首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The possibility of contactless remote estimation of the temperature in the Earth’s interior from surface magnetotelluric (MT) measurements is examined. The neuronet analysis of MT and temperature measurements in the Bishkek geodynamic research area (the Northern Tien Shan) showed that a contactless electromagnetic geothermometer can in principle be realized. An optimal method including MT measurements and treatment of available thermograms is developed. The method minimizes uncertainties of the remote temperature estimation. The use of six to eight thermograms for calibration of electromagnetic data is shown to provide a 12% relative error of prediction, and a priori geological information available for the region under study can reduce this error. Areas of practical application of a contactless electromagnetic geothermometer are outlined.  相似文献   

2.
In April 2010, volcanic ash from the Eyjafjalla volcano in Iceland strongly impacted aviation in Europe. In order to prevent a similar scenario in the future, a threshold value for safe aviation based on actual mass concentrations was introduced (2 mg m−3 in Germany). This study contrasts microphysical and optical properties of volcanic ash and mineral dust and assesses the detectability of potentially dangerous ash layers (mass concentration larger than 2 mg m−3) from a pilot’s perspective during a flight. Also the possibility to distinguish between volcanic ash and other aerosols is investigated. The visual detectability of airborne volcanic ash is addressed based on idealized radiative transfer simulations and on airborne observations with the DLR Falcon gathered during the Eyjafjalla volcanic ash research flights in 2010 and during the Saharan Mineral Dust Experiments in 2006 and 2008. Mineral dust and volcanic ash aerosol both show an enhanced coarse mode (>1 μm) aerosol concentration, but volcanic ash aerosol additionally contains a significant number of Aitken mode particles (<150 nm) not present in mineral dust. Under daylight clear-sky conditions and depending on the viewing geometry, volcanic ash is visible already at mass concentrations far below what is currently considered dangerous for aircraft engines. However, it is not possible to visually distinguish volcanic ash from other aerosol layers or to determine whether a volcanic ash layer is potentially dangerous (mass concentration larger or smaller than 2 mg m−3). Different appearances due to microphysical differences of both aerosol types are not detectable by the human eye. Nonetheless, as ash concentrations can vary significantly over distances travelled by an airplane within seconds, this visual threat evaluation may contribute greatly to the short-term response of pilots in ash-contaminated air space.  相似文献   

3.
ThestructurefeaturesofstickslipmechanismofthestrikeslipearthquakegeneratingstructureintheinterioroftheChinesemainlandWENL...  相似文献   

4.
The work describes the results of calculations obtained with the Atmospheric Research Model (ARM) general circulation model. The temperature response of the troposphere and middle atmosphere to variations in UV solar radiation were found to have a large-scale wave structure when planetary waves at the lower model boundary were taken into account. In the present paper, the results from the processing of global temperature fields with three databases (ERA-20C, NOAA-CIRES 20th Century Reanalysis, v2, and NCEP/NCAR Reanalysis I) are provided. Analysis of the differences of the mean monthly temperature global fields (January and July) between the maxima and minima of three solar activity cycles (21, 22, and 23 cycles) also demonstrated their nonzonal structure. It was shown that the amplitude of this difference in January in the stratosphere (10 hPa) can be 7–29 K in the Northern Hemisphere. In July, this effect is prominent in Southern Hemisphere. In the troposphere (500 hPa), a nonzonal temperature effect is present in both the Northern and Southern Hemispheres; the amplitude of the effects amounts to approximately 5–12 K. In conclusion, we discuss that the mechanism of solar energy impact on atmospheric temperature discovered by numerical modeling is supported after reanalysis data processing.  相似文献   

5.
(环文林,汪素云,宋昭仪)Thecharacteristicsoftectonicstressfieldaboutstrikeslipearthquake-generatingstructureintheChinesemainland¥Wen-Lin...  相似文献   

6.
The Wudalianchi volcano is a modern volcano erupted since the Holocene.Its frequent occurrence of the small earthquake is considered to be indicator of active dormancy volcano.The S wave velocity structure is inferred from the receiver function for the crust and upper mantle of the Wudalianchi volcano area.The results show that the low velocity structure of Swave is widely distributed undemeath the volcano area and part of the low-velocity-zone located at shallow depth in the Wudalianchi volcano area.The low velocity structure is related to the seismicity.The Moho interface is not clear undemeath the volcano area,which may be regard to be an nec-essary condition for the lava upwelling.Therefore,we infer that the Wudalianchi volcano has the deep structural condition for the volcano activity and may be alive again.  相似文献   

7.
We derive expressions for computing the gravitational field (potential and its radial derivative) generated by an arbitrary homogeneous or laterally varying density contrast layer with a variable depth and thickness based on methods for a spherical harmonic analysis and synthesis of gravity field. The newly derived expressions are utilised in the gravimetric forward modelling of major known density structures within the Earth’s crust (excluding the ocean density contrast) beneath the geoid surface. The gravitational field quantities due to the sediments and crust components density contrasts, shown in numerical examples, are computed using the 2 × 2 arc-deg discrete data from the global crustal model CRUST2.0. These density contrasts are defined relative to the adopted value of the reference crustal density of 2670 kgm−3. All computations are realised globally on a 1 × 1 arc-deg geographical grid at the Earth’s surface. The maxima of the gravitational signal due to the sediments density contrast are mainly along continental shelf regions with the largest sedimentary deposits. The corresponding maxima due to the consolidated crust components density contrast are over areas of the largest continental crustal thickness with variable geological structure.  相似文献   

8.
It is very important to comprehensively interpret areal seismic data with geological data in a research area. For the structural interpretations in the middle depression of the eastern basin of Liaohe oilfield, we first analyze and study geological phenomena on outcrop pictures collected in the field and establish geological outcrop models. Second, we make fault and structural interpretations based on the structural characteristics of the outcrop pictures. Third, we analyze the migration, accumulation, and formation of oil and gas using characteristics of seismic profiles. By geologic and geophysical comprehensive interpretation, it is inferred that, in the research area, the dominant factor controlling oil and gas accumulation is strike-slip faults. Structural modes and the relationship of the oil and gas in the Huangshatuo and Oulituozi oil fields are also analyzed and investigated.  相似文献   

9.
The large-scale harmonic magnetic-convective sources of the main geomagnetic field in the Earth’s core have been determined for the first time. The determination is based on a complete system of eigenfunctions of the magnetic diffusion equation in a homogeneously conducting sphere, which is surrounded by an insulator. The sources of the main geomagnetic field observed, which is responsible for the distribution of the electric currents generating this field in the core, are expressed in terms of large-scale eigenfunctions. In this case, the dipole sources are directly related to the observed geomagnetic dipole, whereas the quadrupole sources are related to the quadrupole, etc. The time variations in the obtained sources are responsible for individual spatiotemporal features in the generation or suppression of each Gaussian component of the observed geomagnetic field. When the commonly accepted observational international geomagnetic reference field (IGRF) models were used to partially reveal these time variations, it became possible to specify the estimate of the Earth’s core conductivity and determine the minimum period that can separate us from the commencement of further inversion or excursion.  相似文献   

10.
The study of magnetization of the ceramic material from 21 archeological monuments of Portugal (the Evora province), dated archeologically from the Bronze Age to the end of the Iron Age has been carried out. For the purpose of more detailed timing of the material from the monuments the method of ceramic age dating on the basis of its porosity has been used. In order to take into account the distorted factors in the determination of the parameters of the ancient geomagnetic field with the aim of the maximal approximation to the actual values the diagnostic features of magnetite weathering have been considered and the level of weathering of the magnetic fraction in the ceramics from archeological monuments has been determined. The data of geomagnetic field-strength variation in the time interval of the 12th century BC to the beginning of the Common Era have been obtained. The field-strength at this time interval varied in the range of 60–90 micro Tesla with the maximal values in the 9th, 8th, and the second half of the 5th to the beginning of the 4th century BC. In addition, the timing of the ceramic material from the urns of the megalithic complex Monte de Tera of the Evora province has been clarified.  相似文献   

11.
The Earth’s crossings of the magnetic sector boundaries are accompanied by changes in the magnetosphere, ionosphere, and troposphere. We considered the baric field’s response to the crossing of the inter-planetary magnetic field (IMF) sector boundaries during a geomagnetically quiet period. The IMF sign is shown to affect atmospheric pressure in high-latitude regions. The efficiency and sign of the relationship vary during the year. The baric field response to the Earth’s crossing of the IMF sector boundaries is most distinct during equinoxes. It is shown that, during a geomagnetically quiet period, the circulation processes in the atmosphere drive the changes in the atmospheric pressure when the Earth passes from one IMF sector into another.  相似文献   

12.
The refinement of the accuracy and resolution of the monthly global gravity field models from the GRACE satellite mission, together with the accumulation of more than a decade-long series of these models, enabled us to reveal the processes that occur in the regions of large (Mw≥8) earthquakes that have not been studied previously. The previous research into the time variations of the gravity field in the regions of the giant earthquakes, such as the seismic catastrophes in Sumatra (2004) and Chile (2010), and the Tohoku mega earthquake in Japan (2011), covered the coseismic gravity jump followed by the long postseismic changes reaching almost the same amplitude. The coseismic gravity jumps resulting from the lower-magnitude events are almost unnoticeable. However, we have established a long steady growth of gravity anomalies after a number of such earthquakes. For instance, in the regions of the subduction earthquakes, the growth of the positive gravity anomaly above the oceanic trench was revealed after two events with magnitudes Mw=8.5 in the Sumatra region (the Nias earthquake of March 2005 and the Bengkulu event of September 2007 near the southern termination of Sumatra Island), after the earthquake with Mw=8.5 on Hokkaido in September 2007, a doublet Simushir earthquake with the magnitudes Mw = 8.3 and 8.1 in the Kuriles in November 2006 and January 2007, and after the earthquake off the Samoa Island in September 2009 (Mw=8.1). The steady changes in the gravity field have also been recorded after the earthquake in the Sichuan region (May 2008, Mw = 8.0) and after the doublet event with magnitudes 8.6 and 8.2, which occurred in the Wharton Basin of the Indian Ocean on April 11, 2012. The detailed analysis of the growth of the positive anomaly in gravity after the Simushir earthquake of November 2006 is presented. The growth started a few months after the event synchronously with the seismic activation on the downdip extension of the coseismically ruptured fault plane zone. The data demonstrating the increasing depth of the aftershocks since March 2007 and the approximately simultaneous change in the direction and average velocity of the horizontal surface displacements at the sites of the regional GPS network indicate that this earthquake induced postseismic displacements in a huge area extending to depths below 100 km. The total displacement since the beginning of the growth of the gravity anomaly up to July 2012 is estimated at 3.0 m in the upper part of the plate’s contact and 1.5 m in the lower part up to a depth of 100 km. With allowance for the size of the region captured by the deformations, the released total energy is equivalent to the earthquake with the magnitude Mw = 8.5. In our opinion, the growth of the gravity anomaly in these regions indicates a large-scale aseismic creep over the areas much more extensive than the source zone of the earthquake. These processes have not been previously revealed by the ground-based techniques. Hence, the time series of the GRACE gravity models are an important source of the new data about the locations and evolution of the locked segments of the subduction zones and their seismic potential.  相似文献   

13.
Reliable data on the paleointensity of the geomagnetic field can become an important source of information both about the mechanisms of generation of the field at present and in the past, and about the internal structure of the Earth, especially the structure and evolution of its core. Unfortunately, the reliability of these data remains a serious problem of paleomagnetic research because of the limitations of experimental methods, and the complexity and diversity of rocks and their magnetic carriers. This is true even for relatively “young” Phanerozoic rocks, but investigation of Precambrian rocks is associated with many additional difficulties. As a consequence, our current knowledge of paleointensity, especially in the Precambrian period, is still very limited. The data limitations do not preclude attempts to use the currently available paleointensity results to analyze the evolution and characteristics of the Earth’s internal structure, such as the age of the Earth’s solid inner core or thermal conductivity in the liquid core. However, such attempts require considerable caution in handling data. In particular, it has now been reliably established that some results on the Precambrian paleointensity overestimate the true paleofield strength. When the paleointensity overestimates are excluded from consideration, the range of the field strength changes in the Precambrian does not exceed the range of its variation in the Phanerozoic. This result calls into question recent assertions that the Earth’s inner core formed in the Mesoproterozoic, about 1.3 billion years ago, triggering a statistically significant increase in the long-term average field strength. Instead, our analysis has shown that the quantity and quality of the currently available data on the Precambrian paleointensity are insufficient to estimate the age of the solid inner core and, therefore, cannot be useful for solving the problem of the thermal conductivity of the Earth’s core. The data are consistent with very young or very “old” inner core ages and, correspondingly, with high or low values of core thermal conductivity.  相似文献   

14.
In the used model, the quasistationary electric field in the atmosphere of the Earth is obtained by solving the conductivity equation. The penetration characteristics of the electric field from the Earth’s surface into the ionosphere depend on both atmospheric and ionosphere conductivity. The ionosphere is taken into account by setting a special condition on the upper boundary of the atmosphere. The influence of the atmospheric surface layer with a reduced conductivity on the penetration of the electric field from the surface of the Earth into the ionosphere is analyzed.  相似文献   

15.
In the Arctic Ocean, direct dating methods are needed as an alternative to the radiocarbon (14C) method and to various indirect approaches for a longer stratigraphy. In past attempts to develop a luminescence sediment dating, the use of fine-silt (4–11 μm) mixture of quartz and feldspar grains from core tops has often produced large age overestimates by several ka. A recent application of micro-focused laser (‘micro-hole’) photon-stimulated luminescence (PSL) to medium-silt to fine-sand quartz grains (11–105 μm) from the core tops at the Alaska margin has been usefully accurate. To extend this approach to the central Arctic Ocean and to a larger grain size range, we applied micro-hole PSL dating to >11 μm quartz grains from core tops (0.5–2 cm horizon) from two sites on the central Lomonosov Ridge. We obtain a burial age estimate of ca. 2 ka for 11–62 μm grains at a multicore site 18 MC within a perched intra-ridge basin, in accord with 14C ages obtained on foraminifers. At nearby site 19 MC on the erosive ridge top, the micro-hole PSL dating of >90 μm quartz grains produces a burial age estimate of ∼ca. 25 ka, in accord with a foraminiferal 14C age of ca. 26 ka. However, the 11–90 μm grains from the same sample produce a much younger burial age estimate of ca. 9 ka. Thus, these two size fractions of quartz grains record different burial times and different deposition agents (icebergs vs. sea ice), providing insight into past sedimentary processes. Overall, our results confirm an earlier conclusion from micro-hole PSL dating study at the Alaska margin that medium to coarse silt fractions of quartz grains (11–90 μm or at least 62 μm) is the preferred material for direct dating of the last daylight exposure of detrital sediment in the Arctic Ocean.  相似文献   

16.
The joint use of the magnetovariational (MV) and magnetotelluric (MT) data and the a priori information about the areal distribution of the deep electrical conductivity within the studied area and the integral conductance of the sedimentary cover enabled us to conduct a three-dimensional (3D) inversion of these data and construct the 3D model of the northeastern part of Kamchatka. The results show that within the Shiveluch volcano, north and south of it, there are northwesterly striking conductive faults penetrating up to the mantle which ascends from a depth of 41 to 35 km. The electrical conductivity of these crustal structures which accommodate high seismic and volcanic activity is probably accounted for by fluid saturation.  相似文献   

17.
The nonlinear perturbation of a dipole field by a system of transverse currents, which arises due to the radial pressure distribution when the pressure is almost independent of the radial distance, is analyzed. This distribution of pressure was observed in the experiment. The radial dependences of the magnetic field depression, transverse current density, and volumes of magnetic flux tubes have been obtained at different values of the plasma parameter via nonlinear simulation. It is shown that a dependence of the volume of magnetic flux tube on the radial distance can change and a region of the negative gradient of volume can appear at some plasma-parameter values.  相似文献   

18.
Studies were conducted to improve our knowledge of the deep structure of the magmatic system and the plumbing system for the North Vent, Great Tolbachik Fissure Eruption of 1975–1976 based on recordings of background microseismic emission by broadband digital instruments along two parallel lines running through eruptive centers of various ages across the main magma-conducting fault. The method of low-frequency microseismic sounding was used for constructing deep sections down to a depth of 20 km, showing the shear-velocity distributions along these lines. Elements of the magmatic system were revealed beneath both vents in the form of low-velocity anomalies. We identified regions of magma chambers at different depths together with the channelways that connect these. It was found that magma might come to shallow chambers from different deep-seated sources along spatially isolated magma conduits, which is one of the possible causes of the variation in the basalt composition during the eruptions. For the zone of areal volcanism we are the first to demonstrate a change in magma-conducting conduits in the transition from the crystalline basement to the volcanogenic sedimentary rock sequence, with subvertical channels being replaced by inclined forms. It was shown that the elements of the magmatic system beneath both eruptive centers studied here are similar. It is hypothesized that there is a regularity in the configuration of plumbing systems in the middle part of the Tolbachik regional zone of areal volcanism.  相似文献   

19.
Summary It is shown that paleogeographical data give evidence for the increase of the Earth’s radius. The average annual increase computed is 0.5 mm/year. The formation of the continents and ocean basins may be easily explained on the basis of the Earth’s expansion. The rate of the annual radius increase derived from this explanation is in good agreement with the value determined from paleogeographical data. The theoretically computed duration of a transgression-regression period corresponds also with geological observations. Prof. Dr. L. Egyed, Geophysical Institute, E?tv?s-University,Budapest (Hungary).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号