首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The microquasar GRO J1655−40 has a black hole with spin angular momentum apparently misaligned to the orbital plane of its companion star. We analytically model the system with a steady-state disc warped by Lense–Thirring precession and find the time-scale for the alignment of the black hole with the binary orbit. We make detailed stellar evolution models so as to estimate the accretion rate and the lifetime of the system in this state. The secondary can be evolving at the end of the main sequence or across the Hertzsprung gap. The mass-transfer rate is typically 50 times higher in the latter case but we find that, in both the cases, the lifetime of the mass-transfer state is at most a few times the alignment time-scale. The fact that the black hole has not yet aligned with the orbital plane is therefore consistent with either model. We conclude that the system may or may not have been counter aligned after its supernova kick but that it is most likely to be close to alignment rather than counter alignment now.  相似文献   

2.
In this paper, we revisit the arguments for the basis of the time evolution of the flares expected to arise when a star is disrupted by a supermassive black hole. We present a simple analytic model relating the light curve to the internal density structure of the star. We thus show that the standard light curve proportional to   t −5/3  only holds at late times. Close to the peak luminosity the light curve is shallower, deviating more strongly from   t −5/3  for more centrally concentrated (e.g. solar type) stars. We test our model numerically by simulating the tidal disruption of several stellar models, described by simple polytropic spheres with index γ. The simulations agree with the analytical model given two considerations. First, the stars are somewhat inflated on reaching pericentre because of the effective reduction of gravity in the tidal field of the black hole. This is well described by a homologous expansion by a factor which becomes smaller as the polytropic index becomes larger. Secondly, for large polytropic indices wings appear in the tails of the energy distribution, indicating that some material is pushed further away from parabolic orbits by shocks in the tidal tails. In all our simulations, the   t −5/3  light curve is achieved only at late stages. In particular, we predict that for solar-type stars, this happens only after the luminosity has dropped by at least 2 mag from the peak. We discuss our results in the light of recent observations of flares in otherwise quiescent galaxies and note the dependence of these results on further parameters, such as the star/hole mass ratio and the stellar orbit.  相似文献   

3.
具有不同质量的恒星在耗尽其热核能源后,最终可能会坍缩成为性质完全不同的致密天体,如白矮星、中子星或者黑洞。从20世纪30年代起,黑洞的观测及其证认一直是天体物理学的研究热点之一。首先简要地回顾了恒星级黑洞的形成及其候选天体的研究历史;然后介绍了如何从观测上证认恒星级黑洞:接着详细讨论了恒星级黑洞的质量和自转参数的测量方法;最后介绍恒星级黑洞观测及其证认的最新研究进展,并做出结论:目前已经有充分的证据宣告在部分吸积X射线双星中存在恒星级黑洞。  相似文献   

4.
We compute the effect of an orbiting gas disc in promoting the coalescence of a central supermassive black hole binary. Unlike earlier studies, we consider a finite mass of gas with explicit time dependence: we do not assume that the gas necessarily adopts a steady state or a spatially constant accretion rate, i.e. that the merging black hole was somehow inserted into a pre-existing accretion disc. We consider the tidal torque of the binary on the disc, and the binary's gravitational radiation. We study the effects of star formation in the gas disc in a simple energy feedback framework.
The disc spectrum differs in detail from that found before. In particular, tidal torques from the secondary black hole heat the edges of the gap, creating bright rims around the secondary. These rims do not in practice have uniform brightness either in azimuth or time, but can on average account for as much as 50 per cent of the integrated light from the disc. This may lead to detectable high-photon-energy variability on the relatively long orbital time-scale of the secondary black hole, and thus offer a prospective signature of a coalescing black hole binary.
We also find that the disc can drive the binary to merger on a reasonable time-scale only if its mass is at least comparable with that of the secondary black hole, and if the initial binary separation is relatively small, i.e.   a 0≲ 0.05  pc. Star formation complicates the merger further by removing mass from the disc. In the feedback model we consider, this sets an effective limit to the disc mass. As a result, binary merging is unlikely unless the black hole mass ratio is ≲0.001. Gas discs thus appear not to be an effective solution to the 'last parsec' problem for a significant class of mergers.  相似文献   

5.
We show that radiation emitted from material falling toward a black hole or neutron star can be blue-shifted as well as red-shifted. Although the red shift can be arbitrarily large near a black hole, there is an upper limit for the blue shift of 1/2. Material incident toward the poles of a magnetic neutron star can simultaneously radiate red and blue-shifted lines. Near an oblique magnetic rotator, the red and blue shifts will show a sinusoidal variation. Such spectral variations are associated with SS 433.  相似文献   

6.
Most transiting planets orbit very close to their parent star, causing strong tidal forces between the two bodies. Tidal interaction can modify the dynamics of the system through orbital alignment, circularization, synchronization and orbital decay by exchange of angular moment. Evidence for tidal circularization in close-in giant planet is well known. Here, we review the evidence for excess rotation of the parent stars due to the pull of tidal forces towards spin-orbit synchronization. We find suggestive empirical evidence for such a process in the present sample of transiting planetary systems. The corresponding angular momentum exchange would imply that some planets have spiralled towards their star by substantial amounts since the dissipation of the protoplanetary disc. We suggest that this could quantitatively account for the observed mass–period relation of close-in gas giants. We discuss how this scenario can be further tested and point out some consequences for theoretical studies of tidal interactions and for the detection and confirmation of transiting planets from radial velocity and photometric surveys.  相似文献   

7.
Gravitational wave signal characteristics from a binary black hole system in which the companion moves through the accretion disc of the primary are studied. We chose the primary to be a super-massive  ( M = 108 M)  Kerr black hole and the companion to be a massive black hole  ( M = 105 M)  to clearly demonstrate the effects. We show that the drag exerted on the companion by the disc is sufficient to reduce the coalescence time of the binary. The drag is primarily due to the fact that the accretion disc on a black hole deviates from a Keplerian disc and becomes sub-Keplerian due to inner boundary condition on the black hole horizon. We consider two types of accretion rates on to the companion. The companion is deeply immersed inside the disc and it can accrete at the Bondi rate which depends on the instantaneous density of the disc. However, an accretion disc can also form around the smaller black hole and it can accrete at its Eddington rate. Thus, this case is also studied and the results are compared. We find that the effect of the disc will be significant in reducing the coalescence time and one needs to incorporate this while interpreting gravitational wave signals emitted from such a binary system.  相似文献   

8.
We consider the problem of tidal disruption of stars in the centre of a galaxy containing a supermassive binary black hole with unequal masses. We assume that over the separation distance between the black holes, the gravitational potential is dominated by the more massive primary black hole. Also, we assume that the number density of stars is concentric with the primary black hole and has a power-law cusp. We show that the bulk of stars with a small angular-momentum component normal to the black hole binary orbit can reach a small value of total angular momentum through secular evolution in the gravitational field of the binary, and hence they can be tidally disrupted by the larger black hole. This effect is analogous to the so-called Kozai effect well known in celestial mechanics. We develop an analytical theory for the secular evolution of the stellar orbits and calculate the rate of tidal disruption. We compare our analytical theory with a simple numerical model and find very good agreement.
Our results show that for a primary black hole mass of  ∼106–107 M  , the black hole mass-ratio   q > 10−2  , cusp size ∼1 pc, the tidal disruption rate can be as large as  ∼10−2–1 M yr−1  . This is at least 102–104 times larger than estimated for the case of a single supermassive black hole. The duration of the phase of enhanced tidal disruption is determined by the dynamical-friction time-scale, and it is rather short: ∼105 yr. The dependence of the tidal disruption rate on the mass ratio, and on the size of the cusp, is also discussed.  相似文献   

9.
In this paper, perturbations of an accretion disk by a star orbiting around a black hole are studied. We report on a numerical experiment, which has been carried out by using a parallel-machine code originally developed by Dönmez (2004). An initially steady state accretion disk near a non-rotating (Schwarzschild) black hole interacts with a “star”, modeled as an initially circular region of increased density. Part of the disk is affected by the interaction. In some cases, a gap develops and shock wave propagates through the disk. We follow the evolution for order of one dynamical period and we show how the non-axisymetric density perturbation further evolves and moves downwards where the material of the disk and the star become eventually accreted onto the central body. When the star perturbs the steady state accretion disk, the disk around the black hole is destroyed by the effect of perturbation. The perturbed accretion disk creates a shock wave during the evolution and it loses angular momentum when the gas hits on the shock waves. Colliding gas with the shock wave is the one of the basic mechanism of emitting the X-rays in the accretion disk. The series of supernovae occurring in the inner disk could entirely destroy the disk in that region which leaves a more massive black hole behind, at the center of galaxies.  相似文献   

10.
Tidal friction in triple stars   总被引:1,自引:0,他引:1  
Tidal friction in close binaries, with periods of a few days, is expected to circularize the orbit on a time-scale long compared with human observation but shorter than, or comparable to, the lifetimes of main-sequence stars. In a hierarchical triple star, however, the perturbing effect of the distant third star may decircularize the inner orbit significantly on a time-scale of the order of days (as in λ Tau) or centuries (as in β Per). If the inner pair is observed to be semidetached, however, it is plausible to assume that the eccentricity is small. This may be because tidal friction is operating on a comparably short time-scale, and so it is in principle amenable to observation. We attempt to determine a lower limit to the strength of tidal friction in λ Tau and β Per, on the basis of this consideration. Tidal friction will also lead to a secular transfer of angular momentum from the inner orbit to the outer orbit. Too rapid a transfer may lead to orbital shrinkage that is fast compared with the nuclear time-scales of the inner systems, and this can also be ruled out on observational grounds. Thus we may be able to set an upper as well as a lower limit to the strength of tidal friction, on the basis of observations. In a young hierarchical triple, provided that the orbits are fairly nearly orthogonal, tidal friction can serve to reduce the inner orbital period from months to days within a fairly short period of time, of order P 2out/ P in. This may be a significant mechanism for producing young short-period binaries.  相似文献   

11.
武曙光  张杨  付正文 《天文学报》2012,53(3):185-196
大质量双黑洞OJ287是一个强引力辐射源.为了探测其引力波信号,需要知道波形,而这主要是由轨道运动所决定.为此,从广义相对论3.5阶后牛顿近似的运动方程出发对OJ287的轨道进行仔细研究,取大黑洞位置固定作为近似,给出了后牛顿近似下3.5阶的次黑洞轨道解,比他人2.5阶的工作高了一阶.次黑洞撞击吸积盘面到光学爆发存在时间延迟,这对于确定轨道参数有很大影响.利用径向距离与爆发时间关系的线性模型,对最近7次爆发时刻的观测值拟合,给出了更精确的OJ287双黑洞的轨道参数及其运动轨道.分析了计算结果,研究运动特征,并且发现了两个新性质:次黑洞进动在初期增加,在晚期接近并和时,进动达到最大值,然后减小并越过0而趋于负值.尚不能确定晚期的这个行为是否由3.5阶近似不够准确所造成.运动方程中耗散性的辐射项,后牛顿2.5阶和3.5阶的系数具有相反的符号.这意味着3.5阶项反而是从外界吸收能量.但2.5阶与3.5阶之和仍然是向外辐射引力波的,体系能量变化率为负.这个工作的计算结果可以用来更精确地计算OJ287的引力辐射.  相似文献   

12.
It has recently been shown by Rauch 38 Tremaine that the rate of angular momentum relaxation in nearly Keplerian star clusters is greatly increased by a process termed 'resonant relaxation'; it was also argued, via a series of scaling arguments, that tidal disruption of stars in galactic nuclei containing massive black holes could be noticeably enhanced by this process. We describe here the results of numerical simulations of resonant tidal disruption which quantitatively test the predictions made by Rauch 38 Tremaine. The simulation method is based on an N -body routine incorporating cloning of stars near the loss cone and a semirelativistic symplectic integration scheme. Normalized disruption rates for resonant and non-resonant nuclei are derived at orbital energies both above and below the critical energy, and the corresponding angular momentum distribution functions are found. The black hole mass above which resonant tidal disruption is quenched by relativistic precession is determined. We also briefly describe the discovery of chaos in the Wisdom–Holman symplectic integrator applied to highly eccentric orbits and propose a modified integration scheme that remains robust under these conditions. We find that resonant disruption rates exceed their non-resonant counterparts by an amount consistent with the predictions; in particular, we estimate the net tidal disruption rate for a fully resonant cluster to be about twice that of its non-resonant counterpart. No significant enhancement in rates is observed outside the critical radius. Relativistic quenching of the effect is found to occur for hole masses M  >  M Q  = (8 ± 3) × 107  M . The numerical results combined with the observed properties of galactic nuclei indicate that for most galaxies the resonant enhancement to tidal disruption rates will be very small.  相似文献   

13.
We show that radiation emitted from material freely falling toward a black hole or neutron star cannot be blue-shifted as recently claimed by Cohen and Struble. The relativistic corrections to the classical apparent limb angle are given explicitly for spherical sources in collapse.  相似文献   

14.
We consider gravitational waves emitted by various populations of compact binaries at cosmological distances. We use population synthesis models to characterize the properties of double neutron stars, double black holes and double white dwarf binaries, and white dwarf–neutron star, white dwarf–black hole and black hole–neutron star systems.
We use the observationally determined cosmic star formation history to reconstruct the redshift distribution of these sources and their merging rate evolution.
The gravitational signals emitted by each source during its early spiralling in phase add randomly to produce a stochastic background in the low-frequency band with spectral strain amplitude between ~10−18 and ~5×10−17 Hz−1/2 at frequencies in the interval ~5×10−6–5×10−5 Hz.
The overall signal, which at frequencies above 10−4 Hz is largely dominated by double white dwarf systems, might be detectable with LISA in the frequency range 1–10 mHz and acts like a confusion-limited noise component, which might limit the LISA sensitivity at frequencies above 1 mHz.  相似文献   

15.
Hydrodynamic simulations of the merger of stellar mass black hole-neutron star binaries are compared with mergers of binary neutron stars. The simulations are Newtonian but take into account the emission and back-reaction of gravitational waves. The use of a physical nuclear equation of state allows us to include the effects of neutrino emission. For low neutron star-to-black hole mass ratios, the neutron star transfers mass to the black hole during a few cycles of orbital decay and subsequent widening before finally being disrupted, whereas for ratios near unity the neutron star is destroyed during its first approach. A gas mass between approximately 0.3 and approximately 0.7 M middle dot in circle is left in an accretion torus around the black hole and radiates neutrinos at a luminosity of several times 1053 ergs s-1 during an estimated accretion timescale of about 0.1 s. The emitted neutrinos and antineutrinos annihilate into e+/- pairs with efficiencies of 1%-3% and rates of up to approximately 2x1052 ergs s-1, thus depositing an energy Enunu&d1; less, similar1051 ergs above the poles of the black hole in a region that contains less than 10-5 M middle dot in circle of baryonic matter. This could allow for relativistic expansion with Lorentz factors around 100 and is sufficient to explain apparent burst luminosities Lgamma approximately Enunu&d1;&solm0;&parl0;fOmegatgamma&parr0; up to several times 1053 ergs s-1 for burst durations tgamma approximately 0.1-1 s, if the gamma emission is collimated in two moderately focused jets in a fraction fOmega=2deltaOmega&solm0;&parl0;4pi&parr0; approximately 1&solm0;100-(1/10) of the sky.  相似文献   

16.
An approximate analytical technique for computing the change in the binding energy of a binary due to an incoming third star moving in a distant parabolic orbit is presented. This is an example of a tidal encounter since we assume that the distance of the third star always considerably exceeds the size of the binary. The perturbation is also adiabatic, varying on a time scale much exceeding the binary period, and the change has an exponential form. Different cases arise depending on the choice of the masses and the angle of inclination of the plane in which the star moves. Some numerical experiments are performed as a means of checking the analytical theory.  相似文献   

17.
Anisotropic emission of gravitational waves during the merger of black holes induces a recoil velocity on the centre of mass of the binary and the final merger product can then be ejected from its host galaxy. We consider ejected black holes which stay on bound orbits around their host haloes. A recoiled black hole which moves on an almost radial orbit outside the virial radius of its central galaxy, in the cold dark matter background, reaches its apapsis in a finite time. Due to small dark matter velocity dispersion at high redshifts and also the small black hole velocity near the apapsis passage a high-density wake forms around these black hole. Gamma-ray emission can result from the enhancement of dark matter annihilation in these wakes. The diffuse high-energy gamma-ray background from the ensemble of such black holes in the Hubble volume is also evaluated.  相似文献   

18.
We investigate the secular dynamics of three-body circumbinary systems under the effect of tides. We use the octupolar non-restricted approximation for the orbital interactions, general relativity corrections, the quadrupolar approximation for the spins, and the viscous linear model for tides. We derive the averaged equations of motion in a simplified vectorial formalism, which is suitable to model the long-term evolution of a wide variety of circumbinary systems in very eccentric and inclined orbits. In particular, this vectorial approach can be used to derive constraints for tidal migration, capture in Cassini states, and stellar spin–orbit misalignment. We show that circumbinary planets with initial arbitrary orbital inclination can become coplanar through a secular resonance between the precession of the orbit and the precession of the spin of one of the stars. We also show that circumbinary systems for which the pericenter of the inner orbit is initially in libration present chaotic motion for the spins and for the eccentricity of the outer orbit. Because our model is valid for the non-restricted problem, it can also be applied to any three-body hierarchical system such as star–planet–satellite systems and triple stellar systems.  相似文献   

19.
Data from the Fermi Gamma-ray Burst Monitor satellite observatory suggested that the recently discovered gravitational wave source, a pair of two coalescing black holes, was related to a gamma-ray burst. The observed high-energy electromagnetic radiation (above 50 keV) originated from a weak transient source and lasted for about 1 s. Its localization is consistent with the direction to GW150914. We speculate about the possible scenario for the formation of a gamma-ray burst accompanied by the gravitational-wave signal. Our model invokes a tight binary system consisting of a massive star and a black hole which leads to the triggering of a collapse of the star’s nucleus, the formation of a second black hole, and finally to the binary black hole merger. For the most-likely configuration of the binary spin vectors with respect to the orbital angular momentum in the GW150914 event, the recoil speed (kick velocity) acquired by the final black hole through gravitational wave emission is of the order of a few hundred km/s and this might be sufficient to get it closer to the envelope of surrounding material and capture a small fraction of matter from the remnant of the host star. The gamma-ray burst is produced by the accretion of this remnant matter onto the final black hole. The moderate spin of the final black hole suggests that the gamma-ray burst jet is powered by weak neutrino emission rather than the Blandford–Znajek mechanism, and hence explains the low power available for the observed GRB signal.  相似文献   

20.
The massive binary black hole OJ287 is a source of intense gravita- tional radiation. To detect the signal of its gravitational waves, a knowledge of the signal waveform will be of great help, and this is mainly determined by the orbital motion of the binary. For this, we carry out a detailed calculation on the orbital motion of OJ287, using the post-Newtonian (PN) approximation up to the 3.5th order within the framework of general relativity. Our result is one order higher than the previous work made by others. As in the process of radiation, there is a time delay from the instance when the secondary black hole impacts on the accretion disk of the primary to the moment of the optical outburst. This time delay has to be taken into consideration when we try to fit the calculating orbit with the observed times of outbursts. Adopting a linear relation between the time delay and the impact distance as an empirical model, we fit the cal- culating orbit with the recent 7 outbursts of OJ287, and obtain the solution of its orbital motion, as well as its averaged orbital parameters. By analyzing the result of 3.5 PN order calculation of the binary system, we find some interesting features. In the early period, the rate of precession of the secondary black hole increases, while in the late period approximate to merging, the rate of precession attains its maximum. Afterwards it diminishes, and finally becomes negative. At present we cannot determine whether this behavior is due to the insuffcient accuracy of the 3.5-th order approximation. For the term of dissipative radiation in the equation of motion, the coeffcients of the 2.5 and 3.5 PN orders possess opposite signs. This implies that the 3.5-th order term represents the absorption of energy from outside. However, the sum of the 2.5-th order and 3.5-th order terms still behaves as radiating gravitational waves outward, the rate of energy variation of the system is negative. The calculated result of this work may be useful for more accurate calculations of the gravitational radiation of OJ287.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号