0.0 ± 0.09 dex for the Galaxy and -0.6 ± 0.10 dex for the LMC agree well with other observations.  相似文献   

9.
The dependence on the temperature of photospheric line‐depth ratios (LDRs) in the spectral range 6190–6280 Å is investigated by using a sample of 174 ELODIE Archive stellar spectra of luminosity class from V to III. The rotational broadening effect on LDRs is also studied. We provide useful calibrations of effective temperature versus LDRs for giant and main sequence stars with 3800 ≃ Teff ≃6000 K and v sin i in the range 0–30 km s–1. We found that, with the exception of very few line pairs, LDRs, measured at a spectral resolution as high as 42 000, depend on v sin i and that, by neglecting the rotational broadening effect, the Teff determination can be wrong by ∼100 K in the worst cases. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Molecular line emission is a useful tool for probing the highly obscured inner kpc of starburst galaxies and buried AGNs. Molecular line ratios serve as diagnostic tools of the physical conditions of the gas—but also of its chemical properties. Both provide important clues to the type and evolutionary stage of the nuclear activity. While CO emission remains the main tracer for molecular distribution and dynamics, molecules such as HCN, HNC, HCO+, CN and HC3N are useful for probing the properties of the denser (n≳104 cm−3), star-forming gas. Here I discuss current views on how line emission from these species can be interpreted in luminous galaxies. HNC, HCO+ and CN are all species that can be associated both with photon dominated regions (PDRs) in starbursts—as well as X-ray dominated regions (XDRs) associated with AGN activity. HC3N line emission may identify galaxies where the starburst is in the early stage of its evolution.  相似文献   

11.
Absorption‐line systems detected in high resolution quasar spectra can be used to compare the value of dimensionless fundamental constants such as the fine‐structure constant, α, and the proton‐to‐electron mass ratio, μ = mp/me, as measured in remote regions of the Universe to their value today on Earth. In recent years, some evidence has emerged of small temporal and also spatial variations in α on cosmological scales which may reach a fractional level of ≈ 10 ppm (parts per million). We are conducting a Large Programme of observations with the Very Large Telescope's Ultraviolet and Visual Echelle Spectrograph (UVES), and are obtaining high‐resolution (R ≈ 60000) and high signal‐to‐noise ratio (S/N ≈ 100) spectra calibrated specifically to study the variations of the fundamental constants. We here provide a general overview of the Large Programme and report on the first results for these two constants, discussed in detail in Molaro et al. (2013) and Rahmani et al. (2013). A stringent bound for Δα /α is obtained for the absorber at zabs = 1.6919 towards HE 2217‐2818. The absorption profile is complex with several very narrow features, and is modeled with 32 velocity components. The relative variation in α in this system is +1.3 ± 2.4stat ± 1.0sys ppm if Al II λ 1670 Å and three FeII transitions are used, and +1.1 ± 2.6stat ppm in a slightly different analysis with only FeII transitions used. This is one of the tightest bounds on α ‐variation from an individual absorber and reveals no evidence for variation in α at the 3‐ppm precision level (1σ confidence). The expectation at this sky position of the recently‐reported dipolar variation of α is (3.2–5.4) ± 1.7 ppm depending on dipole model used and this constraint of Δα /α at face value is not supporting this expectation but not inconsistent with it at the 3σ level. For the proton‐to‐electron mass ratio the analysis of the H2 absorption lines of the zabs ≈ 2.4018 damped Lyα system towards HE 0027–1836 provides Δμ /μ = (–7.6 ± 8.1stat ± 6.3sys) ppm which is also consistent with a null variation. The cross‐correlation analysis between individual exposures taken over three years and comparison with almost simultaneous asteroid observations revealed the presence of a possible wavelength dependent velocity drift as well as of inter‐order distortions which probably dominate the systematic error and are a significant obstacle to achieve more accurate measurements. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Photoelectric observations of the WR binary CQ Cephei (WN6+O9) are presented. the depths of the eclipses in the light curves are best represented by an inclination of the orbit i = (68°.8±0.6) and the width of the very asymmetric eclipse curves can be represented by only an overcontact configuration (Ω1 = Ω2 = 3.65 ± 0.05, and f = 27%). Simultaneous solution of the light and radial velocity curves strongly supports CQ Cep's membership of the Cep OB1 association. By considering this membership we obtained absolute dimensions of the system, which lead to a consistent physical model for CQ Cephei. The more luminous WR primary turns out to be the hotter but slightly less massive component: MWR = 20.8 M⊙, RWR = 8.2R⊙, Teff(WR) = 43600 K, and Mo = 21.4 M⊙, Ro = 8.3 R⊙, Teff(O) = 37000 K.  相似文献   

13.
We report on the iron Kα line properties of a sample of Seyfert galaxies observed with the XMM‐Newton EPIC pn instrument. Using a systematic and uniform analysis, we find that complexity at iron‐K is extremely common in the XMM‐Newton spectra. Once appropriate soft X‐ray absorption, narrow 6.4 keV emission and associated Compton reflection are accounted for, ∼75% of the sample show an improvement when a further component is introduced. The typical properties of the broad emission are both qualitatively and quantitatively consistent with previous results from ASCA. The complexity is in general very well described by relativistic accretion disk models. In most cases the characteristic emission radius is constrained to be within ∼50R g, where strong gravitational effects become important. We find in about 1/3 of the sample the accretion disk interpretation is strongly favoured over competing models. In a few objects no broad line is apparent. We find evidence for emission within 6R g in only two cases, both of which exhibit highly complex absorption. Evidence for black hole spin based on the X‐ray spectra therefore remains tentative. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We present the results of a search for carbon recombination lines in the Galaxy at 34.5 MHz (C575α) made using the dipole array at Gauribidanur near Bangalore. Observations made towards 32 directions resulted in detections of lines, in absorption at nine positions. Followup observations at 328 MHz (C272α) using the Ooty Radio Telescope detected these lines in emission. A VLA D-array observation of one of the positions at 330 MHz yielded no detection implying a lower limit of 10′ for the angular size of the line forming region. The longitude-velocity distribution of the observed carbon lines indicate that the line forming regions are located mainly between 4 kpc and 7 kpc from the Galactic centre. Combining our results with published carbon recombination line data near 76 MHz (Erickson, McConnell & Anantharamaiah 1995), we obtain constraintson the physical parameters of the line forming regions. We find thatif the angular size of the line forming regions is ≥ 4°, then the range of parameters that fit the data are:T e =20–40 K,n e ∼ 0.1–0.3 cm−3 and pathlengths ∼ 0.07–0.9 pc which may correspond to thin photodissociated regions around molecular clouds. On the other hand, if the line forming regions are ∼ 2° in extent, then warmer gas (T e ∼ 60–300 K) with lower electron densities (n e ∼ 0.03–0.05 cm−3) extending over several tens of parsecs along the line of sight and possibly associated with atomic HI gas can fit the data. Based on the range of derived parameters, we suggest that the carbon line regions are most likely associated with photo-dissociation regions.  相似文献   

15.
The temporal evolution of temperature in a dissolving granule and in an adjacent intergranular space is presented. The semi‐empirical evolutionary models have been calculated using an inversion method applied to 4‐min time series of Stokes I spectral line profiles. The models are presented in the form of the functional dependence of temperature T(log τ5, t) on optical depth τ5 at 500 nm and time t. The observed disappearance of the granule is accompanied with overall cooling of the granular photosphere. Temperature changes greater than 100 K have been found in deeper (log τ5 ≥ 0) and upper layers (log τ5 ≤ –2) whereas the intermediate layers are thermally stable. The intergranular space, which is 2 arcsec off the granule, keeps the temperature structure of the layers from log τ5 = 0.5 to log τ5 = –2 without global evolutionary changes except short‐term and spatially confined heating. Finally, the significant temperature changes in the upper layers (log τ5 ≤ 2.5) observed during the time interval of 4 min are found to be typical for the granular and intergranular photosphere.  相似文献   

16.
Analysis of spectral data of two neighboring infrared lines, Fe I 15648.5 Å (g = 3) and FeI 15652.9 Å (geff = 1.53) are carried out for a simple sunspot when it was near the solar disk center (μ = 0.92), to understand the basic structure of sunspot magnetic field. Inversions of Stokes profiles are carried out to derive different atmospheric parameters both as a function of location within the sunspot and height in the atmosphere. As a result of the inversion we have obtained maps of magnetic field strength, temperature, line‐of‐sight velocity, field inclination and azimuth for different optical depth layers between log(τ5) = 0 and log(τ5) = –2.0. In this paper we present few results from our inversion for a layer averaged between log(τ5) from 0.0 to –0.5.  相似文献   

17.
With the aim of investigating the resonance system of NO, equivalent width calculations have been made for the 213.575 nm, Q 1(31.5) line of the 1–0 band of -system of NO for the photospheric HSRA model, and for the line 214.012 nm, Q 1(25.5) line of the same band system for Zwaan's (1974) sunspot model.Calculations show that -band system would not show up in the photospheric spectrum whereas a sunspot model yields an equivalent width of 72 mÅ suggesting that sunspots may provide relatively more favourable conditions for the detections of the resonance systems of some abundant molecules in the inaccessible ultraviolet region.  相似文献   

18.
The D3 line profile in plages on the disk is measured using a birefringent filter. The best fit Gaussian has a 1/e width of 0.4 Å, with negligible instrumental contribution. The D3 opacity is produced in regions with thermal linewidth -0.1 Å; the much larger observed width indicates large non-thermal motions in the chromosphere.  相似文献   

19.
The combination of dispersion measures of pulsars, distances from the model of Cordes & Lazio (2002) and emission measures from the WHAM survey enabled a statistical study of electron densities and filling factors of the diffuse ionized gas (DIG) in the Milky Way. The emission measures were corrected for absorption and contributions from beyond the pulsar distance. For a sample of 157 pulsars at |b | > 5. and 60° < ℓ < 360°, located in mainly interarm regions within about 3 kpc from the Sun, we find that: (1) The average volume filling factor along the line of sight and the mean density in ionized clouds are inversely correlated: ( ) = (0.0184 ± 0.0011) –1.07 ± 0.03 for the ranges 0.03 < < 2 cm–3 and 0.8 > > 0.01. This relationship is very tight. The inverse correlation of and causes the well‐known constancy of the average electron density along the line of sight. As (z ) increases with distance from the Galactic plane |z |, the average size of the ionized clouds increases with |z |. (2) For |z| < 0.9 kpc the local density in clouds n c(z ) and local filling factor f (z ) are inversely correlated because the local electron density n e(z ) = f (z )n c(z ) is constant. We suggest that f (z ) reaches a maximum value of >0.3 near |z | = 0.9 kpc, whereas n c(z ) continues to decrease to higher |z |, thus causing the observed flattening in the distribution of dispersion measures perpendicular to the Galactic plane above this height. (3) For |z | < 0.9 kpc the local distributions n c(z ), f (z ) and (z ) have the same scale height which is in the range 250 < h ≲ 500 pc. (4) The average degree of ionization of the warm atomic gas (z ) increases towards higher |z | similarly to (z ). Towards |z | = 1 kpc, (z ) = 0.24 ± 0.05 and (z ) = 0.24 ± 0.02. Near |z | = 1 kpc most of the warm, atomic hydrogen is ionized. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The detailed processes giving maser line radiation from various molecules in space are not well understood, as can be seen from many recent detailed studies of maser line emission with high spatial and velocity resolution, and with polarization measurements. We now propose an improved maser mechanism based on amplification of the original molecular line emission by stimulated emission in Rydberg Matter (RM) clouds in HII regions, containing clusters H N and (H2) N . This mechanism will amplify the molecular lines, depending on the position, velocity, cluster size and state of excitation of the clusters in the RM cloud. RM will only support certain frequencies, corresponding to rotational transitions of the clusters. The bond lengths in the RM clusters are known within 1% from radio frequency emission measurements in the laboratory, and it is now shown that all the commonly studied maser lines agree well with stimulated emission transitions in several types of RM clusters simultaneously. This may explain the strongly varying intensities of neighboring or related maser lines, an important effect that is not well understood previously. It is also pointed out that the magnetic field due to RM is of the same order of magnitude as observed from the Zeeman splitting in maser lines; thus, the molecules that are the original sources of the lines may be embedded in the RM clouds, for example in dense HII regions that are likely to be RM regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号