首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
Iron line emission is common in the X‐ray spectra of accreting black holes. When the line emission is broad or variable then it is likely to originate from close to the black hole. X‐ray irradiation of the accretion flow by the power‐law X‐ray continuum produces the X‐ray ‘reflection’ spectrum which includes the iron line. The shape and variability of the iron lines and reflection can be used as a diagnostic of the radius, velocity and nature of the flow. The inner radius of the dense flow corresponds to the innermost stable circular orbit and thus can be used to determine the spin of the black hole. Studies of broad iron lines and reflection spectra offer much promise for understanding how the inner parts of accretion flows (and outflows) around black holes operate. There remains great potential for XMM‐Newton to continue to make significant progress in this work. The need for high quality spectra and thus for long exposure times is paramount. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Initial results on the iron K‐shell line and reflection component in several AGN observed as part of the Suzaku Guaranteed Time program are reviewed. This paper discusses a small sample of Compton‐thin Seyferts observed to date with Suzaku; namely MCG‐5‐23‐16, MCG‐6‐30‐15, NGC4051, NGC3516, NGC2110, 3C 120 and NGC2992. The broad iron Kα emission line appears to be present in all but one of these Seyfert galaxies, while the narrow core of the line from distant matter is ubiquitous in all the observations. The iron line in MCG‐6‐30‐15 shows the most extreme relativistic blurring of all the objects, the red‐wing of the line requires the inner accretion disk to extend inwards to within 2.2R g of the black hole, in agreement with the XMM‐Newton observations. Strong excess emission in the Hard X‐ray Detector (HXD) above 10 keV is observed in many of these Seyfert galaxies, consistent with the presence of a reflection component from reprocessing in Compton‐thick matter (e.g. the accretion disk). Only one Seyfert galaxy (NGC 2110) shows neither a broad iron line nor a reflection component. The spectral variability of MCG‐6‐30‐15, MCG‐5‐23‐16 and NGC 4051 is also discussed. In all 3 cases, the spectra appear harder when the source is fainter, while there is little variability of the iron line or reflection component with source flux. This agrees with a simple two component spectral model, whereby the variable emission is the primary power‐law, while the iron line and reflection component remain relatively constant. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We report on the iron Kα line properties of a sample of Seyfert galaxies observed with the XMM‐Newton EPIC pn instrument. Using a systematic and uniform analysis, we find that complexity at iron‐K is extremely common in the XMM‐Newton spectra. Once appropriate soft X‐ray absorption, narrow 6.4 keV emission and associated Compton reflection are accounted for, ∼75% of the sample show an improvement when a further component is introduced. The typical properties of the broad emission are both qualitatively and quantitatively consistent with previous results from ASCA. The complexity is in general very well described by relativistic accretion disk models. In most cases the characteristic emission radius is constrained to be within ∼50R g, where strong gravitational effects become important. We find in about 1/3 of the sample the accretion disk interpretation is strongly favoured over competing models. In a few objects no broad line is apparent. We find evidence for emission within 6R g in only two cases, both of which exhibit highly complex absorption. Evidence for black hole spin based on the X‐ray spectra therefore remains tentative. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
We consider the contribution of microlensing to the AGN Fe Kα line and X‐ray continuum amplification and variation. To investigate the variability of the line and X‐ray continuum, we studied the effects of microlensing on quasar X‐ray spectra produced by crossing of a microlensing pattern across a standard relativistic accretion disk. To describe the disk emission we used a ray tracing method considering both metrics, Schwarzschild and Kerr. We found that the Fe Kα and continuum may experience significant amplification by a microlensing event (even for microlenses of very small mass). Also, we investigate a contribution of microlensing to the X‐ray variability of high‐redshifted QSOs, finding that cosmologically distributed deflector may contribute significantly to the X‐ray variability of high‐redshifted QSOs (z > 2). (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We present the results of the simultaneous XMM‐Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG–5‐23‐16, which is one of the best known examples of a relativistically broadened iron Kα line. We find that: a) the soft X‐ray emission is likely to be dominated by photoionized gas, b) the complex iron emission line is best modelled with a narrow and a broad component with a FWHM ∼44000 km/s. This latter component has an EW ∼50 eV and its profile is well described with an emission line mainly originating from the accretion disk a few tens of gravitational radii from the central black hole and viewed with an inclination angle ∼40°. We found evidence of a possible sporadic absorption line at ∼7.7 keV which, if associated with Fe XXVI Kα resonance absorption, is indicative of a possible high velocity (v ∼ 0.1c) outflow. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We have calculated the relativistic reflection component of the X-ray spectra of accretion disks in active galactic nuclei (AGN). Our calculations have shown that the spectra can be significantly modified by the motion of the accretion flow, and the gravity and rotation of the central black hole. The absorption edges in the spectra suffer severe en- ergy shifts and smearing, and the degree of distortion depends on the system parameters, in particular, the inner radius of the accretion disk and the disk viewing inclination angles. The effects are significant. Fluorescent X-ray emission lines from the inner accretion disk could be a powerful diagnostic of space-time distortion and dynamical relativistic effects near the event horizons of accreting black holes. However, improper treatment of the re- flection component in fitting the X-ray continuum could give rise to spurious line-like features. These features mimic the true fluorescent emission lines and may mask their relativistic signatures. Fully relativistic models for reflection continua together with the emission lines are needed in order to extract black-hole parameters from the AGN X-ray spectra.  相似文献   

7.
Magnetic fields in an accretion disk around the central black hole can modify the size of the innermost stable circular orbit (ISCO) and can produce a difference to the classical Novikov‐Thorne radius. We estimated the ISCO magnetic field strength from the polarimetric observations of the accretion‐disk radiation. This estimate is obtained taking into account the effect of the Faraday rotation of the polarization plane at the distance of the mean free path of photons between successive electron scattering events. We present the new method for estimating the ISCO radius in the accretion disk, i.e. in the nearest vicinity of a central black hole. Our estimates confirmed the Frolov, Shoom & Tzounis (2014) and Ranea‐Sandoval & Garcia (2015) conclusion that the magnetic field in the accretion disk decreases the size of the innermost stable circular orbit. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We model the reflected spectrum expected from localized magnetic flares above an ionized accretion disc. We concentrate on the case of very luminous magnetic flares above a standard accretion disc extending down to the last stable orbit, and use a simple parametrization to allow for an X-ray-driven wind. Full disc spectra including relativistic smearing are calculated. When fitted with the constant-density reflection models, these spectra give both a low reflected fraction and a small linewidth as seen in the hard spectra from galactic black hole binaries and active galactic nuclei. We fit our calculated spectra to real data from the low/hard state of Nova Muscae and Cyg X-1 and show that these models give comparable χ 2 to those obtained from the constant-density reflection models, which implied a truncated disc. This explicitly demonstrates that the data are consistent either with magnetic flares above an ionized disc extending down to the last stable orbit around a black hole, or with non-ionized, truncated discs.  相似文献   

9.
Thanks to the large effective area and the spectral resolution of current X‐ray satellites, the detection of X‐ray narrow spectral features in the 5–7 keV band is becoming commonplace in many AGN observations. Such lines, both in emission and in absorption, are mostly interpreted as arising from Iron atoms. When observed with some displacement from their rest frame position, these lines carry the potential to study the motion of circumnuclear gas in AGN, providing a diagnostic of the effects of the gravitational field of the central black hole. These narrow features have been often found with marginal statistical significance. A systematic search for narrow features in type1 AGN is being performed on all spectra available in the XMM‐Newton archive with the aim to estimate the significance of the features with Monte Carlo simulations of synthetic spectra. The project and preliminary results are presented. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Accreting black holes often show iron line emission in their X‐ray spectra. When this line emission is very broad or variable then it is likely to originate from close to the black hole. The theory and observations of such broad and variable iron lines are briefly reviewed here. In order for a clear broad line to be found, one or more of the following have to occur: high iron abundance, dense disk surface and minimal complex absorption. Several excellent examples are found from observations of Seyfert galaxies and Galactic Black Holes. In several cases there is strong evidence that the black hole is rapidly spinning. Further examples are expected as more long observations are made with XMM‐Newton, Chandra and Suzaku. Intriguing instances of rapid variability of some narrow iron lines, both emission and absorption, have been reported. These may reflect variations in the irradiation or motion of physical structures on the accretion disk. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
In this contribution, I briefly review recent progress in detecting and measuring the properties of relativistic iron lines observed in stellar‐mass black hole systems, and the aspects of these lines that are most relevant to studies of similar lines in Seyfert‐1 AGN. In particular, the lines observed in stellar‐mass black holes are not complicated by complex low‐energy absorption or partial‐covering of the central engine, and strong lines are largely independent of the model used to fit the underlying broad‐band continuum flux. Indeed, relativistic iron lines are the most robust diagnostic of black hole spin that is presently available to observers, with specific advantages over the systematics–plagued disk continuum. If accretion onto stellar‐mass black holes simply scales with mass, then the widespread nature of lines in stellar‐mass black holes may indicate that lines should be common in Seyfert‐1 AGN, though perhaps harder to detect. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We present the analysis of optical and X‐ray XMM‐Newton data of the source 4U 1344‐60. On the basis of the optical data we propose to classify 4U 1344‐60 as a Seyfert 1.5 galaxy and we measured a redshift value z = 0.012 ± 0.001. The observed X‐ray spectrum is complex. The continuum emission can be described as a power law obscured by two neutral absorption components. 4U 1344‐60 exhibits a broad and skewed iron line at 6.4 keV most likely originated in a few gravitational radius of an accretion disc. The analysis also reveals the presence of two narrow emission line‐like features at ∼4.9 keV and ∼5.3 keV. Assuming that hot spots on the surface of the accretion disc, orbiting very close to the black hole is responsible of these emission lines, the accretion disc would present an inclination of 20° and the active regions would be located in the 6–10 R g radius range. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
In this paper, we consider the process of alignment of a spinning black hole and a surrounding misaligned accretion disc. We use a simplified set of equations, that describe the evolution of the system in the case where the propagation of warping disturbances in the accretion disc occurs diffusively, a situation likely to be common in the thin discs in active galactic nuclei (AGN). We also allow the direction of the hole spin to move under the action of the disc torques. In such a way, the evolution of the hole–disc system is computed self-consistently. We consider a number of different situations and we explore the relevant parameter range, by varying the location of the warp radius R w and the propagation speed of the warp. We find that the dissipation associated with the twisting of the disc results in a large increase in the accretion rate through the disc, so that AGN accreting from a misaligned disc are likely to be significantly more luminous than those accreting from a flat disc. We compute explicitly the time-scales for the warping of the disc and for the alignment process and compare our results with earlier estimates based on simplified steady-state solutions. We also confirm earlier predictions that, under appropriate circumstances, accretion can proceed in a counter-aligned fashion, so that the accreted material will spin-down the hole, rather than spinning it up. Our results have implication in a number of different observational features of AGN such as the orientation and shape of jets, the shape of X-ray iron lines and the possibility of obscuration and absorption of X-ray by the outer disc as well as the general issue of the spin history of black holes during their growth.  相似文献   

14.
A brief overview of the ESAC/XMM‐Newton Science Operations Centre Workshop on “Variable and Broad Iron Lines around Black Holes” is presented. Following the relativistic disk‐line theory of accreting black holes, ASCA discovered such broad iron lines from several AGN. XMM‐Newton and Chandra confirmed the ASCA results, but also found more complexities. It was pointed out that poor modelling of the continuum may mimic broad iron line, if ionized absorbers are present. This degeneracy between the broad line and the continuum shape was shown to be resolved by separately determining the continuum and the reflection component with use of an accurate hard X‐ray spectrum obtained with Suzaku. As a result, the relativistic broad iron lines are now robust. Time variations of the primary continuum and the reflection component are often decoupled, the latter varying little. This is explained by the light bending model that applies in the region near to an extreme Kerr hole. The red‐ and/or blueshifted transient iron line features were found with XMM‐Newton, some of which revealed a possible quasi‐periodicity. Such transient features are important dynamical probes of the black hole vicinity. The remaining issues are briefly mentioned. Finally, there is no doubt that the broad line physics continues to be extremely important. Prospects for the future development are discussed, which justify large next‐generation missions. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The broad X-ray iron line, detected in many active galactic nuclei, is likely to be produced by fluorescence from the X-ray-illuminated central parts of an accretion disc close to a supermassive black hole. The time-averaged shape of the line can be explained most naturally by a combination of special and general relativistic effects. Such line profiles contain information about the black hole spin and the accretion disc, as well as the geometry of the emitting region, and may help to test general relativity in the strong gravity regime. In this paper we embark on the computation of the temporal response of the line to the illuminating flux. Previous studies concentrated on the calculation of reverberation signatures from static sources illuminating the disc. In this paper we focus on the more physically justified case of flares located above the accretion disc and corotating with it. We compute the time-dependent iron line, taking into account all general relativistic effects, and show that its shape is of a very complex nature, and we also present light curves accompanying the iron line variability. We suggest that present and future X-ray satellites like XMM or Constellation-X may be capable of detecting features present in the computed reverberation maps.  相似文献   

16.
Over the last few years X-ray observations of broad-line radio galaxies (BLRGs) by ASCA , RXTE and BeppoSAX have shown that these objects seem to exhibit weaker X-ray reflection features (such as the iron K α line) than radio-quiet Seyferts. This has lead to speculation that the optically thick accretion disc in radio-loud active galactic nuclei (AGN) may be truncated to an optically thin flow in the inner regions of the source. Here, we propose that the weak reflection features are a result of reprocessing in an ionized accretion disc. This would alleviate the need for a change in accretion geometry in these sources. Calculations of reflection spectra from an ionized disc for situations expected in radio-loud AGN (high accretion rate, moderate-to-high black hole mass) predict weak reprocessing features. This idea was tested by fitting the ASCA spectrum of the bright BLRG 3C 120 with the constant density ionized disc models of Ross & Fabian. A good fit was found with an ionization parameter of   ξ ∼4000 erg cm s-1  and the reflection fraction fixed at unity. If observations of BLRGs by XMM-Newton show evidence for ionized reflection then this would support the idea that a high accretion rate is likely required to launch powerful radio jets.  相似文献   

17.
In recent work it was demonstrated that narrow‐line Seyfert 1 galaxies, which possessed spectral complexity in the 2–10 keV band were at the same time X‐ray weak. In this contribution I show how X‐ray weakness can be understood in the context of reflection and light bending picture. In fact, X‐ray weakness should be expected from objects that are in a reflection dominated state. With simultaneous UV and X‐ray data available with most XMM‐Newton observations, an estimate of the X‐ray weakness is relatively straightforward. As such, it is an easy way to substantiate conclusions of reflection dominated spectra, and we use this method to examine recent claims. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We calculate the amount of angular momentum that thermal photons carry out of a viscous black hole accretion disk, due to the strong Doppler shift imparted to them by the high orbital velocity of the radiating disk material. While thermal emission can not drive accretion on its own, we show that along with disk heating it does nonetheless result in a loss of specific angular momentum, thereby contributing to an otherwise viscosity‐driven accretion flow. In particular, we show that the fraction of the angular momentum that is lost to thermal emission at a radius r in a standard, multi‐color disk is ∼0.4rs/r, where rs is the Schwarzschild radius of the black hole. We briefly highlight the key similarties between this effect and the closely related Poynting‐Robertson effect (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
I review some basic results on AGN with supersoft X‐ray spectra and their relations to Galactic binaries in their soft high states. This paper is based on a talk given at the Supersoft Sources Workshop at ESTEC in May 2009. Given the length of the talk and the number of pages the review cannot be complete and is biased towards my personal view. I demonstrate that at high accretion rates supersoft AGNs and Galactic binaries share steep soft X‐ray spectra, that the X‐ray variability of supersoft AGNs is more pronounced compared to Galactic binaries in their high states, that the X‐ray variability of supersoft novae and supersoft AGNs is similar, and that in Galactic binaries mostly positive time lags are seen, while negative time lags are observed in some supersoft AGN (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Several AGN and black hole X-ray binaries show a clear very broad iron line, which is strong evidence that the black holes are rapidly spinning. Detailed analysis of these objects shows that the emission line is not significantly affected by absorption and that the source variability is principally due to variation in amplitude of a power-law. Underlying this is a much less variable, relativistically-smeared, reflection-dominated, component which carries the imprint of strong gravity at a few gravitational radii. The strong gravitational light bending in these regions then explains the power-law variability as due to changes in height of the primary X-ray source above the disc. The reflection component, in particular its variability and the profile of the iron line, enables us to study the innermost regions around an accreting, spinning, black hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号