首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Condensate glasses of two types were found during the SEM and TEM investigation of zhamanshinite samples within volumetrically dominant melt glass: silica-rich glasses similar to irghizite-type condensates and moderately silicic sodium-rich glasses deposited in voids in zhamanshinites. The latter are characterized by globular morphology, high contents of volatile components, and presence of inclusions a few hundred nanometers in size. The differences of the zhamanshinite-type condensate glasses from irghizitetype condensates are related to their slower cooling and closeness of the pore space system. The results of the investigation of melt glasses of various color groups from the same samples are presented for comparison. The glasses of each group appeared to be homogeneous at the SEM level, but inhomogeneous at the TEM scale.  相似文献   

2.
A CdSe high-pressure polymorph of the NaCl structural type of a0 = 0.549 nm and Fm–3m space group was discovered in nature for the first time. Its composition is within range of CdSe–CdSe1–х where x = 0.2 apfu. The phase was discovered as abundant nanosize inclusions in irgizite-type condensate glass separated from the sample of impact rock of the Zhamanshin crater (Central Kazakhstan). The treated mineral was presumably formed within a gas–plasma cloud at the moment of impact.  相似文献   

3.
In the suevite breccia of the Ries impact crater, Germany, glasses occur as bombs, and small particles in the groundmass. These glasses were formed from melt produced by shock fusion of crystalline basement rocks. Ejection from the crater resulted in the formation of aerodynamically shaped bombs, a few homogeneous spherules and a large mass of small glass particles which were deposited in the suevite breccia. Bombs and small particles included within chilled bottom and top layers of suevite deposits have been preserved in vitreous state, whereas glasses within the interior of the suevite devitrified, due to slower cooling rates.This paper summarizes the results of petrographical and chemical investigations of suevite glasses and their devitrification products. Conclusions are derived on origin and history of bombs and glass particles.Vitreous bombs and glass particles consist of schlieren-rich glass, mineral fragments (mainly quartz), rock fragments and vesicles. Wet chemical, trace element and microprobe analyses reveal that a primary melt was formed by shock fusion of a basement complex, consisting of about 80% biotite granite and 20% amphibolite. The, originally, more than 1800° C hot melt then incorporated shocked and desintegrated rocks of outer zones of the impact. Partial fusion of the rock debris resulted in a polyphase mixture consisting of melts, different in composition, accumulations of refractory mineral fragments and vesicles.Devitrified bombs and glass particles which are found in the interior of suevite deposits show alterations of texture and composition, due to microcrystallite growth and action of hydrothermal and weathering solutions. Incipient devitrification is indicated by brown staining of the glasses, originating, probably, by exsolution of minute magnetite particles. By optical microscopy and X-ray analysis, plagioclase and pyroxenes have been identified as main devitrification products. Shapes and textures of microcrystallites indicate fast crystal growth in a viscous and supercooled medium. Hot fluids permeating the suevite deposited microcrystalline quartz in vesicles and cracks. Later, montmorillonite was precipitated by solutions corroding the glass. Action of solutions on glasses which were weakened in coherence by devitrification resulted in oxidation of iron, leaching of iron and magnesium, and enrichment in alkalis.  相似文献   

4.
Using high-resolution analytical electron microscopy, heterogeneous fragments of cosmogenic substances, such as nickelphosphide Ni3P and the unnamed intermetallide ZnAl2, are detected for the first time for a large meteorite crater, the Zhamanshin circular structure. Due to the impossibility of simultaneous finding these phases in the same meteorite, an assumption is made on the cometary nature of the impactor of the Zhamanshin crater.  相似文献   

5.
Physical properties and the crystallization behavior of natural diaplectic labradorite glass of the shocked anorthosite from the Manicouagan impact crater have been studied. Glasses prepared by laboratory fusion of this anorthosite and a synthetic An55 plagioclase composition were used for comparison. The close similarities in the mid-and far-infrared spectra of the diaplectic and fused glasses indicate a comparable degree of short-range order and lack of long-range order in their structures. They also show an identical viscosity-temperature relation, reflecting a similar and probably high degree of coherence of the (Si,Al)O4 tetrahedra in the network. However, striking differences exist in the crystallization characteristics. Diffusion-controlled crystallization takes place in the fused glass between about 900 and 1,400° C and proceeds generally by the advance of dendritic crystal layers from the surface into the interior of the samples. By contrast, diffusion plays a minor, if any, role in the crystallization of the diaplectic glass, which, on annealing between 800 and 1,000° C reverts to the original plagioclase structure and the primary mineral grains are restored. From the present experimental results it is suggested that high shock-induced temperatures cause onset of the melting process in the compressed crystalline labradorite. However, due to the extremely short duration of the transient high-temperature excursions, the crystal-melt transition does not come to completion. Instead, a disordered transitional state of the compressed material is frozen-in which is recovered after pressure release as diaplectic glass. Its structure thus represents a frozen-in disordered state intermediate between the structures of the crystalline labradorite and its melt. It appears that the diaplectic glass structure is rather inhomogeneous, thereby reflecting the heterogeneous deformational and thermal conditions associated with shock compression.  相似文献   

6.
7.
The thermal history of four spinel lherzolites (Lhz-13. Lhz-28, Lhz-29 and Lhz-53) from tuff breccia of the Ichinomegata crater, northeast Japan, has been studied in detail. Lhz-13 and Lhz-53 showed nearly perfect chemical homogeneity of the constituent minerals, and increase of Ca near the rim of olivine is the only disequilibrium evidence observed. In addition to the Ca zoning in olivine, Lhz-28 and Lhz-29 revealed compositional zoning in the Mg/Mg + Fe ratio and Ca content in ortho- and clinopyroxenes. Lhz-13 and Lhz-53 equilibrated at about 800°C in the upper mantle, based on Fe/Mg partitioning between olivine/spinel and olivine/clinopyroxene, and on the mutual solubility of Ca between olivine and pyroxenes. Lhz-28 and Lhz-29 also equilibrated originally at about 800°C, but were preheated at about 1000°C prior to their entrapment by the ascending host magma. The Fe/Mg partitioning between olivine /spinel and olivine/clinopyroxene reequilibrated during the preheating event: however, the Ca solubility did not reequilibrate. Olivine alone has rehomogenized with a high-Ca content but pyroxenes were compositionally zoned with Ca. The preheating event, indicated by the high-Ca content in the core of olivine, is recognized from about a half of the Ichinomegata Iherzolites (50 xenoliths were studied).The duration of heating during the transport of the xenolith by the magma (estimated from the width of the Ca zoning in the rim of olivine) ranges between several hours to a year depending on the rock specimen. From the requirement to reset olivine core compositions, the duration of the preheating event was estimated as greater than 1000 yr.  相似文献   

8.
Fragments of heterogeneous cosmonegic substance (nickelphosphide Ni3P and ZnAl2) were found using high resolution analytical electron microscopic techniques, for the first time in samples from a large meteorite crater: the Zhamanshin astrobleme in Kazakstan. Inasmuch as such fragments cannot simultaneously occur in meteorite of any one type, we suggest that the impactor of the Zhamanshin crater was of comet nature.  相似文献   

9.
Amphibole-bearing gneiss fragments are common in the impact breccias of the Xiuyan crater, China. Three kinds of amphibole-bearing gneiss fragments with different shock-metamorphic levels have been identified. Shock-metamorphic features of amphiboles in these gneisses were investigated in situ by optical microscope, electron microprobe, Raman spectroscopy, and X-ray diffraction. Amphiboles in the weakly shocked gneiss (shock pressure less than 10 GPa) basically remain intact. Amphiboles in the moderately shocked gneiss (shock pressure range between 35 and 45 GPa) show strong deformation, reduced optical interference color, and partial loss of OH?. In the strongly shocked gneiss (shock pressure above 50 GPa), amphiboles are completely melted and dendritic pyroxenes crystallize from the melt. The formation of dendritic pyroxenes shows nearly complete loss of water in the amphibole melt at shock-induced high temperature above 1,500 °C. The occurrence of both diopside and pigeonite dendrites crystallized in the same amphibole melt shows inhomogenous melt composition and rapid cooling of the melt.  相似文献   

10.
岫岩陨石坑菱铁矿角砾岩的特征及成因   总被引:1,自引:0,他引:1  
岫岩陨石坑直径1.8 km,是一个简单碗形坑.通过在陨石坑中心实施的岩芯钻探,在被厚达107 m第四系湖相沉积物覆盖的撞击角砾岩单元顶部位置,发现少量“菱铁矿角砾岩”.这种菱铁矿角砾岩由菱铁矿微晶和矿物岩石碎屑组成.全岩碳同位素分析显示出较高的δδ13C异常,平均高达+13.76‰(V-PDB标准).菱铁矿形成时间约为37 ka,晚于撞击成坑事件(50 ka),也晚于湖泊相沉积物的沉积年龄(39~50 ka).在还原环境下,细菌分解有机质形成甲烷引起的碳同位素分馏是造成菱铁矿δ13C显著正异常的主要原因.显然,这些菱铁矿属于沉积成因.沉淀的菱铁矿胶结岩石和矿物碎屑形成菱铁矿角砾岩.  相似文献   

11.
The structural state of diaplectic labradorite glass (≈An58) from the Manicouagan impact crater and of its fusion-formed glass analog have been investigated by X-ray diffraction studies. The experimental X-ray intensity distribution patterns indicate that the diaplectic and fusion-formed glasses are structurally rather similar, the former being apparently slightly less disordered. Theoretical X-ray distribution curves have been calculated using the structure of high albite as a quasi-crystalline model of the glass structure. The experimental and theoretical curves show fair similarity when the calculations are based on the complete unit cell. It is inferred therefore, that the structures of both kinds of glasses possess an average short range order comparable to that in high albite and extending to about the dimensions of the unit cell. In addition, the experimental X-ray scattering pattern and X-ray Debye-Scherrer transmission photographs of the diaplectic glass reveal the presence of relics up to about 8 nm in size of the previous crystalline lattice of the primary labradorite. The present results support Grady's shear band model according to which diaplectic glass may represent the quench product of a shock-generated high-density melt frozen in prior to total pressure release.  相似文献   

12.
尹锋  陈鸣 《岩石学报》2022,38(3):901-912
撞击角砾岩是陨石撞击过程形成的特有岩石种类,是研究撞击成坑过程、陨石坑定年、矿物岩石冲击变质的理想对象。岫岩陨石坑是一个直径1800m的简单陨石坑,坑内有大量松散堆积的撞击角砾岩。本研究通过光学显微镜、费氏台、电子探针、X射线荧光光谱仪、电感耦合等离子质谱仪等分析测试手段,主要研究了岫岩陨石坑撞击角砾岩的岩相学和冲击变质特征,并在此基础上讨论了撞击角砾岩的形成过程和陨石坑的形貌特征。岫岩陨石坑内产出有三种撞击角砾岩,分别是来自上部的玄武质角砾岩和复成分岩屑角砾岩,以及底部的含熔体角砾岩。组成玄武质角砾岩和复成分岩屑角砾岩的碎屑受到的冲击程度较低,仅有少量石英发育面状变形页理,指示不超过20GPa的冲击压力。而组成含熔体角砾岩的碎屑受到了很强的冲击,发育了熔融硅酸盐玻璃、石英面状变形页理、柯石英、二氧化硅玻璃、击变长石玻璃、莱氏石等冲击变质特征,指示的峰值压力超过50GPa。本研究证实了含熔体角砾岩通常产出在简单陨石坑底部,由瞬间坑的坑缘和坑壁垮塌的岩石碎屑与坑底的冲击熔体混合形成。岫岩坑的真实深度是495m,真实深度与直径的比值为0.275,符合简单陨石坑的尺寸特征。陨石坑内的撞击角砾岩中心厚度为188m,与直径之比为0.104,略低于其它简单坑,可能是受丘陵地貌影响导致改造阶段垮塌到坑内的岩石角砾偏少。  相似文献   

13.
Surface expression of the Chicxulub crater   总被引:2,自引:0,他引:2  
Pope KO  Ocampo AC  Kinsland GL  Smith R 《Geology》1996,24(6):527-530
Analyses of geomorphic, soil, and topographic data from the northern Yucatan Peninsula, Mexico, confirm that the buried Chicxulub impact crater has a distinct surface expression and that carbonate sedimentation throughout the Cenozoic has been influenced by the crater. Late Tertiary sedimentation was mostly restricted to the region within the buried crater, and a semicircular moat existed until at least Pliocene time. The topographic expression of the crater is a series of features concentric with the crater. The most prominent is an approximately 83-km-radius trough or moat containing sinkholes (the Cenote ring). Early Tertiary surfaces rise abruptly outside the moat and form a stepped topography with an outer trough and ridge crest at radii of approximately 103 and approximately 129 km, respectively. Two discontinuous troughs lie within the moat at radii of approximately 41 and approximately 62 km. The low ridge between the inner troughs corresponds to the buried peak ring. The moat corresponds to the outer edge of the crater floor demarcated by a major ring fault. The outer trough and the approximately 62-km-radius inner trough also mark buried ring faults. The ridge crest corresponds to the topographic rim of the crater as modified by postimpact processes. These interpretations support previous findings that the principal impact basin has a diameter of approximately 180 km, but concentric, low-relief slumping extends well beyond this diameter and the eroded crater rim may extend to a diameter of approximately 260 km.  相似文献   

14.
Crystalline rocks from breccias of the Ries basin, Germany, contain highly deformed quartz. Various planar deformation structures could be observed and classified into five different types: (1) Decorated planar elements, (2) Non-decorated planar elements, (3) Homogeneous lamellae, (4) Filled lamellae, (5) Planar fractures. All these structures are parallel to crystallographic planes: {10¯13}, {10¯12}, {10¯11}, {0001},{11¯21}, {11¯22}, {21¯31}, {51¯61}, {10¯10}. The most typical and most abundant planar structures are decorated and nondecorated planar elements parallel to {10¯13} and {10¯12}. Planar fractures are parallel to {0001} and {10¯11} and form at lower stress levels, probably earlier than the planar elements.Quartz containing planar elements, especially of the non-decorated type, has lower density, index of refraction and birefringence than normal quartz. This quartz is apparently a mixture of an amorphous phase and crystalline quartz, the amount of which can be calculated using average density or refractive index.Comparison of planar quartz structures found in tectonites and those produced artificially under static or dynamic high pressure conditions demonstrates that Ries quartz closely resembles deformed quartz recovered from shock wave experiments. The planar structures found in Ries quartz have been formed by shock wave actions with peak pressures in the 100–400 kbar range.Planar elements are explained to be traces of gliding processes during shock loading visible due to the fact that a high pressure phase (stishovite and/or a stishovite-like glass phase) has been produced along the glide planes. Upon pressure release most of the high pressure phase was transformed into an SiO2-glass (diaplectic glass).In comparison with experimental data the amount of residual crystalline quartz as well as type and orientation of planar structures in the quartz grains are clues to estimate the peak pressures responsible for these deformations. Shock waves with peak pressures exceeding about 400 kbar completely transform quartz into diaplectic SiO2-glass.  相似文献   

15.
16.
17.
18.
Statistical analysis of a data bank of the compositions of glasses and melt inclusions in minerals from ocean-island basalts. The initial database contains more than 45 000 published analyses of ocean-island igneous rocks from around the world. Much attention was given to the contents of volatiles (H2O, Cl, F, and S) and their ratios to one another and to nonvolatile components of close incompatibility (Ti, P, K, and Ce). The average compositions of melt inclusions are similar to those of glasses of the rocks, including volatiles, with consideration for a somewhat higher degree (by approximately 20%) of the differentiation of glasses. The average compositions of ocean-island melts differ from those of mid-ocean basalts in having wider variations and elevated contents of some of the most incompatible elements (Sr, Nb, Ta, Ba, U, Th, and others), as well as H2O, F, and Cl. Based on the correlation of volatiles to one another and to incompatible elements, three groups of ocean-island basalts are distinguished: (I) low-K, P, Ti magma compositions approximating mid-ocean ridge magmas, (II) high-K, Ce, P, and Ti magmas that resemble continental rift magmas but differ from them in low H2O content, and (III) high-K, H2O, Ce, P, and Ti magmas close to continental rift magma. All three types of the melts were found only in the Hawaiian Archipelago, whereas other ocean islands are dominated by any one of these types. The distinguished melt types presumably reflect the differences (heterogeneity) in the compositions of the sources.  相似文献   

19.
Crater size-frequency distribution is one of the powerful techniques to estimate the ages of planetary surfaces, especially from remote sensing studies. This has been applied to images of the Moon obtained from Clementine mission in 1994. Simple techniques of measurement of the diameter of the craters (in pixels) are used and converted into linear dimensions. Among the several maria studied, the results of Mare Humorum and the central region of Mare Imbrium are reported. The results are compared with age estimates from other sources.  相似文献   

20.
The 27.2 km diameter Tooting crater is the best preserved young impact crater of its size on Mars. It offers an unprecedented opportunity to study impact-related phenomena as well the geology of the crust in the Amazonis Planitia region of Mars. For example, the nearly pristine condition enables the partial reconstruction of the sequence of events for crater formation, as well as facilitates a comparison to deposits seen at the Ries crater in Germany. High-resolution images taken by the High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) on the Mars Reconnaissance Orbiter spacecraft have revealed a wealth of information on the distribution of features within the crater and beyond the rim: a large central peak, pitted material on the floor and terrace blocks, lobate flows interpreted to be sediment flows, impact melt sheets, four discrete layers of ejecta, and an asymmetric secondary crater field. Topographic data derived from the Mars Orbiter Laser Altimeter (MOLA) and stereo HiRISE and CTX images show that the central peak is ~1100 m high, the lowest point of the crater floor is 1274 m below the highest part of the rim, and the crater rim has ~600 m of variability around its perimeter. Layering within the cavity walls indicates ~260 m of structural uplift of the target material, which constitutes ~35% of the total relief of the rim. Abundant evidence is found for water flowing down the cavity walls, and on the surface of the ejecta layers, both of which took place sometime after the impact event. Thickness measurements of the ejecta layers reveal that the continuous blanket is remarkably thin (~3–5 m) in some places, and that the distal ramparts may be ~60 m high. Crater counts made on the ejecta layers indicate a model age of <3 Ma for the formation of Tooting crater, and that the target rocks have a model age of ~240–375 Ma. It is therefore possible that this may be the source of certain basaltic shergottite meteorites ejected at ~2.8 Ma that have crystallization ages which are comparable to those of the basaltic lava flows that formed the target materials for this impact event. The geology and geomorphology of Tooting crater may help in the interpretation of older large impact craters on Mars, as well as the potential role of target volatiles in the impact cratering process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号