首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The Wenchuan earthquake has altered the crustal motion characteristics in the eastern margin of the Tibetan Plateau and adjacent regions.Using discontinuous GPS survey data for 2008–2012, the velocity field for the Eurasia reference framework has been obtained, and the general trend of contemporary crustal motion after the occurrence of the Wenchuan earthquake has been studied.In addition, using the velocity field, the block movement velocity has been estimated by least-squares fitting.Furthermore, the properties and displacement rates of main faults have been obtained from the differences in velocity vectors of the blocks on both sides of the faults.The results reveal that there are no obvious changes in the general characteristics of crustal motion in this area after the Wenchuan earthquake.The earthquake mainly changed the rate of the movement of the Chuan-Qing block and caused variation in the movement direction of the South China block.The effect of the earthquake on faults is mainly reflected in variations in fault displacement velocity; there is no fundamental change in the properties of fault activity.The displacement rates of the Xianshuihe fault decreased by 3–4 mm/a, the Longmenshan fault increased by 9–10 mm/a, and the northern segment of the Anninghe fault increased by approximately 9 mm/a.Furthermore, the displacement rates of the Minjiang, Xueshan, Huya, Longquanshan, and Xinjin faults increased by 2–3 mm/a.This implies that the effects of the Wenchuan earthquake on crustal movement can mainly be observed in the Chuan-Qing, South China, and N-Chuan-Dian blocks and their internal faults, as well as the Xianshuihe and Longmenshan faults and the northern section of the Anninghe fault.The reason for this is that the Wenchuan earthquake disturbed the kinematic and dynamic balance in the region.  相似文献   

2.
鄂尔多斯南缘构造带现今地块运动模式   总被引:2,自引:0,他引:2  
依据研究区内断裂体系及GPS地体运动矢量数据,将鄂尔多斯南缘构造带分割成AK共11个断块群,将差异性GPS数据转化为断块之间的细部相对运动,给研究地块细部运动差异提供一种全新的研究思路与研究模式。鄂尔多斯南缘中东部现今构造应力场整体为挤压应力环境。在渭河盆地西部,从西南方向中秦岭动力楔传递而来的挤压应力峰点在武功咸阳口镇一带形成应力主轴,应力主轴两侧楔形地块普遍存在侧向挤出逃逸,逃逸使GPS运动矢量偏离区域主应力方向。渭河盆地东部则存在左行走滑,显示出豫西断隆的阻隔碰撞作用。鄂尔多斯南缘现今地块相对运动规律符合"三头碰撞"模式,四川地块、鄂尔多斯地块、豫西断隆三个地块的"三头碰撞"形成高应力区,"头间逃逸带"形成走滑带和相对低应力区。本次提出地体之间的"多头碰撞"和"头间逃逸"构造模式有一定的普遍性,研究清楚地块之间哪里是"头"接触点、哪里是"头间逃逸带",可以成为研究大中地块周围震源机制分布规律的有效途径。  相似文献   

3.
中国大陆现今构造运动的GPS速度场与活动地块   总被引:130,自引:11,他引:130  
张培震  王琪  马宗晋 《地学前缘》2002,9(2):430-441
GPS观测结果给出了在欧亚参考框架下周边板块的运动状态 ,印度板块的运动方向约NE2 0° ,速度是 40~ 42mm/a ;北美板块的运动方向约NW 2 80°~ 2 90° ,速度是 2 1~ 2 3mm/a ;菲律宾板块的运动方向是NW 2 90°~ 310° ,速度是 37~ 45mm/a ;哈萨克—西伯利亚地盾的运动方向约NE130° ,速度是 3~ 5mm/a。GPS所揭示的中国大陆现今运动场清晰地表现出了以活动地块为单元的分块运动特征。文中给出了各主要活动地块的运动方向和速度。大部分活动地块内部结构完整 ,以整体性的运动为主 ;个别活动地块内部发生构造变形 ,地块的整体性不好。中国大陆以活动地块为单元的现今构造变形可能与大陆岩石圈的结构和性质有关 ,上地壳以脆性变形为主 ,下地壳和上地幔以粘塑性的流变为特征 ,从底部驱动着上覆脆性地块的整体运动。  相似文献   

4.
川青地块在地貌上为川西高原,亦是青藏高原东北边缘最重要的构造单元。新的GPS监测资料表明,在欧亚框架内,川青地块及其邻近的龙门山带和华南地块西缘的地壳运动水平速度,具有自西向东由25.66mm/a递变下降到6.99mm/a的总趋势。速度矢量表现出顺时针涡旋转动。川青地块内具有局部应变积累的非均一的区域剪切。横切鲜水河断裂带中段新的GPS量结果揭示,两侧地块间的平均左旋滑动速率约8mm/a;由于局部应变积累,断裂系南西侧的主断裂的移动速率为9.3mm/a,其间为拉分盆地和小的横向伸展断裂。鲜水河断裂系的左旋断裂滑动作用,调节了川青地块与/11滇地块之间的相对运动。  相似文献   

5.
GPS技术应用于中国地壳运动研究的方法及初步结果   总被引:10,自引:0,他引:10  
文中主要就中国利用GPS等空间测地资料研究地壳运动、构造变形 ,以及用于地震预测探索方面 ,从方法技术和近年来取得的一些初步结果进行了概要性论述。介绍了利用GPS技术资料研究地壳水平运动速度场、水平应变场、建立地壳运动模型等方法研究的进展。由GPS观测给出的地壳水平运动初步结果表明 :中国大陆现时水平运动在全球参考系中为整体向东 ,并兼有顺时针扭转运动。西部地区构造形变强烈 ,整个青藏块体及其边界带 ,以及新疆西部是应变值最高的区域 ,水平应变场主压应变优势分布方向为近NE向 ,空间差异显著 ,反映了印度板块碰撞推挤和青藏块体强烈构造运动的影响。中国大陆东部水平运动的差异性不显著。强震分布于地壳运动的大小、方向显著变化的区域 ,大地震通常发生在水平剪应变高值区或其边缘 ,尤其是与区域主干断裂的构造活动背景相一致的剪应变率高值区。  相似文献   

6.
In this paper we first estimate the strain rate field with 1202 GPS vectors from 1999 to 2005 in the Chinese continent. Then we propose a method to make error analysis of the strain rates computed from GPS vectors based on the Monte Carlo technique. In general, the orientations of compressive principal strain rates are in agreement with those of present tectonic stresses. The strain rates in the paper confirm the tectonic features of Tibetan Plateau such as NE–W compression and shortening, E–W extension, and normal faulting along near N–S faults. At the same time, the eastward extrusion in the east part of Tibet can also be seen from the strain rate field. In the error analysis, independent computation of strain rates is repeated for a large number of times, both the absolute and relative errors as well as the mean value of strain rates are obtained through statistical theory. The error result shows that the errors of strain rates may be associated with the uncertainties of GPS measurement and the distribution of GPS stations in space. The magnitude of the strain rate error is in the range of 3–8 × 10?9/yr across China in general. However, we found that the relative errors are much larger in East China than those in the west of China. In addition, the relative errors of maximum shear strain rates are smaller than those of surface dilation rates. Also, we found that there may be some correlations between maximum shear strain rates and seismic activities. Where the maximum shear strain rates are higher, there the earthquakes occur more frequently. The computed GPS strain rates reveal the distributed nature of deformation across the whole Chinese continent, and can represent the main present-day tectonic features. The strain rate and its error in the paper may provide important constraints to geodynamical modeling.  相似文献   

7.
地表变形、活动断裂和地球物理的综合分析表明,菲律宾洋壳向欧亚大陆的俯冲导致的地幔对流是控制中国东部沿海地区晚新生代以来构造作用的主导因素,是长江口地区地面沉降的主要深部动力学机制。由于地幔对流和青藏高原挤压共同作用导致的地壳热流值的差异则是长江口地区西部隆升、东部沉降且向东沉降速率增大的直接驱动力。预测未来长江口地区的基岩沉降范围将以>10cm/a的速率向西扩大,沉降速率将呈明显加速趋势,40000a之内上海市可能被海水淹没,但板块构造演化的“渐变”特征决定其对当地未来的人类活动不会造成显著影响。根据“地壳均衡理论”,建议在长江口南西部(浙江省北东部)的丘陵山区加大重力载荷如加快城市化进程或人工造山以减小和控制上海地区的沉降。  相似文献   

8.
In order to study the ongoing tectonic deformation in the Rhine Graben area, we reconstruct the local crustal velocity and the strain rate field from GPS array solutions. Following the aim of this work, we compile the velocities of permanent GPS stations belonging to various networks (EUREF, AGNES, REGAL and RGP) in central western Europe. Moreover, the strain rate field is displayed in terms of principal axes and values, while the normal and the shear components of the strain tensor are calculated perpendicular and parallel to the strike of major faults. The results are compared with the fault plane solutions of earthquakes, which have occurred in this area. A broad-scale kinematic deformation model across the Rhine Graben is provided on the basis of tectonics and velocity results of the GPS permanent stations. The area of study is divided into four rigid blocks, between which there might be relative motions. The velocity and the strain rate fields are reconstructed along their borders, by estimating a uniform rotation for each block. The tectonic behaviour is well represented by the four-block model in the Rhine Graben area, while a more detailed model will be needed for a better reconstruction of the strain field in the Alpine region.
Magdala TesauroEmail:
  相似文献   

9.
In this work original algorithms are proposed that allow us to provide a set of points (clusters) on a surface that are in cooperative motion, on the basis of an analysis of GPS data. A single angular velocity vector can describe this movement. The selected clusters are interpreted as rigid blocks. Methods for determining the relative movements of blocks have been developed. The possibilities of the methods are demonstrated using the example of an analysis of blocks in Western Turkey.  相似文献   

10.
云南小江断裂中南段现今活动特征   总被引:7,自引:0,他引:7       下载免费PDF全文
小江断裂为川滇地块、华南地块的边界断裂,是一条重要活动断裂。本文利用GPS监测结果,综合处理得到了欧亚框架下的运动速度场,并以此为基础,采用刚性假设下最小二乘法,对小江断裂中南各段的运动速度进行计算。计算结果表明:断裂中段东支断裂运动速度为3.37±3.20mm/a,西支断裂为3.29±2.73mm/a;断裂南段为3.63±1.76mm/a。整个断裂表现为左行走滑为主兼有挤压活动的特征。这一结果与大的构造环境一致,表明在印度板块与青藏高原的挤压碰撞下,高原东部川滇地块受华南地块、印支地块的阻挡作用,小江断裂产生逆时针移动,呈左行走滑特征。  相似文献   

11.
The results of longstanding GPS measurements in the northwestern part of Central Asia are discussed. These results impose certain constraints for modeling of intraplate tectonic processes. In the territory covered by observations, the velocity vectors of recent motions of the Earth’s surface relative to the stable portion of Eurasia decrease northward. The plane field of velocities, which rules out the development of extension zones, indicates the impossibility of the mountain building driven by ascending mantle flows beneath the lithosphere of these regions. The nonuniform spatial distribution of the motions is suggestive of the discrete character of the Earth’s crust and its deformation. The crust is brittle, at least in its upper part, and capable of breaking into blocks. The blocks, which move at different velocities, interact with one another and change their original orientation and position, while experiencing independent deformations. This phenomenon has been exemplified in the Tarim Block and the Tien Shan. Within the limits of the constraints imposed by the GPS measurements, the mechanism of intracontinental mountain building related to the lateral flow of asthenospheric material and to the drag of the overlying lithospheric layers is discussed. This mechanism springs from Argand’s ideas [2, 29] and the plate tectonic concept [10, 23]. The upper-mantle convective flow in the direction of the Indian Plate’s motion was the main cause of the crustal deformation. The detachment of the lithospheric mantle from the Indian Plate approximately 25 Ma ago and its subduction beneath the Himalayas and Tibet, along with simultaneous ascent of the remaining crust and uplift of the Tibetan Plateau, allowed the mantle flow to spread far northward beneath the Asian continent. This process is accompanied by consecutive separation and sinking of the cooling asthenospheric material over the entire area from the Himalayas to Siberia as the subcrustal material cools. As a result, the flow velocity decreases, the roof of the active flow plunges, and the lithosphere becomes thicker. The motion and deformation of the lithospheric layers dragged by deep flow cannot follow the asthenospheric flow strictly, owing to the rigidity of the layers. Therefore, a difference of tangential velocities originates between the flow and the lithosphere, thus giving rise to horizontal shear stresses. These stresses affect the overlying lithospheric layers, including the crustal ones, and bring about their drag and tectonic delamination. Simultaneously, the decreasing velocity in the direction of the mantle flow results in bending of the lithospheric layers that is accompanied by local warping of the crust and its stacking and fragmentation into blocks. The different velocities of block motions lead to their mechanical interactions. This scenario of intracontinental mountain building allows an explanation of the many specific features of tectonic processes and orogeny in within-plate mountainous regions.  相似文献   

12.
杨石扣  任旭华  张继勋 《岩土力学》2016,37(8):2206-2212
岩体的块体结构和结构面网络模型生成,是进行各种力学分析和场分析的基础。详细研究了有限结构面进行复杂块体切割的过程,提出了相应的算法,并采用C++语言编写了相应的程序。为描述块体切割后的复连通特性,在块体数据结构中添加了有向壳的概念。结构面可以为简单的凸多边形,也可采用形态更加复杂的凹多边形。通过面-面求交线、交线环路搜索形成有向环、有向环包含关系分析形成有向面、有向面拓扑搜索形成有向壳和有向壳包含关系分析形成块体等过程,将有限结构面分别与各块体进行切割运算,形成进行块体切割的一般方法。在切割过程中将得到的有向环,有向面、有向壳和块体分别进行拓扑有效性校核,满足要求后得到最终的块体和结构面网络模型。选取4个算例来验证该方法的可行性。计算结果表明,该方法可以对复杂块体进行有效地切割,结构面可以选择包括凹形面在内的复杂多边形,方法具有普遍意义。  相似文献   

13.
《China Geology》2018,1(4):522-539
Continental China has moved dextral Eastward since Cenozoic time, driven by the collision of the Indian with the Eurasian plate. Evidence for this comes from landscape evolution, the distribution of earthquake epicenters, Cenozoic sedimentary and volcanic rocks, and the measurement of GPS velocity vectors, the distribution of crustal stress, paleomagnetic data, and deep mantle structure, among others. This movement commenced around 40 Ma, coupled with thickened lithosphere and widespread stress release along strike-slip faults that bound the continental Chinese block. Because of continued Northward subduction of the Indian plate, manifestation of the dextral movement has intensified since 25 Ma. Far-reaching effects include extensive strike-slip movement on the Tan-Lu fault in Eastern China, formation of the Dabie ultrahigh pressure metamorphic terrane, extensive thrust faults in East China, delamination and thickening of the lithosphere of South China, a possible tectonic doubling of the Middle-Lower Yangtze Valley metallogenic belt, and the formation of the Japan, Huanghai (East China), and South China Sea.  相似文献   

14.
青藏高原班公-怒江缝合带现今运动状况的GPS观测研究   总被引:2,自引:0,他引:2  
利用青藏高原改则地区一条跨越班公-怒江缝合带的10站GPS剖面在2007-2009年的3期流动观测资料,采用自洽的统一参考框架方法分析研究了改则地区的现今地壳差异运动,得出该区域现今地壳应变率以南北向挤压为主,量值达(104.0±28.6)×10-9/a,同时兼有东西向拉张,量值约为(25.4±17.7)×10-9/a。利用半无限弹性空间的断裂位错模型和GPS速度矢量的约束,反演获得班公-怒江缝合带在该地区(即改则-洞错断裂)的现今运动以右旋走滑为主,走滑速率约为(7.4±0.8) mm/a。  相似文献   

15.
VORTEX MOTION OF THE CRUST DEFORMATION IN THE TIBETAN PLATEAU AND ITS FORELANDFromtheresultsofthecooperativeprojectbetweenChengduInstituteofGeologyandMineralResources andMassachusettsInstituteofTechnology  相似文献   

16.
The variation of the instantaneous rotational angular velocity of the rigid Earth in the lunar-solar gravitational field is studied. The formula is derived for variation of the instantaneous angular velocity of the rigid oblate Earth using the potential function from Euler’s dynamic equations. The theoretical results show that under the influence of the gravitational field of the Moon and the Sun the Earth instantaneous angular velocity varies with periodic terms, but without secular variations. Amplitudes of the periodic terms and their periods are calculated and discussed.  相似文献   

17.
We present a quantitative model for the crustal movement in China with respect to the Eurasia plate by using the three-dimensional finite element code ADELI. The model consists of an elastoplastic upper lithosphere and a viscoelastic lower lithosphere. The lithosphere is supported by the hydrostatic pressure at its base. The India–Eurasia collision is modeled as a velocity boundary condition. Ten large-scale faults are introduced as Coulomb-type frictional zones in the modeling. The values for the root mean square (RMS) of the east and north velocity components differences (RMS(Ue) and RMS(Un)), which are between the observation and the prediction, are regarded as the measurements to evaluate our simulations. We model the long-term crustal deformation in China by adjusting the faults frictions ranged from 0.01 to 0.5 and considering the effects resulted from lithospheric viscosity variation and topographic loading. Our results suggest most of the large-scale faults frictions are not larger than 0.1, which is consistent with other large-scale faults such as the North Anatolian fault (Provost, A.S., Chery, J., Hassani, R., 2003. Three-dimensional mechanical modeling of the GPS velocity field along the North Anatolian fault. Earth Planet. Sci. Lett. 209, 361–377) and the San Andreas fault (Mount, V.S., Suppe, J., 1987. State of stress near the San Andreas fault: implications for wrench tectonics. Geology, 15, 1143–1146). Further, we examine the effects on the long-term crustal deformation in China of three causes: the large-scale faults, lithospheric viscosity structure and topographic loading. Results indicate that the lithospheric viscosity structure and the topographic loading have important influences on the crustal deformation in China, while the influences caused by the large-scale faults are small. Although our simulations satisfactorily reproduce the general picture of crustal movement in China, there is a poor agreement between the model and the observed GPS velocity field in Sichuan–Yunnan area. It may result from our simple models such as that the faults are all vertical from model surface to bottom and that the effects caused by the subduction of Burma slab are neglected.  相似文献   

18.
东亚地区现代地壳运动特征与构造变形   总被引:4,自引:1,他引:4  
任金卫  马宗晋 《地学前缘》2003,10(Z1):58-65
根据“中国地壳运动观测网络”首次发布的GPS观测结果以及国际地球自转服务中心在 2 0 0 0年发布的ITRF97下的站速度矢量和“东南亚地球动力学项目”GPS网的观测结果 ,讨论了东亚地区现今地壳运动和构造变形特征。在ITRF97参考系下 ,中国大陆东部现今地壳运动以向南东方向(12 0 130°)运动为主 ,量值平均为 35mm/a ,西部受印度板块向北东碰撞的影响 ,运动方向发生偏转 ,呈显北东—近东西向运动 ,但这种影响涉及的范围达到了准噶尔盆地北缘一线 ,说明碰撞型板块边界对板内变形的影响远大于俯冲型板块边界。平均来看 ,75 %以上的印度板块相对于欧亚板块间的南北向缩短是通过地壳增厚变形来吸收的 ,这意味着在调节整个青藏高原构造变形的过程中 ,逆断和地壳增厚起了主要的作用。东南亚块体总体上与欧亚板块的运动有所差异 ,相对于欧亚大陆有 10mm/a左右向东的运动。菲律宾板块南部向西的运动速度只有 2 4mm/a。包括华南地块在内的东南亚块体的运动不仅仅是与印度板块的碰撞过程有关 ,也应当与沿着东南亚块体东边界的俯冲过程有关。  相似文献   

19.
全球地壳运动的背景场及其研究进展   总被引:1,自引:0,他引:1  
全球地壳运动是在全球地壳运动背景场中发生的,其背景场的运动参数是表征地壳运动的最基本特征。由于现今板块运动模型ITRF序列均忽略板块边界部分,并且板块以NUVEL1A模型来划分,由此建立的全球板块运动模型不能作为一个严格的全球地壳运动背景场。利用区域速度场和ITRF2000速度场建立一个包括非刚体的板块边界区域和刚体板块的全球地壳运动模型,其板块总角动量ΙLΙ=0.131°/Ma,即不为零,存在整体旋转,由此建立无整体旋转(NNR)模型,并评述其研究进展。  相似文献   

20.
中国大陆现今构造变形GPS观测数据与速度场   总被引:58,自引:6,他引:58  
王琪  张培震  马宗晋 《地学前缘》2002,9(2):415-429
利用 1991— 1999年间 36 2个全球定位系统 (GPS)测站的观测资料 ,初步获得了中国大陆及周边地区现今地壳水平运动的统一速度场。该速度场主要涵盖青藏高原 ,天山 ,塔里木、川滇 ,河西走廊 ,福建东南沿海等重要构造活动区 ,测定精度总体优于 2~ 3mm/a ,速度场站点的分布和测定精度基本上满足中国大陆现今构造变形和动力学研究的需求。现代大地测量第一次比较全面、定量地展示出中国大陆在周边板块作用下大幅度构造变形的图像 ,为模拟大陆岩石圈动力过程提供了基础性的运动学约束条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号