首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Air temperatures in the trade wind inversion (~850 hPa) over the Caribbean have been rising much faster than sea temperatures. This is associated with an accelerated Hadley circulation, with sinking motions over the Caribbean corresponding with increasing rising motion over the Amazon. The sinking motions induce a faster rate of warming and drying in the trade wind inversion than at other levels. Much of the trend in Caribbean climate is attributable to physical mechanisms; changes in atmospheric composition play a secondary role. Smoke and dust plumes from Africa, drifting westward across the Atlantic, enhance the greenhouse effect in an elevated (1–3 km) layer. A stabilized lower atmosphere across the Caribbean has contributed to warming and drying trends over the twentieth century which are projected to continue. The atmosphere is warming faster than the ocean, causing a decline in sensible heat fluxes that fuel tropical cyclones.  相似文献   

2.
Vegetation is a major component of the climate system because of its controls on the energy and water balance over land. This functioning changes because of the physiological response of leaves to increased CO2. A climate model is used to compare these changes with the climate changes from radiative forcing by greenhouse gases. For this purpose, we use the Community Earth System Model coupled to a slab ocean. Ensemble integrations are done for current and doubled CO2. The consequent reduction of transpiration and net increase of surface radiative heating from reduction in cloudiness increases the temperature over land by a significant fraction of that directly from the radiative warming by CO2. Large-scale atmospheric circulation adjustments result. In particular, over the tropics, a low-level westerly wind anomaly develops associated with reduced geopotential height over land, enhancing moisture transport and convergence, and precipitation increases over the western Amazon, the Congo basin, South Africa, and Indonesia, while over mid-latitudes, land precipitation decreases from reduced evapotranspiration. On average, land precipitation is enhanced by 0.03 mm day?1 (about 19 % of the CO2 radiative forcing induced increase). This increase of land precipitation with decreased ET is an apparent negative feedback, i.e., less ET makes more precipitation. Global precipitation is slightly reduced. Runoff increases associated with both the increased land precipitation and reduced evapotranspiration. Examining the consistency of the variations among ensemble members shows that vegetation feedbacks on precipitation are more robust over the tropics and in mid to high latitudes than over the subtropics where vegetation is sparse and the internal climate variability has a larger influence.  相似文献   

3.
We examine the simulated future change of the North Atlantic winter climate influenced by anthropogenic greenhouses gases and sulfate aerosol. Two simulations performed with the climate model ECHAM4/OPYC3 are investigated: a simulation forced by greenhouse gases and a simulation forced by greenhouse gases and sulfate aerosol. Only the direct aerosol effect on the clear-sky radiative fluxes is considered. The sulfate aerosol has a significant impact on temperature, radiative quantities, precipitation and atmospheric dynamics. Generally, we find a similar, but weaker future climate response if sulfate aerosol is considered additionally. Due to the induced negative top-of-the-atmosphere radiative forcing, the future warming is attenuated. We find no significant future trends in North Atlantic Oscillation (NAO) index in both simulations. However, the aerosol seems to have a balancing effect on the occurence of extreme NAO events. The simulated correlation patterns of the NAO index with temperature and precipitation, respectively, agree well with observations up to the present. The extent of the regions influenced by the NAO tends to be reduced under strong greenhouse gas forcing. If sulfate is included and the warming is smaller, this tendency is reversed. Also, the future decrease in baroclinicity is smaller due to the aerosols’ cooling effect and the poleward shift in track density is partly offset. Our findings imply that in simulations where aerosol cooling is neglected, the magnitude of the future warming over the North Atlantic region is overestimated, and correlation patterns differ from those based on the future simulation including aerosols.  相似文献   

4.
Anthropogenic aerosols play an important role in the atmospheric energy balance. Anthropogenic aerosol optical depth (AOD) and its accompanying shortwave radiative forcing (RF) are usually simulated by nu- merical models. Recently, with the development of space-borne instruments and sophisticated retrieval algorithms, it has become possible to estimate aerosol radiative forcing based on satellite observations. In this study, we have estimated shortwave direct radiative forcing due to anthropogenic aerosols over oceans in all-sky conditions by combining clouds and the Single Scanner Footprint data of the Clouds and Earth’s Radiant Energy System (CERES/SSF) experiment, which provide measurements of upward shortwave fluxes at the top of atmosphere, with Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud products. We found that globally averaged aerosol radiative forcing over oceans in the clear-sky conditions and all-sky conditions were -1.03±0.48 W m-2 and -0.34 ±0.16 W m-2, respectively. Direct radiative forcing by anthropogenic aerosols shows large regional and seasonal variations. In some regions and in particular seasons, the magnitude of direct forcing by anthropogenic aerosols can be comparable to the forcing of greenhouse gases. However, it shows that aerosols caused the cooling effect, rather than warming effect from global scale, which is different from greenhouse gases.  相似文献   

5.
Climate change in Hispañola is studied since 1900 using a variety of datasets. The longer station-observed temperature record has a significant trend of 0.012 °C/year, while the shorter reanalysis datasets exhibit faster warming, suggesting accelerating greenhouse radiative absorption and Hadley circulation. Rainfall trends are insignificant in the observed period, but a CMIP5 model simulation predicts a significant drying trend. The spatial pattern of climate trends was mapped with reanalysis fields and indicates a faster rate of warming over the eastern half of the island, where observations are dense and the drying trend is greatest. Northeasterly trade winds strengthen on the Atlantic side of the island. While trends intensify in the satellite era compared to the earlier 20th century, part of that effect is ascribed to an upturn in the Atlantic Multi-decadal Oscillation.  相似文献   

6.
Richard VanCuren 《Climatic change》2012,112(3-4):1071-1083
Exploiting surface albedo change has been proposed as a form of geoengineering to reduce the heating effect of anthropogenic increases in greenhouse gases (GHGs). Recent modeling experiments have projected significant negative radiative forcing from large-scale implementation of albedo reduction technologies (“cool” roofs and pavements). This paper complements such model studies with measurement-based calculations of the direct radiation balance impacts of replacement of conventional roofing with “cool” roof materials in California. This analysis uses, as a case study, the required changes to commercial buildings embodied in California’s building energy efficiency regulations, representing a total of 4300 ha of roof area distributed over 16 climate zones. The estimated statewide mean radiative forcing per 0.01 increase in albedo (here labeled RF01) is ?1.38 W/m2. The resulting unit-roof-area mean annual radiative forcing impact of this regulation is ?44.2 W/m2. This forcing is computed to counteract the positive radiative forcing of ambient atmospheric CO2 at a rate of about 41 kg for each square meter of roof. Aggregated over the 4300 ha of cool roof estimated built in the first decade after adoption of the State regulation, this is comparable to removing about 1.76 million metric tons (MMT) of CO2 from the atmosphere. The point radiation data used in this study also provide perspective on the spatial variability of cool roof radiative forcing in California, with individual climate zone effectiveness ranging from ?37 to ?59 W/m2 of roof. These “bottom-up” calculations validate the estimates reported for published “top down” modeling, highlight the large spatial diversity of the effects of albedo change within even a limited geographical area, and offer a potential methodology for regulatory agencies to account for the climate effects of “cool” roofing in addition to its well-known energy efficiency benefits.  相似文献   

7.
我国西北大气沙尘气溶胶的辐射效应   总被引:21,自引:3,他引:18  
沈志宝  魏丽 《大气科学》2000,24(4):541-548
利用HEIFE地面辐射平衡观测资料和同期NOAA-11/AVHRR卫星遥感资料定量估算春季我国西北大气沙尘的辐射效应。大气沙尘减小地面净辐射冷却地面,对地-气系统和大气的辐射效应均与地表反照率有关,严重浑浊的沙尘大气在沙漠为短波加热和长波冷却,在绿洲则相反,但净效应都是加热。文中给出了4月大气浑浊度系数约由0.1增大到0.6,在沙漠和绿洲上空沙尘层(850~600 hPa)内大气的附加短波、长波和净加热/冷却率。  相似文献   

8.
Rainfall over eastern Africa (10°S–10°N; 35°E–50°E) is bimodal, with seasonal maxima during the "long rains" of March–April–May (MAM) and the "short rains" of October–November–December (OND). Below average precipitation during consecutive long and short rains seasons over eastern Africa can have devastating long-term impacts on water availability and agriculture. Here, we examine the forcing of drought during consecutive long and short rains seasons over eastern Africa by Indo-Pacific sea surface temperatures (SSTs). The forcing of eastern Africa precipitation and circulation by SSTs is tested using ten ensemble simulations of a global weather forecast model forced by 1950–2010 observed global SSTs. Since the 1980s, Indo-Pacific SSTs have forced more frequent droughts spanning consecutive long and short rains seasons over eastern Africa. The increased frequency of dry conditions is linked to warming SSTs over the Indo-west Pacific and to a lesser degree to Pacific Decadal Variability. During MAM, long-term warming of tropical west Pacific SSTs from 1950–2010 has forced statistically significant precipitation reductions over eastern Africa. The warming west Pacific SSTs have forced changes in the regional lower tropospheric circulation by weakening the Somali Jet, which has reduced moisture and rainfall over the Horn of Africa. During OND, reductions in precipitation over recent decades are oftentimes overshadowed by strong year-to-year precipitation variability forced by the Indian Ocean Dipole and the El Niño–Southern Oscillation.  相似文献   

9.
Releases of halocarbons into the atmosphere over the last 50 years are among the factors that have contributed to changes in the Earth’s climate since pre-industrial times. Their individual and collective potential to contribute directly to surface climate change is usually gauged through calculation of their radiative efficiency, radiative forcing, and/or Global Warming Potential (GWP). For those halocarbons that contain chlorine and bromine, indirect effects on temperature via ozone layer depletion represent another way in which these gases affect climate. Further, halocarbons can also affect the temperature in the stratosphere. In this paper, we use a narrow-band radiative transfer model together with a range of climate models to examine the role of these gases on atmospheric temperatures in the stratosphere and troposphere. We evaluate in detail the halocarbon contributions to temperature changes at the tropical tropopause, and find that they have contributed a significant warming of ~0.4 K over the last 50 years, dominating the effect of the other well-mixed greenhouse gases at these levels. The fact that observed tropical temperatures have not warmed strongly suggests that other mechanisms may be countering this effect. In a climate model this warming of the tropopause layer is found to lead to a 6% smaller climate sensitivity for halocarbons on a globally averaged basis, compared to that for carbon dioxide changes. Using recent observations together with scenarios we also assess their past and predicted future direct and indirect roles on the evolution of surface temperature. We find that the indirect effect of stratospheric ozone depletion could have offset up to approximately half of the predicted past increases in surface temperature that would otherwise have occurred as a result of the direct effect of halocarbons. However, as ozone will likely recover in the next few decades, a slightly faster rate of warming should be expected from the net effect of halocarbons, and we find that together halocarbons could bring forward next century’s expected warming by ~20 years if future emissions projections are realized. In both the troposphere and stratosphere CFC-12 contributes most to the past temperature changes and the emissions projection considered suggest that HFC-134a could contribute most of the warming over the coming century.  相似文献   

10.
Daily gridded (1°×1°) temperature data (1969–2005) were used to detect spatial patterns of temporal trends of maximum and minimum temperature (monthly and seasonal), growing degree days (GDDs) over the crop-growing season (kharif, rabi, and zaid) and annual frequencies of temperature extremes over India. The direction and magnitude of trends, at each grid level, were estimated using the Mann–Kendall statistics (α = 0.05) and further assessed at the homogeneous temperature regions using a field significance test (α=0.05). General warming trends were observed over India with considerable variations in direction and magnitude over space and time. The spatial extent and the magnitude of the increasing trends of minimum temperature (0.02–0.04 °C year?1) were found to be higher than that of maximum temperature (0.01–0.02 °C year?1) during winter and pre-monsoon seasons. Significant negative trends of minimum temperature were found over eastern India during the monsoon months. Such trends were also observed for the maximum temperature over northern and eastern parts, particularly in the winter month of January. The general warming patterns also changed the thermal environment of the crop-growing season causing significant increase in GDDs during kharif and rabi seasons across India. The warming climate has also caused significant increase in occurrences of hot extremes such as hot days and hot nights, and significant decrease in cold extremes such as cold days and cold nights.  相似文献   

11.
Lu Dong  Tianjun Zhou  Bo Wu 《Climate Dynamics》2014,42(1-2):203-217
The mechanism responsible for Indian Ocean Sea surface temperature (SST) basin-wide warming trend during 1958–2004 is studied based on both observational data analysis and numerical experiments with a climate system model FGOALS-gl. To quantitatively estimate the relative contributions of external forcing (anthropogenic and natural forcing) and internal variability, three sets of numerical experiments are conducted, viz. an all forcing run forced by both anthropogenic forcing (greenhouse gases and sulfate aerosols) and natural forcing (solar constant and volcanic aerosols), a natural forcing run driven by only natural forcing, and a pre-industrial control run. The model results are compared to the observations. The results show that the observed warming trend during 1958–2004 (0.5 K (47-year)?1) is largely attributed to the external forcing (more than 90 % of the total trend), while the residual is attributed to the internal variability. Model results indicate that the anthropogenic forcing accounts for approximately 98.8 % contribution of the external forcing trend. Heat budget analysis shows that the surface latent heat flux due to atmosphere and surface longwave radiation, which are mainly associated with anthropogenic forcing, are in favor of the basin-wide warming trend. The basin-wide warming is not spatially uniform, but with an equatorial IOD-like pattern in climate model. The atmospheric processes, oceanic processes and climatological latent heat flux together form an equatorial IOD-like warming pattern, and the oceanic process is the most important in forming the zonal dipole pattern. Both the anthropogenic forcing and natural forcing result in easterly wind anomalies over the equator, which reduce the wind speed, thereby lead to less evaporation and warmer SST in the equatorial western basin. Based on Bjerknes feedback, the easterly wind anomalies uplift the thermocline, which is unfavorable to SST warming in the eastern basin, and contribute to SST warming via deeper thermocline in the western basin. The easterly anomalies also drive westward anomalous equatorial currents, against the eastward climatology currents, which is in favor of the SST warming in the western basin via anomalous warm advection. Therefore, both the atmospheric and oceanic processes are in favor of the IOD-like warming pattern formation over the equator.  相似文献   

12.
Based on the CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation) Version 4.10 products released on 8 November 2016, the Level 2 (L2) aerosol product over the Tibetan Plateau (TP) is evaluated and the aerosol radiative effect is also estimated in this study. As there are still some missing aerosol data points in the daytime CALIPSO Version 4.10 L2 product, this study re-calculated the aerosol extinction coefficient to explore the aerosol radiative effect over the TP based on the CALIPSO Level 1 (L1) and CloudSat 2B-CLDCLASS-LIDAR products. The energy budget estimation obtained by using the AODs (aerosol optical depths) from calculated aerosol extinction coefficient as an input to a radiative transfer model shows better agreement with the Earth’s Radiant Energy System (CERES) and CloudSat 2B-FLXHR-LIDAR observations than that with the input of AODs from aerosol extinction coefficient from CALIPSO Version 4.10 L2 product. The radiative effect and heating rate of aerosols over the TP are further simulated by using the calculated aerosol extinction coefficient. The dust aerosols may heat the atmosphere by retaining the energy in the layer. The instantaneous heating rate can be as high as 5.5 K day–1 depending on the density of the dust layers. Overall, the dust aerosols significantly affect the radiative energy budget and thermodynamic structure of the air over the TP, mainly by altering the shortwave radiation budget. The significant influence of dust aerosols over the TP on the radiation budget may have important implications for investigating the atmospheric circulation and future regional and global climate.  相似文献   

13.
Climate fluctuations in the North Atlantic Ocean have wide-spread implications for Europe, Africa, and the Americas. This study assesses the relative contribution of the long-term trend and variability of North Atlantic warming using EOF analysis of deep-ocean and near-surface observations. Our analysis demonstrates that the recent warming over the North Atlantic is linked to both long-term (including anthropogenic and natural) climate change and multidecadal variability (MDV, ~50–80 years). Our results suggest a general warming trend of 0.031 ± 0.006°C/decade in the upper 2,000 m North Atlantic over the last 80 years of the twentieth century, although during this time there are periods in which short-term trends were strongly amplified by MDV. For example, MDV accounts for ~60% of North Atlantic warming since 1970. The single-sign basin-scale pattern of MDV with prolonged periods of warming (cooling) in the upper ocean layer and opposite tendency in the lower layer is evident from observations. This pattern is associated with a slowdown (enhancement) of the North Atlantic thermohaline overturning circulation during negative (positive) MDV phases. In contrast, the long-term trend exhibits warming in tropical and mid-latitude North Atlantic and a pattern of cooling in regions associated with major northward heat transports, consistent with a slowdown of the North Atlantic circulation as evident from observations and confirmed by selected modeling results. This localized cooling has been masked in recent decades by warming during the positive phase of MDV. Finally, since the North Atlantic Ocean plays a crucial role in establishing and regulating the global thermohaline circulation, the multidecadal fluctuations discussed here should be considered when assessing long-term climate change and variability, both in the North Atlantic and at global scales.  相似文献   

14.
Dissimilarities in temperature trends in space and time over the Indian region have been examined to look for signatures of aerosols’ influence. Separate temperature time series for North and South India were constructed for dry (November–May) and wet (June–October) seasons. Temperature trend for the entire period 1901–2007 and different subperiods of 1901–1950, 1951–1990, 1971–2007, and 1991–2007 have been examined to isolate the aerosol and other greenhouse gas influences on temperatures. Maximum (daytime) temperatures during dry season corresponding to North and South India show significant warming trend of 0.8 and 1.0?°C per hundred years during the period 1901–2007, while minimum temperature shows nebulous trend of 0.2 and 0.3?°C per hundred years over North and South India, respectively. During the wet season, maximum temperature shows nearly half of dry season maximum temperature warming trend. However, asymmetry is observed in dry season maximum temperature trend during post-industrial period 1951–1990 wherein the North/South India shows decreasing/increasing trends, while during the recent period 1991–2007 trends are uniformly positive for both the regions. Spatial and temporal asymmetry in observed trends clearly point to the role of aerosols in lowering temperature trends over northern India. Atmospheric aerosols could cause a negative climate forcing that can modulate the regional surface temperature trends in a significant way. As this forcing acts differentially on day and night temperatures, trends in diurnal temperature range (DTR) provide a direct assessment of impacts of aerosols on temperature trends. Time series of diurnal temperature range for dry and wet seasons have been examined separately for North and South India. Over North India, the DTR for dry season has increased gradually during the period 1901–1970 and thereafter showed decreasing trend, while trends in temperature range over Southern India were almost opposite in phase with North India. The aerosol and greenhouse gases seem to play an important role in the spatial and temporal variability of temperature range over India.  相似文献   

15.
Global climate models predict that terrestrial northern high-latitude snow conditions will change substantially over the twenty-first century. Results from a Community Climate System Model simulation of twentieth and twenty-first (SRES A1B scenario) century climate show increased winter snowfall (+10–40%), altered maximum snow depth (?5 ± 6 cm), and a shortened snow-season (?14 ± 7 days in spring, +20 ± 9 days in autumn). By conducting a series of prescribed snow experiments with the Community Land Model, we isolate how trends in snowfall, snow depth, and snow-season length affect soil temperature trends. Increasing snowfall, by countering the snowpack-shallowing influence of warmer winters and shorter snow seasons, is effectively a soil warming agent, accounting for 10–30% of total soil warming at 1 m depth and ~16% of the simulated twenty-first century decline in near-surface permafrost extent. A shortening snow season enhances soil warming due to increased solar absorption whereas a shallowing snowpack mitigates soil warming due to weaker winter insulation from cold atmospheric air. Snowpack deepening has comparatively less impact due to saturation of snow insulative capacity at deeper snow depths. Snow depth and snow-season length trends tend to be positively related, but their effects on soil temperature are opposing. Consequently, on the century timescale the net change in snow state can either amplify or mitigate soil warming. Snow state changes explain less than 25% of total soil temperature change by 2100. However, for the latter half of twentieth century, snow state variations account for as much as 50–100% of total soil temperature variations.  相似文献   

16.
The global three-dimensional Lagrangian chemistry-transport model STOCHEM has been used to follow the changes in the tropospheric distributions of the two major radiatively-active trace gases, methane and tropospheric ozone, following the emission of pulses of the short-lived tropospheric ozone precursor species, methane, carbon monoxide, NOx and hydrogen. The radiative impacts of NOx emissionswere dependent on the location chosen for the emission pulse, whether at the surface or in the upper troposphere or whether in the northern or southern hemispheres. Global warming potentials were derived for each of the short-lived tropospheric ozone precursor species by integrating the methane and tropospheric ozone responses over a 100 year time horizon. Indirect radiative forcing due to methane and tropospheric ozone changes appear to be significant for all of the tropospheric ozone precursor species studied. Whereas the radiative forcing from methane changes is likely to be dominated by methane emissions, that from tropospheric ozone changes is controlled by all the tropospheric ozone precursor gases, particularly NOxemissions. The indirect radiative forcing impacts of tropospheric ozone changes may be large enough such that ozone precursors should be considered in the basket of trace gases through which policy-makers aim to combat global climate change.  相似文献   

17.
Based on homogenized land surface air temperature (SAT) data (derived from China Homogenized Historical Temperature (CHHT) 1.0), the warming trends over Northeast China are detected in this paper, and the impacts of urban heat islands (UHIs) evaluated. Results show that this region is undergoing rapid warming: the trends of annual mean minimum temperature (MMIT), mean temperature (MT), and mean maximum temperature (MMAT) are 0.40 C decade?1, 0.32 C decade?1, and 0.23 C decade?1, respectively. Regional average temperature series built with these networks including and excluding “typical urban stations” are compared for the periods of 1954–2005. Although impacts of UHIs on the absolute annual and seasonal temperature are identified, UHI contributions to the long-term trends are less than 10% of the regional total warming during the period. The large warming trend during the period is due to a regime shift in around 1988, which accounted for about 51% of the regional warming.  相似文献   

18.
Evidence is presented that the recent trend patterns of surface air temperature and precipitation over the land masses surrounding the North Atlantic Ocean (North America, Greenland, Europe, and North Africa) have been strongly influenced by the warming pattern of the tropical oceans. The current generation of atmosphere–ocean coupled climate models with prescribed radiative forcing changes generally do not capture these regional trend patterns. On the other hand, even uncoupled atmospheric models without the prescribed radiative forcing changes, but with the observed oceanic warming specified only in the tropics, are more successful in this regard. The tropical oceanic warming pattern is poorly represented in the coupled simulations. Our analysis points to model error rather than unpredictable climate noise as a major cause of this discrepancy with respect to the observed trends. This tropical error needs to be reduced to increase confidence in regional climate change projections around the globe, and to formulate better societal responses to projected changes in high-impact phenomena such as droughts and wet spells.  相似文献   

19.
Global average ocean temperature variations to 2,000 m depth during 1955–2011 are simulated with a 40 layer 1D forcing-feedback-mixing model for three forcing cases. The first case uses standard anthropogenic and volcanic external radiative forcings. The second adds non-radiative internal forcing (ocean mixing changes initiated in the top 200 m) proportional to the Multivariate ENSO Index (MEI) to represent an internal mode of natural variability. The third case further adds ENSO-related radiative forcing proportional to MEI as a possible natural cloud forcing mechanism associated with atmospheric circulation changes. The model adjustable parameters are net radiative feedback, effective diffusivities, and internal radiative (e.g., cloud) and non-radiative (ocean mixing) forcing coefficients at adjustable time lags. Model output is compared to Levitus ocean temperature changes in 50 m layers during 1955–2011 to 700 m depth, and to lag regression coefficients between satellite radiative flux variations and sea surface temperature between 2000 and 2010. A net feedback parameter of 1.7Wm?2 K?1 with only anthropogenic and volcanic forcings increases to 2.8Wm?2 K?1 when all ENSO forcings (which are one-third radiative) are included, along with better agreement between model and observations. The results suggest ENSO can influence multi-decadal temperature trends, and that internal radiative forcing of the climate system affects the diagnosis of feedbacks. Also, the relatively small differences in model ocean warming associated with the three cases suggests that the observed levels of ocean warming since the 1950s is not a very strong constraint on our estimates of climate sensitivity.  相似文献   

20.
Physical processes responsible for tropospheric adjustment to increasing carbon dioxide concentration are investigated using abrupt CO2 quadrupling experiments of a general circulation model (GCM) called the model for interdisciplinary research on climate version 5 with several configurations including a coupled atmosphere–ocean GCM, atmospheric GCM, and aqua-planet model. A similar experiment was performed in weather forecast mode to explore timescales of the tropospheric adjustment. We found that the shortwave component of the cloud radiative effect (SWcld) reaches its equilibrium within 2 days of the abrupt CO2 increase. The change in SWcld is positive, associated with reduced clouds in the lower troposphere due to warming and drying by instantaneous radiative forcing. A reduction in surface turbulent heat fluxes and increase of the near-surface stability result in shoaling of the marine boundary layer, which shifts the cloud layer downward. These changes are common to all experiments regardless of model configuration, indicating that the cloud adjustment is primarily independent of air–sea coupling and land–sea thermal contrast. The role of land in cloud adjustment is further examined by a series of idealized aqua-planet experiments, with a rectangular continent of varying width. Land surface warming from quadrupled CO2 induces anomalous upward motion, which increases high cloud and associated negative SWcld over land. The geographic distribution of continents regulates the spatial pattern of the cloud adjustment. A larger continent produces more negative SWcld, which partly compensates for a positive SWcld over the ocean. The land-induced negative adjustment is a factor but not necessary requirement for the tropospheric adjustment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号