首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Three-dimensional excitation–emission matrix (EEM) fluorescence spectra of water-soluble organic compounds (WSOC) from aerosol samples were measured and compared with those reported in the literature for natural dissolved organic matter. The EEM profiles of the WSOC presented three characteristic excitation/emission (Exc/Em) peaks: 240/405 nm, 310/405 nm and 280/340 nm. The fluorescence intensities at Exc/Em240/405 nm and Exc/Em310/405 nm are located at wavelengths shorter than those reported for aquatic humic substances, indicating a smaller content of both aromatic structures and condensed unsaturated bond systems in the WSOC fraction. The EEM profiles of fractions obtained by the isolation procedure of the WSOC by the XAD resins showed that a fractionation has occurred and the XAD-8 eluate is highly representative of the total WSOC of collected aerosol. Synchronous scan spectra were more detailed than conventional fluorescence emission spectra, appearing more suitable for studying multicomponent samples such as the WSOC from atmospheric aerosols.  相似文献   

2.
The sensible heat flux density C and the latent heat flux density E are coupled in the case of a multi-layer model of vegetation. Therefore two linearly independent combinations of C and E, the enthalpy flux density H and the saturation heat flux density J, are introduced. Two electrical analogues, for H and J, are designed. They are equivalent to the resistance scheme for C and E, but uncoupled. Penman's formulas for C and E, which are applicable only to single-layer models, can be expressed equivalently in terms of H and J. This version of Penman's formulas can be extended easily to multi-layer canopies.  相似文献   

3.
The reactions of alkoxy radicals determine to a large extent the products formed during the atmospheric degradations of emitted organic compounds. Experimental data concerning the decompositions, 1,5-H shift isomerizations and reactions with O2 of several classes of alkoxy radicals are inconsistent with literature estimations of their absolute or relative rate constants. An alternative, although empirical, method for assessing the relative importance under atmospheric conditions of the reactions of alkoxy radicals with O2 versus decomposition was derived. This estimation method utilizes the differences in the heats of reaction, (H)=(Hdecomposition–HO 2 reaction), between these two reactions pathways. For (H)[22–0.5(HO 2 reaction)], alkoxy radical decomposition dominates over the reaction with O2 at room temperature and atmospheric pressure of air, while for (H)[25-0.5(HO 2 reaction)], the O2 reaction dominates over decomposition (where the units of H are in kcal mol–1). The utility and shortcomings of this approach are discussed. It is concluded that further studies concerning the reactions of alkoxy radicals are needed.  相似文献   

4.
STAR (System for Transfer of Atmospheric Radiation) was developed to calculate accurately and efficiently the irradiance, the actinic flux, and the radiance in the troposphere. Additionally a very efficient calculation scheme to computer photolysis frequencies for 21 different gases was evolved. STAR includes representative data bases for atmospheric constituents, especially aerosol particles. With this model package a sensitivity study of the influence of different parameter on photolysis frequencies in particular of O3 to Singlet D oxygen atoms, of NO2, and of HCHO was performed. The results show the quantitative effects of the influence of the solar zenith angle, the ozone concentration and vertical profile, the aerosol particles, the surface albedo, the temperature, the pressure, the concentration of NO2, and different types of clouds on the photolysis frequencies.Notation I A(, ) actinic flux - I H(, ) irradiance - L(, , , ) radiance - wavelength - azimuth angle - cosine of zenith angle - s cosine of solar zenith angle - optical depth - s scattering coefficient - c extinction coefficient - o single scattering albedo - p mix mixed phase function - g mix mixed asymmetry factor - J gas photolysis frequency  相似文献   

5.
Zusammenfassung Bisher wurde der Umkehreffekt vonGötz nur mittels Photozelle oder Zählrohr untersucht. Die Anwendung des Multipliers als Meßinstrument bietet wegen dessen wesentlich größerer Empfindlichkeit viele Vorteile. So kann damit noch bei Zenitdistanzen der Sonnez>90° bei kleineren Wellenlängen als bisher und bei engerem Spalt des Spektrometers (bessere Monochromasie) gemessen werden.Resultate: 1. Die Verschiebung der Minima der Umkehrkurven,i n /i m =f(z), erfolgtgleichsinnig mit abnehmender Wellenlänge n nach kleineren Zenitdistanzen (entgegen den Angaben vonSchein undStoll, aber in Übereinstimmung mit der Theorie nachGötz undDobson). 2. Zum ersten Mal beziehen sich hier die Angaben aufeffektive Wellenlängen, die ihrerseits noch eine Funktion vonz sind. 3. Aus den Messungen bei den kleinsten, bisher noch nicht zugänglichen Wellenlängen folgt, daß deren Streuniveaus bei tiefen Sonnenständen oberhalb der Schichten größten Ozongehaltes liegen müssen.
Summary Until now the Umkehr-effect of Götz (inversion of intensity-ratio in zenith-scattered sunlight) has been investigated only by means of photocells or Geiger counters. The application of the multiplier as measuring instrument is of greater advantage because of its much higher sensitivity. Measurements can be made with it even with the sun's zenith distancesz>90° at shorter wave-lengths and with a narrower slit of the spectrometer (better monochromasy).Results: (1) The shift of the minima of the Umkehr-curvesi n /i m =f(z), erfolgtgleichsinnig mit abnehmender Wellenlänge n shows the same sense with decreasing wave-length n to shorter zenith distances (in opposition to the assertions ofSchein andStoll, but in agreement with the theory ofGötz andDobson). (2) For the first time the statements refer here to effective wave-lengths which in their turn are a function ofz. (3) From measurements of the shortest wave-lengths which until now have not yet been accessible, it can be concluded that at low sun heights the scattering level is situated above the layers with the greatest ozone content.

Résumé Jusqu'à présent le «Umkehreffect» deGötz, c. à d. l'effet d'inversion des relations d'intensité dans le rayonnement solaire zénithal diffus, n'a été étudié qu'au moyen de cellules photo-électriques ou de compteurs Geiger. En utilisant le multiplicateur comme instrument de mesure on obtient l'avantage d'une bien plus grande sensibilité. Ainsi il est possible de mesurer encore à des distances zénithales du soleil dez>90° par longueurs d'ondes plus courtes que jusqu'ici et avec une fente du spectromètre plus étroite, ce qui nous garantit une meilleure monochromasie.Résultats: 1) Le déplacement des minima des courbes d'inversioni n /i m =f(z), erfolgtgleichsinnig mit abnehmender Wellenlänge n s'effectue dans le même sens que la diminution des longuers d'ondes n , par distances zénithales plus petites (contrairement aux assertions deSchein et deStoll, mais en concordance avec la théorie selonGötz etDobson). — 2) Pour la première fois les données se rapportent ici à des longueurs d'ondes effectives qui, de leur côté, sont encore fonctions dez. — 3) Il ressort des mesures des plus courtes longueurs d'ondes, qui, jusqu'ici, restaient hors d'atteinte, que pour des hauteurs du soleil basses, leur niveau de fiffusion se trouve au-dessus des couches ayant le plus grand contenu d'ozone.


Mit 9 Textabbildungen  相似文献   

6.
Résumé L'auteur montre comment il faut déduire les formes approchées des bilans énergétiques des mouvements atmosphériques en variables , ,p ett de leurs formes générales exactes. Il a tenu compte de la variabilité de la pression à la surface du globe.
Summary It is shown how the approximate energy equations of atmospheric motions expressed with the independent variables , ,p andt must bederived from their exact general form. The variability of surface pressure has been taken into account.

Zusammenfassung Es wird gezeigt, wie sich Näherungsformeln der Energiebilanzen der atmosphärischen Bewegungsvorgänge durch die unabhängigen Variablen , ,p undt von ihrer exakten Formulierung ableiten lassen; dabei wird der Veränderlichkeit des Luftdrucks an der Erdoberfläche Rechnung getragen.
  相似文献   

7.
In a recent paper, the author introduced a new viscous boundary layer, called the mesolayer, in turbulent shear flow. Its importance stems from its location between the inner and outer regions which are controlled by the law of the wall and Reynolds number similarity, respectively. This intrusion prevents the classical overlap assumption which appears to be fundamental in the derivation of the classical logarithmic behavior. The mesolayer has a thickness proportional to Taylor's microscale . This, and the analogy between the energy equation for the spectrum function of isotropic turbulence and the momentum equation for shear flow, suggest the existence of a similar region in wavenumber space with wavenumber k ~ -1. This mesoregion separates the inner region k ~ k s(where k s-1 and is the Kolmogorov length) and the outer region k k e(where k e -1 and l is the energy-containing eddy size) and again invalidates the overlap assumption which appears to be fundamental in the derivation of the classical k -5/3-behavior of the inertial subrange.Incorporation of the mesoregion into the argument leads to a new theory with k -5/3-behavior in two regions (-1 k k s) and (k e k -1) although with two different coefficients of proportionality (Kolmogorov constants). This leads to a wandering of the spectrum curve about the classical k -5/3 line similar to a wandering in turbulent shear flow about the logarithmic curve. This is clearly indicated by the data for the variation of the Kolmogorov constant.Other data support the new theory. In particular, the location of the point k mwhere the curve of the nonlinear energy-transfer function goes through zero shows agreement with the theory, i.e., k m-1.  相似文献   

8.
Drag and drag partition on rough surfaces   总被引:13,自引:0,他引:13  
An analytic treatment of drag and drag partition on rough surfaces is given. The aims are to provide simple predictive expressions for practical applications, and to rationalize existing laboratory and atmospheric data into a single framework. Using dimensional analysis and two physical hypotheses, theoretical predictions are developed for total stress (described by the square root of the canopy drag coefficient), stress partition (described by the ratio S/ of the stress s on the underlying ground surface to total stress ), zero-plane displacement and roughness length. The stress partition prediction is the simple equation S/= 1/(1+), where = CRCS the ratio of element and surface drag coefficients. This prediction agrees very well with data and is free of adjustable constants. Other predictions also agree well with a range of laboratory and atmospheric data.  相似文献   

9.
Summary This work deals with the Linke turbidity factor, based on total spectrum observations of the direct solar beam and aerosol turbidity parametersa a , , and based on observations in broad spectral bands. Diurnal and seasonal variations of these turbidity parameters were analyzed for the period 1975 to 1991.Annual variations of these parameters show low values in winter and high values in both spring and summer. The extinction coefficients decrease with increase of both wavelength and optical airmass. Trend analysis shows an increase in aerosol extinction coefficient below 0.63 m, and a slight decrease for longer wave-lengths.Linear regression relations are also constructed to estimate botha a and whenT L is available. The relations show thata a can be estimated with errors below 20%. The relation with the parameter, may give better results when it is estimated by assigning a fixed value of .Nomenclature AV Monthly and total average of the measured parameter - a Atmospheric optical thicknes - a a Aerosol optical thickness - a r Mean value of optical thickness of. Rayleigh atmosphere over all wavelengths - a o Ozone optical thickness - a o Ozone absorption coefficient - a w Water vapor optical thickness - COR Correlation coefficient of the linear relation in percentage - Ex1, Ex2, Ex3 Aerosol extinction coefficients in the bands .2–.53, .53–.63, .63–.695, respectively - I (o) Normal incident direct solar radiation, under clear sky condition - I o Extraterrestrial insolation at normal incidence - m r Relative (optical) air mass - NO Number of the observations used in either making the relation or the verification - RMSE Root mean square error of the linear relation - RMSE% Percentage value of the root mean square error relative to the average measured value AV - T L Linke turbidity factor - T Dry bulb temperature in °C - u o Ozone layer thickness, cm - Z Zenith angle - Ångström wavelength exponent - Ångström turbidity coefficient - Wavelength - Y The year number after 1975 With 5 Figures  相似文献   

10.
Tropospheric photodissociation rate coefficients (J values) were calculated for NO2, O3, HNO2, CH2O, and CH3CHO using high spectral resolution (0.1 mm wavelength increments), and compared to the J values obtained with numerically degraded resolution (=1, 2, 4, 6, 8, and 10 nm, and several commonly used nonuniform grids). Depending on the molecule, substantial errors can be introduced by the larger increments. Thus for =10 nm, errors are less than 1% for NO2, less than 2% for HNO2, +6.5% to -16% for CH2O, -6.9% to +24% for CH3CHO, and -24% to +110% for O3. The errors for CH2O arise from the fine structure of its absorption spectrum, and are prevalently negative (underestimate of J). The errors for O3, and to a lesser extent for CH3CHO, arise mainly from under-resolving the overlap of the molecular action spectrum and the tropospheric actinic flux in the wavelength region of stratospheric ozone attenuation. The sign of those errors depends on whether the actinic flux is averaged onto the grid before or after the radiative transfer calculation. In all cases studied, grids with 2 nm produced errors no larger than 5%.  相似文献   

11.
Functional forms of the universal similarity functions A, B (for wind components parallel and normal to the surface stress), and C (for potential temperature difference) are determined based on the generalized theory of the resistance laws for the Planetary Boundary Layer (PBL). The similarity-profile functions for the surface layer are matched with the velocity and temperature-defect profiles that are assumed to have shapes modified by certain powers of nondimensional height z/h, where h is the PBL height. The powers of the outer-layer profile functions are determined, so that the functions become negligible in the surface layer. To close the temperature defect law, an assumption that the temperature gradient across the top of the PBL is continuous with the stratification of the overlying atmosphere is used. The result of this assumption is that nondimensional momentum and temperature profiles in the PBL can be described in terms of four basic ratios: (1) roughness ratio = /h (2) scale-height ratio =|f|h/u*, (3) ambient stratification parameter =h/*, and (4) stability parameter =h/L, where L is the Monin-Obukhov length, z0 is the surface roughness, is the upper-air stratification, u * is the friction velocity, and * is the temperature scale at the surface. For stable conditions, the scale-height ratio can be related to the atmospheric stability and the upperair stratification, and the generalized similarity and Rossby number similarity theories become identical. Under appropriate boundary conditions, function A is explicitly dependent on the stability parameter , while B is a function of scale-height ratio , which in turn depends on the stability. Function C is shown to be dependent on the stability and the upper-air stratification, due to the closure assumption used for the temperature profile.The suggested functional forms are compared with other empirical approximations by several authors. The general framework used to determine the functional forms needs to be tested against good boundary-layer measurements.  相似文献   

12.
Summary The effect of the Alpine orography on prototype cold fronts approaching from the west is investigated by three-dimensional numerical model simulations. The numerical experiments cover a range of parameter constellations which govern the prefrontal environment of the front. Especially, the appearance and intensity of prefrontal northern Alpine foehn varies from case to case.The behaviour of a cold front north of the Alps depends much on the prefrontal condition it encounters. It is found that prefrontal foehn can either accelerate or retard the approaching front.An important feature is the pressure depression along the northern Alpine rim that results from the southerly foehn flow. In cases where this depression compensates the eastward directed pressure gradient associated with the largescale flow, the front tends to accelerate and the foehn breaks down as soon as the front passes. In contrast, the foehn prevents the front from a rapid eastward propagation if it is connected with a strong southerly wind component.No-foehn experiments are performed for comparison, where either the mountains are removed, or the static stability is set to neutral. Also shown are effects of different crossfrontal temperature contrasts.List of Symbols c F propagation speed of a front - x, y horizontal grid spacing (cartesian system) - , horizontal grid spacing (geographic system) - t time step - z vertical grid spacing (cartesian system) - cross-frontal potential temperature difference - i potential temperature step at an inversion - E turbulent kinetic energy - f Coriolis parameter - FGP frontogenesis parameter (see section 2.2) - g gravity acceleration (g=9.81 m s–2) - vertical gradient of potential temperature - h terrain elevation (above MSL) - h i height of an inversion (h i =1000 m MSL) - H height of model lid (H=9000 m MSL) - K M exchange coefficient of momentum - K H exchange coefficient of heat and moisture - longitude - N Brunt-Väisäla-frequency - p pressure - Exner function (=T/) - latitude - q v specific humidity - R d gas constant of dry air (R d =287.06 J kg–1 K–1) - density of dry air - t time - T temperature - potential temperature - TFP thermal front parameter (see section 2.2) - u, v, w cartesian wind components - u g ,v g geostrophic wind components - horizontal wind vector - x, y, z cartesian coordinates Abbreviations GND (above) ground level - MSL (above) mean sea level - UTC universal time coordinated With 20 Figures  相似文献   

13.
Atmospheric effects in the remote sensing of phytoplankton pigments   总被引:3,自引:0,他引:3  
We investigate the accuracy with which relevant atmospheric parameters must be estimated to derive phytoplankton pigment concentrations (chlorophyll a plus phaeophytin a ) of a given accuracy from measurements of the ocean's apparent spectral radiance at satellite altitudes. The analysis is limited to an instrument having the characteristics of the Coastal Zone Color Scanner scheduled to orbit the Earth on NIMBUS-G. A phytoplankton pigment algorithm is developed which relates the pigment concentration (C) to the three ratios of upwelling radiance just beneath the sea surface which can be formed from the wavelengths () 440, 520 and 550 nm. The pigment algorithm explains from 94 to 98% of the variance in log10 C over three orders of magnitude in pigment concentration. This is combined with solutions to the radiative transfer equation to simulate the ocean's apparent spectral radiance at satellite altitudes as a function of C and the optical properties of the aerosol, the optical depth of which is assumed to be proportioned to -n . A specific atmospheric correction algorithm, based on the assumption that the ocean is totally absorbing at 670 nm, is then applied to the simulated spectral radiance, from which the pigment concentration is derived. Comparison between the true and derived values of C show that: (1) n is considerably more important than the actual aerosol optical thickness; (2) for C 0299-1 0.2 g l-1 acceptable concentrations can be determined as long as n is not overestimated; (3) as C increases, the accuracy with which n must be estimated, for a given relative accuracy in C, also increases; and (4) for C greater than about 0.5 g 1-1, the radiance at 440 nm becomes essentially useless in determining C. The computations also suggest that if separate pigment algorithms are used for C 1gl-1 and C 1 gl-1, accuracies considerably better than ±± in log C can be obtained for C 1 g l-1 with only a coarse estimate of n, while for C 10 gl-1, this accuracy can be achieved only with very good estimates of n.Contribution No. 387 from the NOAA/ERL Pacific Environmental Laboratory.On leave from Department of Physics, University of Miami, Coral Gables, Florida.  相似文献   

14.
Equilibrium evaporation beneath a growing convective boundary layer   总被引:1,自引:1,他引:0  
Expressions for the equilibrium surface Bowen ratio ( s ) and equilibrium evaporation are derived for a growing convective boundary layer (CBL) in terms of the Bowen ratio at the top of the mixed layer i and the entrainment parameter A R . If AR is put equal to zero, the solution for s becomes-that previously obtained for the zero entrainment or closed box model. The Priestley-Taylor parameter is also calculated and plotted in terms ofA R and i . Realistic combinations of the atmospheric parameters give values of in the range 1.1 to 1.4.  相似文献   

15.
This paper considers the near-field dispersion of an ensemble of tracer particles released instantaneously from an elevated source into an adiabatic surface layer. By modelling the Lagrangian vertical velocity as a Markov process which obeys the Langevin equation, we show analytically that the mean vertical drift velocity w(t) is w()=bu *(1–e (1+)), where is time since release (nondimensionalized with the Lagrangian time scale at the source), b Batchelor's constant, and u *, the friction velocity. Hence, the mean height and mean depth of the ensemble are calculated. Although the derivation is formally valid only when 1, the predictions for w, mean height and mean depth are consistent in the downstream limit ( 1) with surface-layer Lagrangian similarity theory and with the diffusion equation. By comparing the analytical predictions with numerical, randomflight solutions of the Langevin equation, the analytical predictions are shown to be good approximations at all times, both near-field and far-field.  相似文献   

16.
A vapour of radio-lead (212Pb) has been used to measure the Sherwood number, Sh, of model leaves at various angles of incidence,, to the airstream in a wind tunnel. The results for=0 are compared with Pohlhausen's formula and the results for 0, with Powell's experiments. The local values of Sh on the upwind and downwind sides of discs have been obtained. For leaves in the canopy, Sh was found to be about 25% greater than would be predicted by applying Pohlhausen's equation without correction for orientation.  相似文献   

17.
Summary A radiative transfer model has been used to determine the large scale effective 6.6 GHz and 37 GHz optical depths of the vegetation cover. Knowledge of the vegetation optical depth is important for satellite-based large scale soil moisture monitoring using microwave radiometry. The study is based on actual observed large scale surface soil moisture data and observed dual polarization 6.6 and 37 GHz Nimbus/SMMR brightness temperatures over a 3-year period. The derived optical depths have been compared with microwave polarization differences and polarization ratios in both frequencies and with Normalized Difference Vegetation Index (NDVI) values from NOAA/AVHRR. A synergistic approach to derive surface soil emissivity from satellite observed brightness temperatures by inverse modelling is described. This approach improves the relationship between satellite derived surface emissivity and large scale top soil moisture fromR 2=0.45 (no correction for vegetation) toR 2=0.72 (after correction for vegetation). This study also confirms the relationship between the microwave-based MPDI and NDVI earlier described and explained in the literature.List of Symbols f frequency [Hz] - f i(p) fractional absorption at polarizationp - h surface roughness - h h cos2 - H horizontal polarization - n i complex index of refraction - p polarization (H orV) - R s microwave surface reflectivity - T B(p) brightness temperature at polarizationp - T * normalized brightness temperature - T polarization difference (T v-T H) - T s temperature of soil surface - T c temperature of canopy - T max daily maximum air temperature - T min daily minimum air temperature - V vertical polarization - soil moisture distribution factor; also used for the constant to partition the influence of bound and free water components to the dielectric constant of the mixture - empirical complex constant related to soil texture - microwave transmissivity of vegetation (=e ) - * effective transmissivity of vegetation (assuming =0) - microwave emissivity - s emissivity of smooth soil surface - rs emissivity of rough soil surface - vs emissivity of vegetated surface - soil moisture content (% vol.) - K dielectric constant [F·m–1] - K fw dielectric constant of free water [F·m–1] - K ss dielectric constant of soil solids [F·m–1] - K m dielectric constant of mixture [F·m–1] - K o permittivity of free space [8.854·10–12 F·m–1] - high frequency limit ofK wf [F·m–1] - wavelength [m] - incidence angle [degrees from nadir] - polarization ratio (T H/T V) - b soil bulk density [gr·cm–3] - s soil particle density [gr·cm–3] - R surface reflectivity in red portion of spectrum - NIR surface reflectivity in near infrared portion of spectrum - eff effective conductivity of soil extract [mS·cm–1] - vegetation optical depth - 6.6 vegetation optical depth at 6.6 GHz - 37 vegetation optical depth at 37 GHz - * effective vegetation optical depth (assuming =0) - single scattering albedo of vegetation With 12 Figures  相似文献   

18.
A pair of parallel cold wires separated in either the vertical or lateral direction was used to obtain the three components x, y, z of the temperature derivative in the streamwise, lateral and vertical directions, respectively. The average absolute skewness values of x and z are nonzero and approximately equal, while the skewness of y is approximately zero. These results appear to be consistent with the presence of a large, three-dimensional organised structure in the surface layer. There is an apparent low-frequency contamination in the spectral density of y and z due mainly to small errors in estimating the sensitivity of the cold wires. The temperature derivatives were high-pass filtered, the filter being set to remove possible contributions from the large structure and to minimise low-frequency sensitivity contamination. The filtered rms ratios \~x/\~y and \~x/\~z were in the range 0.7 to 0.9, a result in qualitative agreement with that obtained in the laboratory boundary layer by Sreenivasan et al. (1977). The skewness of filtered x or z is negligible, consistent with local isotropy of small-scale temperature fluctuations and in support of the high wavenumber spectral isotropy discussed in Antonia and Chambers (1978).  相似文献   

19.
The relation between the turbulence Reynolds numberR and a Reynolds numberz* based on the friction velocity and height from the ground is established using direct measurements of the r.m.s. longitudinal velocity and turbulent energy dissipation in the atmospheric surface layer. Measurements of the relative magnitude of components of the turbulent kinetic energy budget in the stability range 0 >z/L 0.4 indicate that local balance between production and dissipation is maintained. Approximate expressions, in terms of readily measured micrometeorological quantities, are proposed for the Taylor microscale and the Kolmogorov length scale .  相似文献   

20.
A novel and readily applicable Structure-Activity Relationship (SAR) for predicting the barrier height Eb to decomposition by C-C scission of (substituted) alkoxy radicals is presented. Alkoxy radicals are pivotal intermediates in the atmospheric oxidation of (biogenic) volatile organic compounds, and their fate is therefore of crucial importance to the understanding of atmospheric VOC degradation mechanisms. The SAR is based on available theoretical energy barriers and validated against barriers derived from experimental data. The SAR is expressed solely in terms of the number(s) Ni of alkyl-, hydroxy- and/or oxo-substituents on the - and -carbons of the breaking bond: Eb(kcal/mol) =17.5 – 2.1 × N(alk) – 3.1 ×N(alk) – 8.0 × N,(OH) – 8.0 × N(O=) – 12 × N(O=). For barriers below 7 kcal/mol, an additional, second-order term accounts for the curvature. The SAR reproduces the available experimental and theoretical data within 0.5 to 1 kcal/mol. The SAR generally allows conclusive predictions as to the fate of alkoxy radicals; several examples concerning oxy radicals from prominent atmospheric VOC are presented. Specific limitations of the SAR are also discussed. Using the predicted barrier height Eb, the high-pressure rate coefficient for alkoxy decomposition k diss (298 K) can be obtained from k diss (298 K) = L ×1.8 × 1013 exp(–Eb/RT) s–1, with L the reaction path degeneracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号