首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used a large sample of low-inclination spiral galaxies with radially resolved optical and near-infrared photometry to investigate trends in star formation history with radius as a function of galaxy structural parameters. A maximum-likelihood method was used to match all the available photometry of our sample to the colours predicted by stellar population synthesis models. The use of simplistic star formation histories, uncertainties in the stellar population models and considering the importance of dust all compromise the absolute ages and metallicities derived in this work; however, our conclusions are robust in a relative sense. We find that most spiral galaxies have stellar population gradients, in the sense that their inner regions are older and more metal rich than their outer regions. Our main conclusion is that the surface density of a galaxy drives its star formation history, perhaps through a local density dependence in the star formation law. The mass of a galaxy is a less important parameter; the age of a galaxy is relatively unaffected by its mass; however, the metallicity of galaxies depends on both surface density and mass. This suggests that galaxy‐mass-dependent feedback is an important process in the chemical evolution of galaxies. In addition, there is significant cosmic scatter suggesting that mass and density may not be the only parameters affecting the star formation history of a galaxy.  相似文献   

2.
We present an examination of the kinematics and stellar populations of a sample of three brightest group galaxies (BGGs) and three brightest cluster galaxies (BCGs) in X-ray groups and clusters. We have obtained high signal-to-noise ratio Gemini/Gemini South Multi-Object Spectrograph (GMOS) long-slit spectra of these galaxies and use Lick indices to determine ages, metallicities and α-element abundance ratios out to at least their effective radii. We find that the BGGs and BCGs have very uniform masses, central ages and central metallicities. Examining the radial dependence of their stellar populations, we find no significant velocity dispersion, age, or α-enhancement gradients. However, we find a wide range of metallicity gradients, suggesting a variety of formation mechanisms. The range of metallicity gradients observed is surprising, given the homogeneous environment these galaxies probe and their uniform central stellar populations. However, our results are inconsistent with any single model of galaxy formation and emphasize the need for more theoretical understanding of both the origins of metallicity gradients and galaxy formation itself. We postulate two possible physical causes for the different formation mechanisms.  相似文献   

3.
We introduce versatile spectral analysis (VESPA): a new method which aims to recover robust star formation and metallicity histories from galactic spectra. VESPA uses the full spectral range to construct a galaxy history from synthetic models. We investigate the use of an adaptative parametrization grid to recover reliable star formation histories on a galaxy-by-galaxy basis. Our goal is robustness as opposed to high-resolution histories, and the method is designed to return high time resolution only where the data demand it. In this paper we detail the method and we present our findings when we apply VESPA to synthetic and real Sloan Digital Sky Survey (SDSS) spectroscopic data. We show that the number of parameters that can be recovered from a spectrum depends strongly on the signal-to-noise ratio, wavelength coverage and presence or absence of a young population. For a typical SDSS sample of galaxies, we can normally recover between two and five stellar populations. We find very good agreement between VESPA and our previous analysis of the SDSS sample with MOPED.  相似文献   

4.
We have assembled a catalogue of relative ages, metallicities and abundance ratios for about 150 local galaxies in field, group and cluster environments. The galaxies span morphological types from cD and ellipticals, to late-type spirals. Ages and metallicities were estimated from high-quality published spectral line indices using Worthey & Ottaviani (1997) single stellar population evolutionary models.
The identification of galaxy age as a fourth parameter in the fundamental plane ( Forbes, Ponman & Brown 1998 ) is confirmed by our larger sample of ages. We investigate trends between age and metallicity, and with other physical parameters of the galaxies, such as ellipticity, luminosity and kinematic anisotropy. We demonstrate the existence of a galaxy age–metallicity relation similar to that seen for local galactic disc stars, whereby young galaxies have high metallicity, while old galaxies span a large range in metallicities.
We also investigate the influence of environment and morphology on the galaxy age and metallicity, especially the predictions made by semi-analytic hierarchical clustering models (HCM). We confirm that non-cluster ellipticals are indeed younger on average than cluster ellipticals as predicted by the HCM models. However we also find a trend for the more luminous galaxies to have a higher [Mg/Fe] ratio than the lower luminosity galaxies, which is opposite to the expectation from HCM models.  相似文献   

5.
We derive physical parameters of galaxies from their observed spectra using MOPED, the optimized data compression algorithm of Heavens, Jimenez & Lahav. Here we concentrate on parametrizing galaxy properties, and apply the method to the NGC galaxies in Kennicutt's spectral atlas. We focus on deriving the star formation history, metallicity and dust content of galaxies. The method is very fast, taking a few seconds of CPU time to estimate ∼17 parameters, and is therefore specially suited to studying large data sets, such as the Anglo-Australian two-degree-field (2dF) galaxy survey and the Sloan Digital Sky Survey (SDSS). Without the power of MOPED, the recovery of star formation histories in these surveys would be impractical. In Kennicutt's atlas, we find that for the spheroidals a small recent burst of star formation is required to provide the best fit to the spectrum. There is clearly a need for theoretical stellar atmospheric models with spectral resolution better than 1 Å if we are to extract all the rich information that large redshift surveys contain in their galaxy spectra.  相似文献   

6.
We follow the chemical evolution of a galaxy through star formation and its feedback into the interstellar medium (ISM), starting from primordial gas and allowing for gas to inflow into the region being modelled. We attempt to reproduce observed spectral line strengths for early-type galaxies in order to constrain their star formation histories (SFH). The efficiencies and times of star formation are varied, as are the amount and duration of inflow. We evaluate the chemical enrichment and the mass of stars made with time. Single stellar population (SSP) data are then used to predict line strengths for composite stellar populations. The results are compared with observed line strengths in 10 ellipticals, including some features which help to break the problem of age–metallicity degeneracy in old stellar populations. We find that the elliptical galaxies modelled require high metallicity SSPs (> 3 Z⊙) at later times. In addition, the strong lines observed cannot be produced by an initial starburst in primordial gas, even if a large amount of inflow is allowed for during the first few × 108 yr. This is because some pre-enrichment is required for lines in the bulk of the stars to approach the observed line strengths in ellipticals. These strong lines are better modelled by a system with a delayed burst of star formation, following an early SFH which can be a burst or more steady star formation. Such a model is representative of star formation in normal ellipticals or spirals, respectively, followed by a starburst and gas inflow during a merger or strong interaction with a gas-rich galaxy. Alternatively, a single initial burst of normal stars with a Salpeter initial mass function could produce the observed strong lines if it followed some pre-enrichment process which did not form long-lived stars (e.g. population III stars).  相似文献   

7.
Different compositions of galaxy types in the field in comparison to galaxy clusters as described by the morphology–density relation in the local universe are interpreted as a result of transformation processes from late- to early-type galaxies. This interpretation is supported by the Butcher–Oemler effect. We investigate E+A galaxies as an intermediate state between late-type galaxies in low-density environments and early-type galaxies in high-density environment to constrain the possible transformation processes. For this purpose, we model a grid of post-starburst galaxies by inducing a burst and/or a halting of star formation on the normal evolution of spiral galaxies with our galaxy evolution code galev . From our models, we find that the common E+A criteria exclude a significant number of post-starburst galaxies, and propose that comparing their spectral energy distributions leads to a more sufficient method to investigate post-starburst galaxies. We predict that a higher number of E+A galaxies in the early universe cannot be ascribed solely to a higher number of starburst, but is a result of a lower metallicity and a higher burst strength due to more gas content of the galaxies in the early universe. We find that even galaxies with a normal evolution without a starburst have an Hδ-strong phase at early galaxy ages.  相似文献   

8.
星系的光谱包含其内部恒星的年龄和金属丰度等信息, 从观测光谱数据中测量这些信息对于深入了解星系的形成和演化至关重要. LAMOST (Large Sky Area Multi-Object Fiber Spectroscopic Telescope)巡天发布了大量的星系光谱, 这些高维光谱与它们的物理参数之间存在着高度的非线性关系. 而深度学习适合于处理多维、海量的非线性数据, 因此基于深度学习技术构建了一个8个卷积层$+$4个池化层$+$1个全连接层的卷积神经网络, 对LAMOST Data Release 7 (DR7)星系的年龄和金属丰度进行自动估计. 实验结果表明, 使用卷积神经网络通过星系光谱预测的星族参数与传统方法基本一致, 误差在0.18dex以内, 并且随着光谱信噪比的增大, 预测误差越来越小. 实验还对比了卷积神经网络与随机森林回归模型、深度神经网络的参数测量结果, 结果表明卷积神经网络的结果优于其他两种回归模型.  相似文献   

9.
In the galaxy parameter fitting by means of stellar population synthesis, it is found that compared with the evolutionary population synthesis (EPS) model without binary interactions, the stellar age and metallicity of a galaxy derived from the EPS model with binary interactions are larger. But, we are still unclear how the binary interactions affect the galaxy evolution. For the early-type galaxies with the UV-excess phenomenon, there are two main-stream explanations: recent star formation (RSF) and binary interactions. In this study, we obtain the mass return rate and chemical yield for the stellar populations with and without binary interactions. In combination with the galaxy chemical evolution and photoionization models, we study the effects of binary interactions on the chemical evolution and metallicity evolution for the early-type galaxies with the UV-excess phenomenon under the two formation mechanisms. We find that the inclusion of binary interactions can raise the ejected mass, metallicity, alpha element, and accelerate the gas cooling. These can reasonably explain the conclusions made by the EPS models. Moreover, we find that the gas cooling is more efficient under the UV-excess formation mechanism by the binary interactions rather than the RSF, and the ratio of element abundance is different for the two mechanisms, which can be further used to distinguish these two mechanisms.  相似文献   

10.
The Fornax cluster galaxies NGC 1399 and NGC 1404 are ideal for studying the effects of a cluster environment on globular cluster systems. Here we present new optical imaging of these two galaxies from both the Hubble Space Telescope 's Wide Field and Planetary Camera 2 and the Cerro Tololo Inter-American Observatory 1.5-m telescope. The combination of both data sets provides a unique insight on the spatial and colour distribution of globular clusters. From B − I colours, we find that both galaxies have a broad globular cluster metallicity distribution that is inconsistent with a single population. Two Gaussians provide a reasonable representation of the metallicity distribution in each galaxy. The metal-rich subpopulation is more centrally concentrated than the metal-poor one. We show that the radial metallicity gradient can be explained by the changing relative mix of the two globular cluster subpopulations. We derive globular cluster surface density profiles, and find that they are flatter (i.e., more extended) than the underlying starlight. The total number of globular clusters and specific frequency are calculated to be N =5700±500, SN =11.5±1.0 for NGC 1399, and N =725±145, SN =2.0±0.5 for NGC 1404. Our results are compared with the expectations of globular cluster formation scenarios.  相似文献   

11.
We have performed deep imaging of a diverse sample of 26 low surface brightness galaxies (LSBGs) in the optical and the near-infrared. Using stellar population synthesis models, we find that it is possible to place constraints on the ratio of young to old stars (which we parametrize in terms of the average age of the galaxy), as well as the metallicity of the galaxy, using optical and near-infrared colours. LSBGs have a wide range of morphologies and stellar populations, ranging from older, high-metallicity earlier types to much younger and lower-metallicity late-type galaxies. Despite this wide range of star formation histories, we find that colour gradients are common in LSBGs. These are most naturally interpreted as gradients in mean stellar age, with the outer regions of LSBGs having lower ages than their inner regions. In an attempt to understand what drives the differences in LSBG stellar populations, we compare LSBG average ages and metallicities with their physical parameters. Strong correlations are seen between an LSBG's star formation history and its K -band surface brightness, K -band absolute magnitude and gas fraction. These correlations are consistent with a scenario in which the star formation history of an LSBG primarily correlates with its surface density and its metallicity correlates with both its mass and its surface density.  相似文献   

12.
We compile multi-wavelength data from ultraviolet to infrared(IR) bands as well as redshift and source-type information, for a large sample of 178 341 sources in the Hawaii-Hubble Deep Field-North field. A total of 145 635 sources among the full sample are classified/treated as galaxies and have redshift information available. We derive physical properties for these sources utilizing the spectral energy distribution fitting code CIGALE that is based on Bayesian analysis. Through various consistency and robustness checks, we find that our stellar-mass and star-formation rate(SFR) estimates are reliable, which is mainly due to two facts. Firstly, we adopt the most up-to-date and accurate redshifts and point spread functionmatched photometry; and secondly, we make sensible parameter choices with the CIGALE code and take into account the influences of mid-IR/far-IR data, star-formation history models, and AGN contribution. We release our catalog of galaxy properties publicly(including, e.g., redshift, stellar mass, SFR, age, metallicity, dust attenuation). It is the largest of its kind in this field and should facilitate future relevant studies on the formation and evolution of galaxies.  相似文献   

13.
We have used extensive libraries of model and empirical galaxy spectra [assembled, respectively, from the population synthesis code of Bruzual and Charlot and the fourth data release of the Sloan Digital Sky Survey (SDSS)] to interpret some puzzling features seen in the spectra of high-redshift star-forming galaxies. We show that a stellar He  ii  λ1640 emission line, produced in the expanding atmospheres of Of and Wolf–Rayet stars, should be detectable with an equivalent width of 0.5–1.5 Å in the integrated spectra of star-forming galaxies, provided the metallicity is greater than about half solar. Our models reproduce the strength of the He  ii  λ1640 line measured in the spectra of Lyman-break galaxies for established values of their metallicities. With better empirical calibrations in local galaxies, this spectral feature has the potential of becoming a useful diagnostic of massive star winds at high, as well as low redshifts.
We also uncover a relationship in SDSS galaxies between their location in the [O  iii ]/Hβ versus [N  ii ]/Hα diagnostic diagram (the BPT diagram) and their excess specific star formation rate relative to galaxies of similar mass. We infer that an elevated ionization parameter U is at the root of this effect, and propose that this is also the cause of the offset of high-redshift star-forming galaxies in the BPT diagram compared to local ones. We further speculate that higher electron densities and escape fractions of hydrogen ionizing photons may be the factors responsible for the systematically higher values of U in the H  ii regions of high-redshift galaxies. The impact of such differences on abundance determinations from strong nebular lines are considered and found to be relatively minor.  相似文献   

14.
We present a possible star formation and chemical evolutionary history for two early-type galaxies NGC 1407 and NGC 1400. They are the two brightest galaxies of the NGC 1407 (or Eridanus-A) group, one of the 60 groups studied as part of the Group Evolution Multi-wavelength Study.
Our analysis is based on new high signal-to-noise ratio spatially resolved integrated spectra obtained at the ESO 3.6-m telescope, out to ∼0.6 (NGC 1407) and ∼1.3 (NGC 1400) effective radii. Using Lick/IDS indices, we estimate luminosity-weighted ages, metallicities and α-element abundance ratios. Colour radial distributions from HST /ACS and Subaru Suprime-Cam multiband wide-field imaging are compared to colours predicted from spectroscopically determined ages and metallicities using single stellar population (SSP) models. The galaxies formed over half of their mass in a single short-lived burst of star formation  (≥100 M yr−1)  at redshift z ≥ 5. This likely involved an outside–in mechanism with supernova-driven galactic winds, as suggested by the flatness of the α-element radial profiles and the strong negative metallicity gradients. Our results support the predictions of the revised version of the monolithic collapse model for galaxy formation and evolution. We speculate that, since formation, the galaxies have evolved quiescently and that we are witnessing the first infall of NGC 1400 in the group.  相似文献   

15.
A new method for classification of galaxy spectra is presented, based on a recently introduced information theoretical principle, the information bottleneck . For any desired number of classes, galaxies are classified such that the information content about the spectra is maximally preserved. The result is classes of galaxies with similar spectra, where the similarity is determined via a measure of information. We apply our method to ∼6000 galaxy spectra from the ongoing 2dF redshift survey, and a mock-2dF catalogue produced by a cold dark matter (CDM) based semi-analytic model of galaxy formation. We find a good match between the mean spectra of the classes found in the data and in the models. For the mock catalogue, we find that the classes produced by our algorithm form an intuitively sensible sequence in terms of physical properties such as colour, star formation activity, morphology, and internal velocity dispersion. We also show the correlation of the classes with the projections resulting from a principal component analysis.  相似文献   

16.
Stellar populations in spiral bulges are investigated using the Lick system of spectral indices. Long-slit spectroscopic observations of line strengths and kinematics made along the minor axes of four spiral bulges are reported. Comparisons are made between central line strengths in spiral bulges and those in other morphological types [elliptical, spheroidal (Sph) and S0]. The bulges investigated are found to have central line strengths comparable to those of single stellar populations of approximately solar abundance or above. Negative radial gradients are observed in line strengths, similar to those exhibited by elliptical galaxies. The bulge data are also consistent with correlations between Mg2, Mg2 gradient and central velocity dispersion observed in elliptical galaxies. In contrast to elliptical galaxies, central line strengths lie within the loci defining the range of 〈Fe〉 and Mg2 achieved by Worthey's solar abundance ratio, single stellar populations (SSPs). The implication of solar abundance ratios indicates significant differences in the star formation histories of spiral bulges and elliptical galaxies. A 'single zone with infall' model of galactic chemical evolution, using Worthey's SSPs, is used to constrain the possible star formation histories of our sample. We show that the 〈Fe〉, Mg2 and H β line strengths observed in these bulges cannot be reproduced using primordial collapse models of formation but can be reproduced by models with extended infall of gas and star formation (2–17 Gyr) in the region modelled. One galaxy (NGC 5689) shows a central population with a luminosity-weighted average age of ∼5 Gyr, supporting the idea of extended star formation. Kinematic substructure, possibly associated with a central spike in metallicity, is observed at the centre of the Sa galaxy NGC 3623.  相似文献   

17.
We explore whether the rest-frame near-ultraviolet spectral region, observable in high-redshift galaxies via optical spectroscopy, contains sufficient information to allow the degeneracy between age and metallicity to be lifted. We do this by first testing the ability of evolutionary synthesis models to reclaim the correct metallicity when fitted to the near-ultraviolet spectra of F stars of known (subsolar and supersolar) metallicity. F stars are of particular interest because the rest-frame near-ultraviolet spectra of the oldest known elliptical galaxies at   z > 1  appear to be dominated by F stars near to the main-sequence turn-off.
We find that, in the case of the F stars, where the Hubble Space Telescope ultraviolet spectra have a high signal-to-noise ratio, fitting models in which the metallicity is allowed to vary as a free parameter is rather successful at deriving the correct metallicity. As a result, the estimated turn-off ages of these stars yielded by model-fitting are well constrained. Encouraged by this we have fitted these same variable-metallicity models to the deep, optical spectra of the   z ≃ 1.5 mJy  radio galaxies 53W091 and 53W069 obtained with the Keck telescope. While the age and metallicity are not so easily constrained for these galaxies, we find that even when metallicity is allowed as a free parameter, the best estimates of their ages are still ≥3 Gyr, with ages younger than 2 Gyr now strongly excluded. Furthermore, we find that a search of the entire parameter space of metallicity and star formation history using MOPED leads to the same conclusion. Our results therefore continue to argue strongly against an Einstein–de Sitter universe, and favour a Λ-dominated universe in which star formation in at least these particular elliptical galaxies was completed somewhere in the redshift range   z = 3–5  .  相似文献   

18.
The distribution of galaxy properties in groups and clusters holds important information on galaxy evolution and growth of structure in the Universe. While clusters have received appreciable attention in this regard, the role of groups as fundamental to formation of the present-day galaxy population has remained relatively unaddressed. Here, we present stellar ages, metallicities and α-element abundances derived using Lick indices for 67 spectroscopically confirmed members of the NGC 5044 galaxy group with the aim of shedding light on galaxy evolution in the context of the group environment.
We find that galaxies in the NGC 5044 group show evidence for a strong relationship between stellar mass and metallicity, consistent with their counterparts in both higher and lower mass groups and clusters. Galaxies show no clear trend of age or α-element abundance with mass, but these data form a tight sequence when fitted simultaneously in age, metallicity and stellar mass. In the context of the group environment, our data support the tidal disruption of low-mass galaxies at small group-centric radii, as evident from an apparent lack of galaxies below  ∼109 M  within ∼100 kpc of the brightest group galaxy. Using a joint analysis of absorption- and emission-line metallicities, we are able to show that the star-forming galaxy population in the NGC 5044 group appears to require gas removal to explain the ∼1.5 dex offset between absorption- and emission-line metallicities observed in some cases. A comparison with other stellar population properties suggests that this gas removal is dominated by galaxy interactions with the hot intragroup medium.  相似文献   

19.
20.
We present the first 3D observations of a diffuse elliptical galaxy (dE). The good quality data (S/N up to 40) reveal the kinematical signature of an embedded stellar disc, reminiscent of what is commonly observed in elliptical galaxies, though similarity of their origins is questionable. Colour map built from Hubble Space Telescope Advanced Camera for Surveys (ACS) images confirms the presence of this disc. Its characteristic scale (about 3 arcsec =250 pc) is about a half of galaxy's effective radius, and its metallicity is 0.1–0.2 dex larger than the underlying population. Fitting the spectra with synthetic single stellar populations (SSP), we found an SSP-equivalent age of 5 Gyr and nearly solar metallicity [Fe/H]  =−0.06  dex. We checked that these determinations are consistent with those based on Lick indices, but have smaller error bars. The kinematical discovery of a stellar disc in dE gives additional support to an evolutionary link from dwarf irregular galaxies due to stripping of the gas against the intracluster medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号